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Motion planning

10/9/19

• Aim
• Learn about sampling-based motion planning algorithms

• Readings:
• S. LaValle. Planning Algorithms. Chapter 5.

Compute sequence of actions that drives a robot 
from an initial condition to a terminal condition 
while avoiding obstacles, respecting motion 
constraints, and possibly optimizing a cost function
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Configuration space
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Motion planning algorithms

• Key point: motion planning problem described in the real-world, 
but it really lives in an another space - the configuration (C-)space!

• Two main approaches to continuous motion planning:
• Combinatorial planning: constructs structures in the C-space that 

discretely and completely capture all information needed to perform 
planning

• Sampling-based planning: uses collision detection algorithms to probe 
and incrementally search the C-space for a solution, rather than 
completely characterizing all of the 𝐶#$%% structure
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Sampling-based motion planning
Limitations of combinatorial approaches stimulated the 
development of sampling-based approaches
• Abandon the idea of explicitly characterizing 𝐶#$%% and 𝐶&'(
• Instead, capture the structure of 𝐶 by random sampling
• Use a black-box component (collision checker) to determine which random 

configurations lie in 𝐶#$%%
• Use such a probing scheme to build a roadmap and then plan a path

Reference: LaValle, S. M. Motion planning. 2011.
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Sampling-based motion planning

Pros:
• Conceptually simple
• Relatively-easy to implement
• Flexible: one algorithm applies to a variety of robots and problems
• Beyond the geometric case: can cope with complex differential constraints, 

uncertainty, etc.

(Mild) cons:
• Unclear how many samples should be generated to retrieve a solution
• Can not determine whether a solution does not exist
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Outline

• The geometric case

• The kinodynamic case

• De-randomizing sampling-based planners
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Outline

• The geometric case
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• De-randomizing sampling-based planners
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Review of sampling-based methods
Traditionally, two major approaches:
• Probabilistic Roadmap (PRM): graph-based

• Multi-query planner, i.e., designed to solve multiple path queries on the same scenario
• Original version: [Kavraki et al., ‘96]
• “Lazy” version: [Bohlin & Kavraki, ‘00]
• Dynamic version: [Jaillet & T. Simeon, ‘04]
• Asymptotically optimal version: [Karaman & Frazzoli, '11]

• Rapidly-exploring Random Trees (RRT): tree-based
• Single-query planner
• Original version: [LaValle & Kuner, ‘01]
• RDT: [LaValle, ‘06]
• SRT: [Plaku et al., ‘05]
• Asymptotically optimal version [Karaman & Frazzoli, '11]
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Probabilistic roadmaps (PRM)
A multi-query planner, which  generates a roadmap (graph) 𝐺, 
embedded in the free space

Preprocessing step:
1. Sample a collection of 𝑛 configurations 𝑋,; 

discard configurations leading to collisions
2. Draw an edge between each pair of 

samples 𝑥, 𝑥/ ∈ 𝑋, such that 𝑥 − 𝑥/ ≤ 𝑟
and straight-line path between 𝑥 and 𝑥′ is 
collision free

Given a query 𝑠, 𝑡 ∈ 𝐶#$%%, connect them 
to 𝐺 and find a path on the roadmap
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Rapidly-exploring random trees (RRT)

Algorithm works in 𝑛 iterations: 
1. Sample configuration 𝑥$7,8
2. Find nearest vertex 𝑥,%7$ in 𝑇 to 𝑥$7,8
3. Generate configuration 𝑥,%: in direction of 

𝑥$7,8 from 𝑥,%7$, such that 𝑥,%7$𝑥,%: ⊂ 𝐶#$%%
4. Update tree: 𝑇 = 𝑇 ∪ {𝑥,%:, 𝑥,%7$, 𝑥,%: }

Every once in a while, set 𝑥$7,8 to be the 
target vertex 𝑡; terminate when 𝑥,%: = 𝑇
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A single-query planner, which grows a tree 𝑇 , rooted at the start 
configuration 𝑠, embedded in 𝐶#$%%



Rapidly-exploring random trees (RRT)

• RRT is known to work quite well in practice
• Its performance can be attributed to its 

Voronoi bias:
• Consider a Voronoi diagram with respect to the 

vertices of the tree
• For each vertex, its Voronoi cell consists of all 

points that are closer to that vertex than to any 
other

• Vertices on the frontier of the tree have larger 
Voronoi cells – hence sampling in those regions 
is more likely
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Theoretical guarantees: probabilistic completeness

Question: how large should the number of samples 𝑛 be? We can say 
something about the asymptotic behavior:

* Unless stated otherwise, the configuration space is assumed to be the 𝑑-dimensional 
Euclidean unit hypercube 0,1 8, with 2 ≤ 𝑑 ≤ ∞

Kavraki et al. 96: PRM, with 𝑟 = const, will eventually (as 𝑛 → ∞)  find 
a solution if one exists

LaValle, 98; Kleinbort et al., 18: RRT will eventually (as 𝑛 → ∞) find a 
solution if one exists
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Theoretical guarantees: quality

Question: what can be said about the quality of the returned 
solution for PRM and RRT, in terms of length, energy, etc.?
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Nechushtan et al. (2011) and Karaman and 
Frazzoli (2011) proved that RRT can produce 
arbitrarily-bad paths with non-negligible 
probability: for example, RRT would prefer to 
take the long (red) way



Theoretical guarantees: quality
Karaman and Frazzoli in 2011 provided the first rigorous study of 
optimality in sampling-based planners:

Theorem: The cost of the solution returned by PRM converges, as 𝑛 → ∞, to 

the optimum, when 𝑟, = 𝛾 GHI ,
,

J
K, where 𝛾 only depends on 𝑑
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• KF11 also introduced an asymptotically optimal 
variant of RRT called RRT* (right)

• Result was later updated to [Solovey et al. 2019]:

𝑟, = 𝛾 GHI ,
,

J
KLJ



Observations
• PRM-like motion planning algorithms

• For a give number of nodes 𝑛, they find “good” paths
• ...however, require many costly collision checks

• RRT-like motion planning algorithms
• Finds a feasible path quickly
• ...however the quality of that path is, in general, poor
• “traps” itself by disallowing new better paths to emerge - RRT* (partially) 

offsets this behavior
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Fast Marching Tree Algorithm (FMT*)

• Key idea: run dynamic programming on 
sampled nodes, skipping any step in 
which the attempted connection causes 
a collision 
• lazy DP operator:  

𝑐 𝑣 = min
R:| RUV W$X

Cost 𝑢, 𝑣 + 𝑐(𝑢)

• Laziness introduces “suboptimal” connections, 
but such connections are vanishingly rare and 
FMT* is asymptotically optimal 

• Ratio of # of collision-checks for FMT* versus 
PRM* goes to zero! 
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xu1

u2

xinit

c(u1) < c(u2)

c(u1) + Cost(u1, x) > c(u2) + Cost(u2, x)
v

Reference: Janson et al.  Fast Marching 
Tree: A Fast Marching Sampling-Based 
Method for Optimal Motion Planning in 
Many Dimensions. 2015



Sampling-based planning: summary

• Sampling-based planners transform the difficult global problem 
into a large set of local and easy problems

• A key ingredient is collision detection, which is conceptually easy, 
as it can be solved in the workspace (2D or 3D)

• Local planning (edge validation) is typically performed by dense 
sampling of path and collision detection

• Another key ingredient is nearest-neighbor search: given a query 
point find its nearest neighbor(s) within a set of points -- also well 
studied theoretically and practically
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Outline

• The geometric case

• The kinodynamic case

• De-randomizing sampling-based planners
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Kinodynamic planning
Kinodynamic motion planning problem: in addition to obstacle 
avoidance, paths are subject to differential constraints
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• The robot operates in the state space 𝑋

• To move the robot applies control 𝑢 ∈ 𝑈

• Motion needs to satisfy the system’s 
constraints:

𝑥̇ = 𝑓(𝑥, 𝑢) for 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈

Reference: Schmerling and Pavone. Kinodynamic Planning.
2019



Forward-propagation-based algorithms
RRT can be extended to kinodynamic case in a relatively easy way:
1. Draw a random state and find its nearest neighbor 𝑥,%7$
2. Sample a random control 𝑢 ∈ 𝑈 and random duration 𝑡
3. Forward propagate the control 𝑢 for 𝑡 time from 𝑥,%7$

Reference: Kleinbort et al. Probabilistic completeness 
of RRT for geometric and kinodynamic planning with 
forward propagation. 2018.
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Steering-based algorithms

When efficient online steering subroutines exist, kinodynamic
planning algorithms may take advantage of this domain knowledge
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1. Connect samples by using an 
optimal trajectory (steering 
problem)

2. Use reachable sets to find nearest 
neighbors

Reference: E. Schmerling et al. Optimal Sampling-
Based Motion Planning under Differential 
Constraints: the Driftless Case. 2015



Outline

• The geometric case

• The kinodynamic case

• De-randomizing sampling-based planners
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Should probabilistic planners be probabilistic?

Key question: would theoretical guarantees and practical 
performance still hold if these algorithms were to be derandomized, 
i.e., run on deterministic samples?
Important question as derandomization would:
• Ease certification process
• Ease use of offline computation
• Potentially simplify a number of operations (e.g., NN search)
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Designing “good” sequences

Key facts:
• There exist deterministic sequences with 𝐷(𝑆) of order 𝑂 𝑛U ⁄g 8 , referred to 

as low-dispersion sequences
• Sequences minimizing ℓi-dispersion only known for 𝑑 = 2

ℓ𝟐-dispersion: For a finite set 𝑆 of points contained in 
𝑋 ⊂ ℝ8, its ℓi-dispersion 𝐷(𝑆) is defined as 

𝐷 𝑆 ≔ sup
o∈p

min
(∈q

𝑠 − 𝑥 i
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Optimality of deterministic planning

Optimality: Let 𝑐, denote the arc length of the path returned with 𝑛 samples. 
Then if 
1. Samples set 𝑆 has dispersion 𝐷 𝑆 ≤ 𝛾𝑛U ⁄g 8 for some 𝛾 > 0,
2. 𝑛 ⁄g 8𝑟, → ∞,
then lim

,→u
𝑐, = 𝑐∗, where 𝑐∗ is the cost of an optimal path
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Numerical results



• Asymptotic optimality can be achieved with deterministic 
sequences and with a smaller connection radius

• Deterministic convergence rates: instrumental to the certification 
of sampling-based planners

• Computational and space complexity: under some assumptions, 
arbitrarily close to theoretical lower bound

• Deterministic sequences appear to provide superior performance

Reference: Janson et al. Deterministic Sampling-Based Motion Planning: Optimality, Complexity, and 
Performance. 2018

10/9/19 AA274 | Lecture 7 28

Main takeaways 
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Next time: robotic sensors and introduction 
to computer vision


