
AA274A: Principles of Robot Autonomy I
Course Notes

The previous chapter developed a mathematical relationship between the position of
a point P in a scene (expressed in world frame coordinates PW ), and the corresponding
point p in pixel coordinates that gets projected onto the image plane of the camera. This
relationship was derived based on the pinhole camera model, and required knowledge about
the camera’s intrinsic and extrinsic parameters. Nonetheless, even in the case where all
of these camera parameters are known it is still impossible to reconstruct the depth of P
with a single image (without additional information). However, in the context of robotics,
recovering 3D information about the structure of the robot’s environment through computer
vision is often a very important task (e.g. for obstacle avoidance). Two approaches for using
cameras to gather 3D information are therefore presented in this chapter, namely stereo
vision and structure from motion.

10 Stereo Vision and Structure from Motion

Recovering scene structure from images is extremely important for mobile robots to safely
operate in their environment and successfully perform tasks. While a number of other
sensors can also be used to recover 3D scene information, such as ultrasonic sensors or laser
rangefinders, cameras capture a broad range of information that goes beyond depth sensing.
Additionally, cameras are a well developed technology and can be an attractive option for
robotics based on cost or size.

Unfortunately, unlike sensors that are specifically designed to measure depth like laser
rangefinders, the camera’s projection of 3D data onto a 2D image makes it impossible to
gather some information from a single image1. Techniques for extracting 3D scene informa-
tion from 2D images have therefore been developed that leverage multiple images of a scene.
Examples of such techniques include depth-from-focus (uses images with different focuses),
stereo vision (uses images from different viewpoints), or structure from motion (uses images
captured by a moving camera).

1Unless you are willing to make some strong assumptions, for example that you know the physical
dimensions of the objects in the environment.
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10.1 Stereo Vision

Stereopsis (from stereo meaning solidity, and opsis meaning vision or sight) is the process
in visual perception leading to the sensation of depth from two slightly different projections
of the world onto the retinas of the two eyes. The difference in the two retinal images is
called horizontal disparity, retinal disparity, or binocular disparity, and arise from the eyes’
different positions in the head. It is the disparity that makes our brain fuse (perceive as a
single image) the two retinal images, making us perceive the object as one solid object. For
example, if you hold your finger vertically in front of you and alternate closing each eye you
will see that the finger jumps from left to right. The distance between the left and right
appearance of the finger is the disparity.

Computational stereopsis, or stereo vision, is the process of obtaining depth information
of a 3D scene via images from two cameras which look at the same scene from different
perspectives. This process consists of two major steps: fusion and reconstruction. Fusion
is a problem of correspondence, in other words how do you correlate each point in the 3D
environment to their corresponding pixels in each camera. Reconstruction is then a problem
of triangulation, which uses the pixel correspondences to determine the full position of the
source point in the scene (including depth).

10.1.1 Epipolar Constraints

As previously mentioned, the first step in the stereo vision process is to fuse the two (or
more) images and generate point correspondences2. This task can be quite challenging, and
erroneously matching features can lead to large errors in the reconstruction step. Therefore,
several techniques are leveraged to make this task simpler. The most important simplifying
technique is to impose an epipolar constraint.

Figure 1: The point P in the scene, the optical centers O and O′ of the two cameras, and
the two images p and p′ of P all lie in the same plane, referred to as the epipolar plane.

2This generally assumes that the perspective of each image is only a slight variation from the other, such
that the features appear similarly in each.
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Consider the images p and p′ of a point P observed by two cameras with optical centers
O and O′ (see Figure 1). These five points all belong to the epipolar plane defined by the
two intersecting rays OP and O′P . In particular, the point p lies on the line l where the
epipolar plane and the image plane intersect. The line l is referred to as the epipolar line
associated with the point p, and it passes through the point e (referred to as the epipole).
Based on this geometry, if p and p′ are images of the same point P , then p must lie on the
epipolar line l and p′ must lie on the epipolar line l′.

Therefore, when searching for correspondences between p and p′ for a particular point P
in the scene it makes sense to restrict the search to the corresponding epipolar line. This is
referred to as an epipolar constraint, and greatly simplifies the correspondence problem by
restricting the possible candidate points to a line rather than the entire image (i.e. a one
dimensional search rather than a two dimensional search).

Mathematically, the epipolar constraints can be written as:

Op · [OO′ ×O′p′] = 0, (1)

since Op, O′p′, and OO′ are coplanar. Assuming the world reference frame is co-located with
camera 1 (with an origin at point O) this constraint can be written as:

pTFp′ = 0, (2)

where F , referred to as the fundamental matrix, has seven degrees of freedom and is singular3.
Additionally, the matrix F is only dependent on the intrinsic camera parameters for each
camera and the geometry that defines their relative positioning, and can be assumed to
be constant. The expression for the fundamental matrix in terms of the camera intrinsic
parameters is:

F = K−TEK ′−1, E =

 0 −t3 t2
t3 0 −t1
−t2 t1 0

R, (3)

where K and K ′ are the intrinsic parameter matrices for cameras 1 and 2 respectively, and R
and t = [t1, t2, t3]

T are the rotation matrix and translation vector that map camera 2 frame
coordinates into camera 1 frame coordinates. Note that with the epipolar constraint defined
by the fundamental matrix (2), the epipolar lines l and l′ can be expressed by l = Fp′ and
l′ = F Tp. Additionally, it can be shown that F T e = Fe′ = 0 where e and e′ are the epipoles
in the image frames of cameras 1 and 2, since by definition the translation vector t is parallel
to the coordinate vectors of the epipoles in the camera frames. This in turn guarantees that
the fundamental matrix F is singular.

If the parameters K, K ′, R, and t are not already known, the fundamental matrix F
can be determined in a manner similar to the intrinsic parameter matrix K in the previous
chapter. Suppose a number of corresponding points ph = [u, v, 1]T and (ph)′ = [u′, v′, 1]T are
known and are expressed as homogeneous coordinates. Each pair of points has to satisfy the

3For a derivation of the epipolar constraint see [DAF11, Section 7.1]
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epipolar constraint (2), which can be written as:

[
u v 1

] F11 F12 F13

F21 F22 F23

F31 F32 F33

u′v′
1

 = 0

This expression can then be equivalently expressed by reparameterizing the matrix F in
vector form f as: [

uu′ uv′ u vu′ vv′ v u′ v′ 1
]
f = 0 (4)

where f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
T . For n known correspondences (p, p′)

these constraints can be stacked to give:

Wf = 0, (5)

where W ∈ Rn×9. Given n ≥ 8 correspondences, an estimate F̃ of the fundamental matrix
estimate is given by:

min
f
‖Wf‖2,

s.t. ‖f‖2 = 1.
(6)

Note that the estimate F̃ computed by (6) is not guaranteed to be singular. A second step
is therefore taken to enforce this additional condition. In particular it is desirable to find
the matrix F that is closest to the estimate F̃ that has a rank of two:

min
F
‖F − F̃‖2,

s.t. det(F ) = 0,
(7)

which can be accomplished by computing a singular value decomposition of the matrix F̃ .

10.1.2 Image Rectification

Given a pair of stereo images, epipolar rectification is a transformation of each image plane
such that all corresponding epipolar lines become colinear and parallel to one of the im-
age axes, for convenience usually the horizontal axis. The resulting rectified images can be
thought of as acquired by a new stereo camera obtained by rotating the original cameras
about their optical centers. The great advantage of the epipolar rectification is the corre-
spondence search becomes simpler and computationally less expensive because the search is
done along the horizontal lines of the rectified images. The steps of the epipolar rectification
algorithm are illustrated in Figure 2. Observe that after the rectification, all the epipolar
lines in the left and right image are colinear and horizontal. While an in depth discussion
on algorithms for image rectification are not discussed here (see [FTV00]), it will generally
be assumed that rectification has been performed.
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Figure 2: Image Rectification

10.1.3 Correspondence Problem

Epipolar constraints and image rectification are commonly used in stereo vision to address
the problem of correspondence, which is the problem of determining the pixels p and p′

from two different cameras with different perspectives that correspond to the same scene
feature P . While these concepts make finding correspondences easier, there are still several
challenges that must be overcome. These include challenges related to feature occlusions,
repetitive patterns, distortions, and others.

10.1.4 Reconstruction Problem

In a stereo vision setup, once a correspondence between the two images is identified it is
possible to reconstruct the 3D scene point based on triangulation. This process of triangu-
lation has already been covered by the discussion on the epipolar geometry. However if the
images have also be rectified such that the epipolar lines become parallel to the horizontal
image axis the triangulation problem becomes simpler. This occurs, for example, when the
two cameras have the same orientation, are placed with their optical axes parallel, and are
separated by some distance b called the baseline (see Figure 3).

In Figure 3, a point P on the object is described as being at coordinate (x, y, z) with
respect to the origin located in the left camera at point O. The horizontal pixel coordinate
in the left and right image are denoted by pu and p′u respectively. Based on the geometry
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Figure 3: Triangulation under Rectified Images (horizontal view on the left, top-down view
on the right)

the depth of the point P can be computed from the properties of similar triangles:

z

b
=

z − f

b− pu + p′u
, (8)

which can be algebraically simplified to:

z =
bf

pu − p′u
, (9)

where f is the focal length. Generally a small baseline b will lead to larger depth errors, but
a large baseline b may cause features to be visible from one camera but not the other. The
difference in the image coordinates, pu− p′u, is referred to as disparity. This is an important
term in stereo vision, because it is only by measuring disparity that depth information can
be recovered. The disparity can also be visually represented in a disparity map, which is
simply a map of the disparity values for each pixel in an image. The largest disparities occur
from nearby objects (i.e. since disparity is inversely proportional to z).

10.2 Structure From Motion (SFM)

The structure from motion (SFM) method uses a similar principle as stereo vision, but
uses one camera to capture multiple images from different perspectives while moving within
the scene. In this case, the intrinsic camera parameter matrix K will be constant, but
the extrinsic parameters (i.e. the rotation matrix R and relative position vector t) will be
different for each image. Consider a case where m images of n fixed 3D points are taken from
different perspectives. This would involve m homography matrices Mk and n 3D points Pj

that would need to be determined by leveraging the relationships:

phj,k = MkP
h
j , j = 1, . . . , n, k = 1, . . . ,m.
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Figure 4: Disparity map from a pair of stereo images. Notice that the lighter values of the
disparity map represent larger disparity, and correspond to the point in the scene that are
closer to the cameras. The black points represent points that were occluded from one of the
images and therefore no correspondence could be made.

Figure 5: A depiction of the structure from motion (SFM) method. A single camera is used
to take multiple images from different perspectives. This then provides enough information
to reconstruction the 3D scene.

However, SFM also has some unique disadvantages, such as an ambiguity in the absolute
scale of the scene that cannot be determined. For example a bigger object at a longer
distance and a smaller object at a closer distance may yield the same projections.

One application of the SFM concept is known as visual odometry. Visual odometry
estimates the motion of a robot by using visual inputs (and possible additional information).
This approach is commonly used in practice, for example by rovers on Mars, and is useful
because it not only allows for 3D scene reconstruction but also to recover the motion of the
camera.
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