
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapters focused on using camera models to identify the relationship be-
tween points in a 3D scene and their projections onto the camera image, as well as how to
leverage those models to reconstruct 3D scene structure from 2D images. Alternatively, this
chapter begins to look at methods for extracting other types of information through image
processing, for example to answer the question “what object am I seeing?” rather than “how
far away is this object?”. Extracting this type of visual content from raw images is important
for mobile robots to be able to intelligently interpret their surroundings. In fact, it can have
a major impact on the ability of the robot to perform several tasks including localization and
mapping or decision making. This chapter focuses on some of the more commonly used tools
in image processing including image filtering, feature detection, and feature description.

11 Image Processing

Image processing is a form of signal processing where the input signal is an image (such as
a photo or a video) and the output is either an image or a set of parameters associated with
the image. While a large number of image processing techniques exist, this chapter focuses
on some of the more fundamental methods that are relevant for robotics. In particular, these
methods will be related to image filtering, feature detection, and feature description1.

In the following methods, grayscale images are treated as functions I: [a, b] × [c, d] →
[0, L], where I(x, y) represents the grayscale pixel intensity at (x, y). For a color image, I is
a vector valued function with three components, one each for the red, green, and blue color
channels of the image.

11.1 Image Filtering

Image filtering is one of the principal tasks in image processing. The terminology “filter”
comes from frequency domain signal processing and refers to the process of accepting or
rejecting certain frequency components of a signal (e.g. eliminating high-frequency noise).

Perhaps the most common type of image filtering is spatial filtering. The basic principle
of spatial filtering is that a particular pixel is modified in the filtered image based only on the

1The software library OpenCV [ope] implements a number of useful image filtering algorithms.

1

pixels in the immediate spatial neighborhood (see Figure 1). To be more specific, a spatial
filter for an image I(x, y) consists of:

1. A neighborhood Sxy of pixels around a particular point (x, y) under examination,
typically rectangular.

2. A predefined operation F that is performed on the image pixels encompassed by the
neighborhood Sxy.

Once the operation F has been applied to all pixels (x, y) in the image I a new image I ′(x, y)
is defined.

Figure 1: Illustration of the concept of spatial filtering [SNS11].

In general filters can be linear or nonlinear, but many of the most fundamental filters are
linear and can be expressed mathematically as:

I ′(x, y) = F ◦ I =
N∑

i=−N

M∑
j=−M

F (i, j)I(x+ i, y + j), (1)

where N and M are integers that define the width and height of a rectangular neighborhood
Sxy. Based on the size of this neighborhood, it is said that this filter is of size (2N + 1) ×
(2M + 1). Additionally, the filter operation F is usually called a mask or kernel. Broadly
speaking, filters expressed by (1) are referred to as correlation filters.

Another type of linear filters that are commonly used are referred to as convolution
filters. Convolution filters are similar to correlation filters but use reverse image indices
(in fact correlation and convolution filters are identical when the filter mask is symmetric
in both the horizontal and vertical directions). In particular, these filters are expressed
mathematically as:

I ′(x, y) = F ∗ I =
N∑

i=−N

M∑
j=−M

F (i, j)I(x− i, y − j). (2)

2

Convolution filters are associative, meaning that for two different filters masks F and G it
is true that F ∗ (G ∗ I) = (F ∗G) ∗ I. One example of how the associative property is useful
is for smoothing an image before taking applying a differentiation filter. Suppose the mask
F implemented a derivative filter and G implemented a smoothing filter, then sequentially
applying these filters would result in F ∗(G∗I). However, because of the associative property
the masks can be convolved together first such that only one filter needs to be applied to
the image (i.e. (F ∗G) ∗ I).

Note that in both the correlation and convolution filters the boundaries of the image need
some special care because of the width and height of the mask. Some possible options to
handle this include padding the image, cropping it, extending it, or wrapping it. However,
as images are generally quite large the exact approach likely won’t vary the final result
significantly.

Example 11.1 (Practical Considerations for Image Filtering). Implementation of correla-
tion and convolution filters typically leverages some additional “tricks” to make things easier
to implement. In this example two such tricks will be introduced: zero-padding and a change
in indexing.

First, to more simply accommodate varying sizes of filters (including even and odd sized
filters) the indexing is often changed such that the coordinate of interest is associated with
the top-left element in the window rather than the center. In particular, for a correlation
filter this would correspond to:

I ′(x, y) = F ◦ I =
K∑
i=1

L∑
j=1

F (x, y)I(x+ i− 1, y + j − 1), (3)

where K and L are integers that define the width and height of the filter and the pixel (x, y)
is at row x and column y. However, note that with this formulation the output image I ′

will be shifted up and to the left. To see this consider the pixel at x = 1 and y = 1 in
the new image I ′, which would correspond to the top-left pixel I ′. This new pixel value is
generated by applying the filter F over the pixels in the original image I at rows {1, . . . , K}
and columns {1, . . . , L} (which is not centered at (1, 1) in the original image I). Therefore
it will appear as if the image has been shifted! But in practice this isn’t an issue as long as
you always index with respect to the top-left corner.

Zero-padding (also commonly referred to as same padding) is another simple trick that
can be used to ensure that the output filtered image I ′ has the same dimension as the input
image I. In this approach the left and right boundaries of the image are each padded by
bK/2c columns of zeros, and the top and bottom boundaries are padded by bL/2c rows of
zeros (b·c denotes the “floor” operation). For example the image:

I =

1 2 3
4 5 6
7 8 9

 ,

3

would become

Ipadded =

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

 ,
for filters F ∈ R3×3, F ∈ R2×2, F ∈ R2×3 and F ∈ R3×2. When using this padding rule with
the correlation filter (3) and a filter F with K = 2, 3 and L = 2, 3, the new image I ′ can be
defined for values x ∈ {1, 2, 3} and y ∈ {1, 2, 3}, resulting in I ′ being the same dimension as
the original image I.

11.1.1 Moving Average Filter

The moving average filter returns the average of pixels in the mask, which achieves a smooth-
ing effect (i.e. removes sharp features in the image). For example, a moving average filter
with a normalized 3× 3 mask is defined with the operation F in (1) chosen as:

F =
1

9

1 1 1
1 1 1
1 1 1

 .
Note that due to symmetry of the mask, the correlation (1) and convolution (2) filters will
be identical. Additionally, the normalization is used to maintain the overall brightness of
the image. An example of this filter is shown in Figure 2.

Figure 2: Example of a moving average filter, which produces a smoothing (blurring) effect
on the filtered image.

4

11.1.2 Gaussian Smoothing Filter

Gaussian smoothing filters are similar to the moving average filer, but instead of weighting
all of the pixels evenly they are weighted by the Gaussian function:

Gσ(x, y) =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
.

This function is used to obtain the mask operation F by sampling the function about the
center pixel (i.e. for the center pixel with i = j = 0 in (1), sample Gσ(0, 0)). For example,
for a normalized 3× 3 mask with σ = 0.85 this filter is approximately defined by:

F =
1

16

1 2 1
2 4 2
1 2 1

 .
Like the moving average filter, this filter mask is symmetric and therefore yields identical
results with respect to the correlation (1) or convolution (2) filters. The advantage of the
Gaussian filter is that it provides more weight to the neighboring pixels that are closer.

11.1.3 Separable Masks

A mask F is called separable if it can be broken down into the convolution of two kernels
F = F1 ∗ F2. If a mask is separable into “smaller” masks, then it is often cheaper to apply
F1 followed by F2, rather than by F directly. One special case of this is when the mask
can be represented as an outer product of two vectors (meaning it is equivalent to the 2D
convolution of those two vectors). If the mask is of shape M ×M , and the input image
has size w× h, then the computational complexity of directly performing the convolution is
O(M2wh). However, by separating the masks the computational cost is O(2Mwh), which is
linear in M rather than quadratic. As an example, consider the moving average filter mask
from before:

F =
1

9

1 1 1
1 1 1
1 1 1

 =
1

9

1
1
1

 [1 1 1
]
.

As another example, note that the Gaussian smoothing filter mask is also separable. To see
why this is, note that the Gaussian weighting function can be decomposed as:

Gσ(x, y) =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
,

=
1√
2πσ

exp

(
− x2

2σ2

)
1√
2πσ

exp

(
− y2

2σ2

)
,

= gσ(x) · gσ(y).

5

11.1.4 Image Differentiation Filters

Taking the derivative of an image can be used to identify certain features, such as edges.
On a basic level, the derivative of an image quantifies changes in pixel intensity in both the
vertical and horizontal direction. However, since images are represented as functions defined
over a discrete domain the traditional method for differentiating continuous functions can
not be used. Instead it is more common to just compute differences between pixels, such as
using a central difference method:

∂I

∂x
=
I(x+ 1, y)− I(x− 1, y)

2
,

∂I

∂y
=
I(x, y + 1)− I(x, y − 1)

2
.

(4)

where ∂I/∂x is the derivative in the horizontal direction and ∂I/∂y is the derivative in the
vertical direction. It is of course also possible to define the derivatives using just one side,
for example ∂I

∂x
= I(x+ 1, y)− I(x, y).

It is also possible to differentiate an image using convolution filters. In particular, one
common approach is to use a convolution filter (2) defined with a mask F called a Sobel
mask (also referred to as simply a Sobel operator). For the x direction this mask is denoted
as Sx and for the y direction as Sy:

Sx =

1 0 −1
2 0 −2
1 0 −1

 , Sy =

 1 2 1
0 0 0
−1 −2 −1

 (5)

Sobel masks are similar to the central difference method but use more neighboring pixels
when calculating the derivative (i.e. they also consider the rows above and below to compute
the difference). Note that Sobel masks are also separable.

11.1.5 Similarity Measures

Filtering can also be used to find similar features in different images, which can be useful for
solving the correspondence problem in stereo vision or structure-from-motion techniques. In
particular, the similarity between the pixel (x, y) in image I1 and pixel (x′, y′) in image I2
can be computed by:

SAD =
N∑

i=−N

M∑
j=−M

|I1(x+ i, y + j)− I2(x′ + i, y′ + j)|,

SSD =
N∑

i=−N

M∑
j=−M

[I1(x+ i, y + j)− I2(x′ + i, y′ + j)]2,

(6)

where SAD is an acronym for “sum of absolute differences”, SSD is an acronym for “sum of
squared differences”, and N and M define the size of the window around the pixels that is
considered.

6

11.2 Image Feature Detection

A local feature (also sometimes referred to as interest points, interest regions, or keypoints)
in an image is a pattern that differs from its immediate neighborhood in terms of intensity,
color, or texture. Local features can generally be categorized in several ways, for example
whether they provide semantic content or not. For example, features that may provide
semantic content include edges or other geometric shapes (e.g. lanes of a road or blobs
corresponding to blood cells in medical images). These types of features were some of the
first for which feature detectors were proposed in the image processing literature. Features
that do not provide semantic content may also be useful, for example in feature tracking,
camera calibration, 3D reconstruction, image mosaicing, and panorama stitching. In these
cases it may be more important that the feature be able to be located accurately and robustly
over time. A third category of features are those that may not have semantic interpretations
individually, but may have meaning as a collection. For instance, a scene could be recognized
by counting the number of feature matches between the observed scene and a query image.
In this case only the number of matches is relevant and not the location or type of feature.
Applications where these types of features are important include texture analysis, scene
classification, video mining, and image retrieval.

In this section several feature detection strategies will be discussed. While many strategies
exist for different types of features, the focus here will be on two common features that are
often useful in robotics: edges and corners.

11.2.1 Edge Detection

An edge in an image is a region where there is a significant change in intensity values along
one direction, and negligible change along the orthogonal direction. In one dimension an edge
corresponds to a point where there is a sharp change in intensity, which mathematically can
be thought of as a point of a function having a large first derivative and a small second
derivative. Many edge detectors rely on this concept by differentiating images and looking
for spikes in the derivative. An edge detector can be evaluated based on several criteria
for robustness and performance, including accuracy, localization, and single response. Good
accuracy implies few false positives or negatives (missed edges), good localization implies that
the detected edge should be exactly where the true edge is in the image, and a single response
implies only one edge is detected for each real edge. In practice, noise and discretization can
make edge detection challenging.

Most edge detection methods rely on two key steps: smoothing and differentiation. Dif-
ferentiation is performed in both the vertical and horizontal directions to find locations in
the image with high intensity gradients. However, differentiation alone is vulnerable to false
positives due to image noise, which is why many algorithms will first smooth the image.

Edge Detection in 1D: An example of how noise can corrupt image differentiation is
given in Figure 3. Notice that in this case it is impossible to identify the jump in the signal
due to the noise levels. Smoothing filters, such as the Gaussian smoothing filter discussed

7

Figure 3: Differentiation of signal with noise can be particularly challenging, which can be
addressed by first smoothing the signal.

earlier, can help remedy this problem. In particular, suppose the original signal in Figure
3 is defined by I(x). Then a smoothed version can be defined by applying a smoothing
convolution filter:

s(x) = gσ(x) ∗ I(x),

where gσ(x) represents a Gaussian smoothing filter, and then by applying the differentiation
filter:

s′(x) =
d

dx
∗ s(x).

This process is shown in Figure 4. Note however that since these filters are convolutions,
the associativity property can be leveraged to actually combine them into a single filter:

s′ = (
d

dx
∗ gσ) ∗ I.

The implementation of this single filter for edge detection is shown graphically in Figure 5.

Edge Detection in 2D: Edge detection in a two-dimensional image is quite similar to
the example previously discussed in 1D. Let the smoothing filter be the Gaussian smoothing
filter from before, and a differentiation filter such as the Sobel filter. The gradient of the
smoothed image in both the x and y directions can be written as:

∇S =

[
∂
∂x
∗Gσ ∗ I

∂
∂y
∗Gσ ∗ I

]
=

[
Gσ,x ∗ I
Gσ,y ∗ I

]
=

[
Sx
Sy

]
,

where I is the original image and the associativity properties of the smoothing and differenti-
ation convolution filters is used to define the combined filters Gσ,x and Gσ,y. The magnitude
of the gradient can then be computed by:

|∇S| =
√
S2
x + S2

y ,

8

Figure 4: Edge detection through convolution with a Gaussian smoothing filter, followed by
a differentiation filter.

which can be used to check against a predefined threshold value for edge detection. To
guarantee thin edges it is also possible to filter out points whose gradient magnitude are
above the threshold but are not local maxima. An example of this process is shown in
Figure 6.

11.2.2 Corner Detection

A corner in an image is defined as an intersection of two or more edges, and also some-
times as a point where there is a large intensity variation in every direction. Important
properties of corner detectors include repeatability and distinctiveness. Repeatability quan-
tifies how well the same features can be found in multiple images even under geometric and
photometric transformations. Distinctiveness refers to whether the information carried by
the patch surrounding the feature is distinctive, which can be used to reliably produce cor-
respondences. Both of these properties are particularly important in applications such as
panorama stitching and 3D reconstruction.

Generally corner detection can be thought of in a similar way to edge detection, except
that instead of looking for change along one direction there should be changes in all direc-
tions. One well known corner detector is known as the Harris detector [HS88], which has the
useful property that the detection is invariant to rotations and linear intensity changes (i.e.
geometric and photometric invariance). However the Harris detector is not invariant to scale
changes or geometric affine changes, which has led to the development of scale-invariant de-

9

Figure 5: Edge detection through convolution with a differentiated Gaussian kernel

tectors such as the Harris-Laplacian detector or the scale-invariant feature transform (SIFT)
detector.

11.3 Image Descriptors

Image descriptors describe features so that they can be compared across images, or used
for object detection and matching. Similar to image detectors, it is also desirable for image
descriptors to be repeatable (i.e. invariant with respect to pose, scale, illumination, etc.) and
distinct. Perhaps the simplest example of a descriptor is an n×m window of pixel intensities
centered at the feature, which can be normalized to be illumination invariant. However, such
a descriptor is not invariant to pose or scale and is not distinctive, and therefore is generally
not useful in practice. Alternative detectors/descriptors that have become popular include
SIFT, SURF, FAST, BRIEF, ORB, and BRISK.

References

[HS88] C. Harris and M. Stephens. A combined corner and edge detector. In the 4th Alvey
Vision Conference, 1988.

[Mor77] H. P. Moravec. Towards automatic visual obstacle avoidance. In 5th International
Joint Conference on Artificial Intelligence, 1977.

[ope] Image filtering — opencv 3.0.0-dev documentation. https://docs.opencv.org/

3.0-beta/modules/imgproc/doc/filtering.html. (Accessed on 10/22/2019).

[SNS11] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT press, 2011.

10

Figure 6: Classic example of 2D edge detection.

11

