
Principles of Robot Autonomy I
Motion planning I: graph search methods

Motion planning

10/7/19 AA 274 | Lecture 6 2

• Aim
• Introduction to motion planning
• Learn about search-based methods for motion planning

• Readings:
• D. Bertsekas. Dynamic Programming and Optimal Control, Vol I. Section 2.3.
• S. LaValle. Planning Algorithms. Sections 6.1-6.3, 6.5.

Compute sequence of actions that drives a robot
from an initial condition to a terminal condition
while avoiding obstacles, respecting motion
constraints, and possibly optimizing a cost function

10/7/19 AA 274 | Lecture 6 3

More examples of motion planning

10/7/19 AA 274 | Lecture 6 4

• Steering autonomous vehicles
• Controlling humanoid robot
• Surgery planning
• Protein folding
• …

Some history

10/7/19 AA 274 | Lecture 6 5

• Formally defined in the 1970s
• Development of exact, combinatorial solutions in the 1980s
• Development of sampling-based methods in the 1990s
• Deployment on real-time systems in the 2000s
• Current research: inclusion of differential and logical constraints,

planning under uncertainty, parallel implementation, feedback
plans and more

Simplest setup

10/7/19

• Assume 2D workspace:
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: given initial placement of robot, compute how to gradually move it into a

desired goal placement so that it never touches the obstacle region

AA 274 | Lecture 6 6

Popular approaches

10/7/19 AA 274 | Lecture 6 7

• Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it
toward the goal and push it away from obstacles

• Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a
graph-search algorithm (Dijkstra, A*, …)

• Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

• Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses
collision detection algorithms to probe and incrementally search the C-space
for a solution, rather than completely characterizing all of the 𝐶"#$$ structure

Grid-based approaches

• Discretize the continuous world into a grid
• Each grid cell is either free or forbidden
• Robot moves between adjacent free cells
• Goal: find sequence of free cells from start to goal

• Mathematically, this corresponds to pathfinding
in a discrete graph 𝐺 = 𝑉, 𝐸
• Each vertex 𝑣 ∈ 𝑉 represents a free cell
• Edges 𝑣, 𝑢 ∈ 𝐸 connect adjacent grid cells

10/7/19 AA 274 | Lecture 6 8

Graph search algorithms

10/7/19 AA 274 | Lecture 6 9

• Having determined decomposition, how to find “best” path?
• Label-Correcting Algorithms: 𝐶(𝑞): cost-of-arrival from 𝑞0 to 𝑞

FRONTIER/ALIVE/PRIORITY QUEUE

Node 𝑞
Nodes 𝑞3 ∈ 𝑆𝑢𝑐𝑐(𝑞)

𝐶 𝑞 + 𝐶 𝑞, 𝑞3 ≤ min 𝐶 𝑞3 , UPPER ?

Yes ⇒ 𝐶 𝑞3 ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞3

𝑞3 ≠ 𝑞C? * Animation from Wikipedia

Label correcting algorithm

10/7/19 AA 274 | Lecture 6 10

Step 1. Remove a node 𝑞 from frontier queue and for each child 𝑞3 of 𝑞, execute
step 2

Step 2. If 𝐶 𝑞 + 𝐶 𝑞, 𝑞3 ≤ min 𝐶 𝑞3 , UPPER , set 𝐶 𝑞3 ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞3
and set 𝑞 to be the parent of 𝑞3. In addition, if 𝑞3≠ 𝑞C, place 𝑞3 in the frontier
queue if it is not already there, while if 𝑞3= 𝑞C, set UPPER to the new value
𝐶 𝑞 + 𝐶 𝑞, 𝑞C

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞, except for the label of the origin
node, which is set to 0

GetNext() ?

10/7/19 AA 274 | Lecture 6 11

Depth-First-Search (DFS): Maintain 𝑄 as a stack – Last in/first out
• Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain 𝑄 as a list – First
in/first first out
• Update cost for all edges up to current depth before proceeding to

greater depth
• Can deal with negative edge (transition) costs

Best-First (BF, Dijkstra): Greedily select next q: 𝑞 = argminI∈J𝐶(𝑞)
• Node will enter the frontier queue at most once
• Requires costs to be non-negative

Correctness and improvements

10/7/19 AA 274 | Lecture 6 12

If a feasible path exists from 𝑞0 to 𝑞C, then algorithm terminates in finite time with
𝐶 𝑞C equal to the optimal cost of traversal, 𝐶∗ 𝑞C .

Theorem

A*: Improving Dijkstra

10/7/19 AA 274 | Lecture 6 13

• Dijkstra orders by optimal “cost-to-arrival”
• Faster results if order by “cost-to-arrival”+ (approximate)

“cost-to-go”
• That is, strengthen test

𝐶 𝑞 + 𝐶 𝑞, 𝑞3 ≤ UPPER
to

𝐶 𝑞 + 𝐶 𝑞, 𝑞3 + ℎ(𝑞3) ≤ UPPER
where ℎ 𝑞 is A heuristic for optimal cost-to-go (specifically, a
positive underestimate)
• In this way, fewer nodes will be placed in the frontier queue
• This modification still guarantees that the algorithm will

terminate with a shortest path

Dijkstra

A*

Grid-based approaches: summary

• Pros:
• Simple and easy to use
• Fast (for some problems)

• Cons:
• Resolution dependent

• Not guaranteed to find solution if grid resolution is not small enough
• Limited to simple robots

• Grid size is exponential in the number of DOFs

10/7/19 AA 274 | Lecture 6 14

Back to continuous motion planning

• A robot is a geometric entity operating
in continuous space

• Combinatorial techniques for motion
planning capture the structure of this
continuous space

• Particularly, the regions in which the
robot is not in collision with obstacles

• Such approaches are typically
complete

• i.e., guaranteed to find a solution;
• and sometimes even an optimal one

10/7/19 AA 274 | Lecture 6 15

Simplest setup revisited

10/7/19

• Assume 2D workspace:
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: Given initial placement of robot, compute how to gradually move it into

a desired goal placement so that it never touches the obstacle region

AA 274 | Lecture 14 16

Simplest setup

Key point: motion planning problem described in the real-world, but it really lives
in another space -- the configuration (C-) space!

10/7/19 AA 274 | Lecture 14 17

Configuration space
• C- space: captures all degrees of freedom (all rigid body transformations)
• More in detail, let be a polygonal robot (e.g., a triangle)
• The robot can rotate by angle 𝜃 or translate
• Every combination 𝑞 = 𝑥O, 𝑦O, 𝜃 yields a unique robot placement: configuration
• So C- space is a subset of
• Note: 𝜃 ± 2𝜋 yields equivalent rotations ⇒ C- space is:
• Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)

10/7/19 AA 274 | Lecture 14 18

Configuration free space

• The subset ℱ ⊆ 𝒞 of all collision free configurations is the free
space

10/7/19 AA 274 | Lecture 6 19

obstacle

forbidden space

free space

Planning in C-space
• Let 𝑅 𝑞 ⊂ 𝑊 denote set of points in the world occupied by robot

when in configuration 𝑞
• Robot in collision ⇔ 𝑅 𝑞 ∩ 𝑂 ≠ ∅
• Accordingly, free space is defined as: 𝐶 _`` = 𝑞 ∈ 𝐶 𝑅 𝑞 ∩ 𝑂 = ∅
• Path planning problem in C-space: compute a continuous path:
𝜏: 0,1 → 𝐶 _``, with 𝜏 0 = 𝑞0 and 𝜏 1 = 𝑞C

10/7/19 AA 274 | Lecture 6 20

Combinatorial planning

10/7/19 AA 274 | Lecture 6 21

Key idea: compute a roadmap, which is a graph in which each vertex
is a configuration in 𝐶"#$$ and each edge is a path through 𝐶"#$$ that
connects a pair of vertices

Free-space roadmaps

10/7/19 AA 274 | Lecture 6 22

Given a complete representation of the free space, we compute a roadmap that
captures its connectivity

A roadmap should preserve:
1. Accessibility: it is always possible to connect some 𝑞 to the roadmap

(e.g., 𝑞0 → 𝑠g, 𝑞C → 𝑠h)
2. Connectivity: if there exists a path from 𝑞0 to 𝑞C, there exists a path on the

roadmap from 𝑠g to 𝑠h

Main point: a roadmap provides a discrete representation of the continuous
motion planning problem without losing any of the original connectivity
information needed to solve it

Cell decomposition

10/7/19 AA 274 | Lecture 6 23

Typical approach: cell decomposition. General requirements:
• Decomposition should be easy to compute
• Each cell should be easy to traverse (ideally convex)
• Adjacencies between cells should be straightforward to determine

Computing a trapezoidal cell decomposition

10/7/19 AA 274 | Lecture 6 24

For every vertex (corner) of the forbidden space:
• Extend a vertical ray until it hits the first edge from top and bottom

• Compute intersection points with all edges, and take the closest ones
• More efficient approaches exists

Other roadmaps

10/7/19 AA 274 | Lecture 6 25

Maximum clearance (medial axis) Minimum distance
(visibility graph)

Note: No loss in optimality for a proper choice of discretization

Caveat: free-space computation
• The free space is not known in advance
• We need to compute this space given the

ingredients
• Robot representation, i.e., its shape (polygon,

polyhedron, …)
• Representation of obstacles

• To achieve this we do the following:
• Contract the robot into a point
• In return, inflate (or stretch) obstacles by the shape

of the robots

10/7/19 AA 274 | Lecture 6 26

forbidden space

free space

Higher dimensions

10/7/19 AA 274 | Lecture 6 27

• Extensions to higher dimensions is challenging ⇒ algebraic decomposition
methods

10/7/19 AA 274 | Lecture 6 28

Additional resources on combinatorial planning

• Visualization of C-space for polygonal robot:
https://www.youtube.com/watch?v=SBFwgR4K1Gk

• Algorithmic details for Minkowski sums and trapezoidal
decomposition: de Berg et al., “Computational geometry:
algorithms and applications”, 2008

• Implementation in C++:
Computational Geometry Algorithms Library

2910/7/19 AA 274 | Lecture 6

https://www.youtube.com/watch?v=SBFwgR4K1Gk

Combinatorial planning: summary

• These approaches are complete and even optimal in some cases
• Do not discretize or approximate the problem

• Have theoretical guarantees on the running time
• I.e., computational complexity is known

• Usually limited to small number of DOFs
• Computationally intractable for many problems

• Problem specific: each algorithm applies to a specific type of
robot/problem

• Difficult to implement: require special software to reason about
geometric data structures (CGAL)

10/7/19 AA 274 | Lecture 6 30

Next time: sampling-based planning

10/7/19 AA 274 | Lecture 6 31

