
Principles of Robot Autonomy I
Robotic sensors and introduction to computer vision



Sensors for mobile robots
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Sensors for mobile robots
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• Aim
• Learn about key performance characteristics for robotic sensors
• Learn about a full spectrum of sensors, e.g. proprioceptive / exteroceptive, 

passive / active 

• Readings
• Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile 

Robots. Section 4.1.



Example: self-driving cars
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A self-driving car in action
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Classification of sensors

• Proprioceptive: measure values internal to the robot
• E.g.: motor speed, robot arm joint angles, and battery voltage

• Exteroceptive: acquire information from the robot’s environment
• E.g.: distance measurements and light intensity  

• Passive: measure ambient environmental energy entering the 
sensor
• Challenge: performance heavily depends on the environment
• E.g.: temperature probes and cameras

• Active: emit energy into the environment and measure the reaction
• Challenge: might affect the environment
• E.g.: ultrasonic sensors and laser rangefinders

10/14/19 AA 274 | Lecture 8 6



Sensor performance: design specs

• Dynamic range: ratio between the maximum and minimum input 
values (for normal sensor operation)

• Resolution: minimum difference between two values that can be 
detected by a sensor

• Linearity: whether or not the sensor’s output response depends 
linearly on the input 

• Bandwidth or frequency: speed at which a sensor provides readings 
(in Hertz) 
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Sensor performance: in situ specs
• Sensitivity: ratio of output change to input change

• Cross-sensitivity: sensitivity to quantities that are unrelated to the 
target quantity

• Error: difference between the sensor output m and the true value v
error ≔ 𝑚 − 𝑣

• Accuracy: degree of conformity between the sensor’s measurement 
and the true value

accuracy ≔ 1 − |error|/𝑣

• Precision: reproducibility of the sensor results
10/14/19 AA 274 | Lecture 8 8



Sensor errors

• Systematic errors: caused by factors that can in theory be modeled; 
they are deterministic
• E.g.: calibration errors

• Random errors: cannot be predicted with sophisticated models; 
they are stochastic
• E.g.: spurious range-finding errors

• Error analysis: performed via a probabilistic analysis
• Common assumption: symmetric, unimodal (and often Gaussian) 

distributions; convenient, but often a coarse simplification  
• Error propagation characterized by the error propagation law
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An ecosystem of sensors
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• Encoders
• Heading sensors
• Accelerometers and IMU
• Beacons
• Active ranging
• Cameras 



Encoders
• Encoder: an electro-mechanical device that 

converts motion into a sequence of digital 
pulses, which can be converted to relative or 
absolute position measurements
• proprioceptive sensor
• can be used for robot localization
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Wheel encoder
Credit: Pololu

• Fundamental principle of optical encoders: use 
a light shining onto a photodiode through slits 
in a metal or glass disc

Credit: Honest Sensor



Heading sensors
• Used to determine robot’s orientation, it can be:

1. Proprioceptive, e.g.,  gyroscope (heading sensor that preserves its 
orientation in relation to a fixed reference frame) 

2. Exteroceptive, e.g.,  compass (shows direction relative to the geographic 
cardinal directions)

• Fusing measurements with velocity information, one can obtain a 
position estimate (via integration) -> dead reckoning
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• Fundamental principle of mechanical 
gyroscopes: angular momentum associated 
with spinning wheel keeps the axis of 
rotation inertially stable

Credit: SNS



Accelerometer and IMU
• Accelerometer: device that measures all external forces acting upon it
• Mechanical accelerometer: essentially, a spring-mass-damper system
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with m mass of proof mass, c damping coefficient, 
k spring constant; in steady state

• Modern accelerometers use MEMS (cantilevered 
beam + proof mass); deflection measured via 
capacitive or piezoelectric effects 



Credit: SNS

Inertial Measurement Unit (IMU)
• Definition: device that uses gyroscopes and accelerometers to 

estimate the relative position, orientation, velocity, and 
acceleration of a moving vehicle with respect to an inertial frame 
• Drift is a fundamental problem: to cancel drift, periodic references 

to external measurements are required  
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Beacons

• Definition: signaling devices 
with precisely known positions
• Early examples: stars, 

lighthouses
• Modern examples: GPS, 

motion capture systems
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Active ranging
• Provide direct measurements of distance to objects in vicinity
• Key elements for both localization and environment reconstruction
• Main types:

1. Time-of-flight active ranging sensors (e.g., ultrasonic and laser rangefinder)

2. Geometric active ranging sensors (optical triangulation and structured light)
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Credit: 
https://electrosome.c
om/hc-sr04-
ultrasonic-sensor-pic/



Time-of-flight active ranging
• Fundamental principle: time-of-flight ranging makes use of the 

propagation of the speed of sound or of an electromagnetic wave
• Travel distance is given by 

where d is the distance traveled, c is the speed of the wave 
propagation, and t is the time of flight 
• Propagation speeds:
• Sound: 0.3 m/ms
• Light: 0.3 m/ns

• Performance depends on several factors, e.g., uncertainties in 
determining the exact time of arrival and interaction with the target
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Geometric active ranging
• Fundamental principle: use geometric properties in the 

measurements to establish distance readings
• The sensor projects a known light pattern (e.g., point, line, or 

texture); the reflection is captured by a receiver and, together with 
known geometric values, range is estimated via triangulation   
• Examples:
• Optical triangulation (1D sensor)
• Structured light (2D and 3D sensor)
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Several other sensors are available

• Classical, e.g.:
• Radar (possibly using Doppler effect to produce velocity data)
• Tactile sensors

• Emerging technologies:
• Artificial skins
• Neuromorphic cameras
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Introduction to computer vision
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• Aim
• Learn about cameras and camera models

• Readings
• Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile 

Robots. Section 4.2.3.
• D. A. Forsyth and J. Ponce [FP]. Computer Vision: A Modern Approach (2nd 

Edition). Prentice Hall, 2011. Chapter 1.



Vision
• Vision: ability to interpret the surrounding environment using light in 

the visible spectrum reflected by objects in the environment
• Human eye: provides enormous amount of information, ~millions of 

bits per second
• Cameras (e.g., CCD, CMOS): capture light ->  convert to digital image -

> process to get relevant information (from geometric to semantic)
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Sky

Car

1. Information extraction
2. Interpretation



• Light is reflected by the object and scattered in all directions
• If we simply add a photoreceptive surface, the captured image will be 

extremely blurred

How to capture an image of the world?
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Photoreceptive surface



• Idea: add a barrier to block off most of the rays

• Pinhole camera: a camera without a lens but with a tiny aperture, a 
pinhole

Pinhole camera
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Photoreceptive surface

Aperture



• Very old idea (several thousands of years BC)
• First clear description from Leonardo Da Vinci (1502)
• Oldest known published drawing of a camera obscura by Gemma 

Frisius (1544)

A long history
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• Perspective projection creates inverted images
• Sometimes it is convenient to consider a virtual image associated 

with a plane lying in front of the pinhole
• Virtual image not inverted but otherwise equivalent to the actual one

Pinhole camera
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Pinhole of aperture
Focal length

Credit: FP Chapter 1



• Since P, O, and p are collinear: 𝑂𝑝 = 𝜆𝑂𝑃 for some 𝜆 ∈ 𝑅
• Also, z=f, hence

Image center

Optical axis

Pinhole

Pinhole perspective
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Image plane

Perspective

Credit: FP Chapter 1



Issues with pinhole camera

• Larger aperture -> greater 
number of light rays that pass 
through the aperture -> blur
• Smaller aperture -> fewer 

number of light rays that pass 
through the aperture -> 
darkness (+ diffraction)

• Solution: add a lens to replace 
the aperture!
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Lenses

• Lens: an optical element that focuses light by means of refraction
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Thin lens model
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• Similar triangles

Thin lens 
equation

Blue triangles

Red triangles

Key properties (follows from Snell’s law) :
1. Rays passing through O are not 

refracted
2. Rays parallel to the optical axis are 

focused on the focal point Fʹ
3. All rays passing through P are focused 

by the thin lens on the point p

Credit: FP Chapter 1



Thin lens model

• Key points:
1. The equations relating the positions of P and p are exactly the same as 

under pinhole perspective if one considers z as focal length (as opposed 
to f), since P and p lie on a ray passing through the center of the lens

2. Points located at a distance −Z from O will be in sharp focus only when 
the image plane is located at a distance z from O on the other side of the 
lens that satisfies the thin lens equation 

3. In practice, objects within some range of distances (called depth of field 
or depth of focus) will be in acceptable focus

4. Letting 𝑍 → ∞ shows that f is the distance between the center of the lens 
and the plane where distant objects focus

5. In reality, lenses suffer from a number of aberrations
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Perspective projection

• Goal: find how world points map in the camera image
• Assumption: pinhole camera model (all results also hold under thin 

lens model, assuming camera is focused at ∞)
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Procedure
1. Map 𝑃9 into p (image plane)
2. Map p into (u,v) (pixel coordinates)
3. Transform 𝑃: into 𝑃9

P in camera frame

P in world frame

World frame

Camera frame

Image plane 



Step 1

• Task: Map 𝑃9 = (𝑋=, 𝑌=, 𝑍=) into 𝑝 = (𝑥, 𝑦) (image plane)
• From before
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Step 2.a

• Fact: actual origin of the camera coordinate system is usually at a 
corner (lower left)
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Step 2.b

• Task: convert from image coordinates ( C𝑥, C𝑦) to pixel coordinates 
(𝑢, 𝑣)
• Let 𝑘F and 𝑘G be the number of pixels per unit distance in image 

coordinates in the x and y directions, respectively  

10/14/19 34
Nonlinear transformation
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Homogeneous coordinates

• Goal: represent the transformation as a linear mapping
• Key idea: introduce homogeneous coordinates
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Inhomogenous -> homogeneous Homogenous -> inhomogeneous



Perspective projection in 
homogeneous coordinates
• Projection can be equivalently written in homogeneous coordinates

• In homogeneous coordinates, the mapping is linear: 
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𝑃9 in homogeneous 
coordinates

Homogeneous pixel 
coordinates

Camera matrix/
Matrix of intrinsic parameters

Point p in homogeneous 
pixel coordinates

Point 𝑃9 in homogeneous 
camera coordinates



Skewness

• In some (rare) cases

• When is 𝛾 ≠ 0?
• x- and y-axis of the camera are not perpendicular (unlikely)
• For example, as a result of taking an image of an image

• Five parameters in total!
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Skew parameter



Next time: computer vision
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