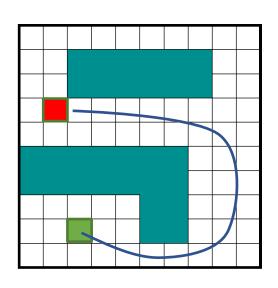
Principles of Robot Autonomy I

Motion planning I: graph search methods

Motion planning

Compute sequence of actions that drives a robot from an initial condition to a terminal condition while avoiding obstacles, respecting motion constraints, and possibly optimizing a cost function

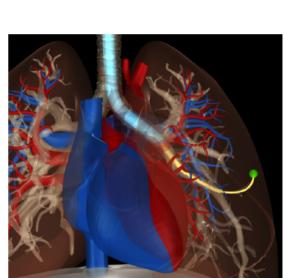


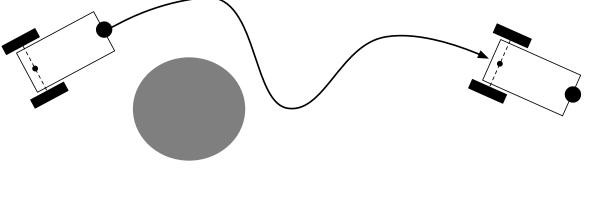
- Aim
 - Introduction to motion planning
 - Learn about search-based methods for motion planning
- Readings:
 - D. Bertsekas. Dynamic Programming and Optimal Control, Vol I. Section 2.3.
 - S. LaValle. Planning Algorithms. Sections 6.1-6.3, 6.5.

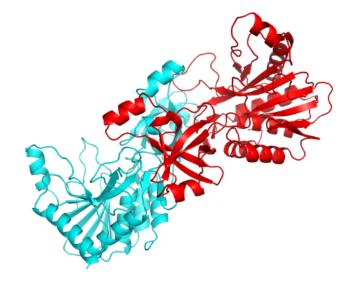
More examples of motion planning

- Steering autonomous vehicles
- Controlling humanoid robot
- Surgery planning
- Protein folding

•





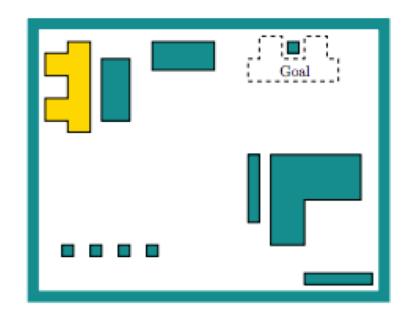


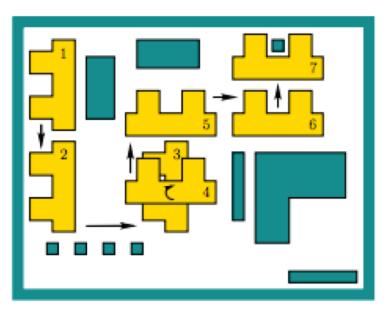
Some history

- Formally defined in the 1970s
- Development of exact, combinatorial solutions in the 1980s
- Development of sampling-based methods in the 1990s
- Deployment on real-time systems in the 2000s
- Current research: inclusion of differential and logical constraints, planning under uncertainty, parallel implementation, feedback plans and more

Simplest setup

- Assume 2D workspace: $\mathcal{W} \subset \mathbb{R}^2$
- $\mathcal{O} \subset \mathcal{W}$ is the obstacle region with polygonal boundary
- Robot is a rigid polygon
- Problem: given initial placement of robot, compute how to gradually move it into a
 desired goal placement so that it never touches the obstacle region





Popular approaches

- Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it toward the goal and push it away from obstacles
- Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a graph-search algorithm (Dijkstra, A*, ...)
- Combinatorial planning [LaValle, '06]: constructs structures in the configuration (C-) space that completely capture all information needed for planning
- Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses collision detection algorithms to probe and incrementally search the C-space for a solution, rather than completely characterizing all of the $C_{\rm free}$ structure

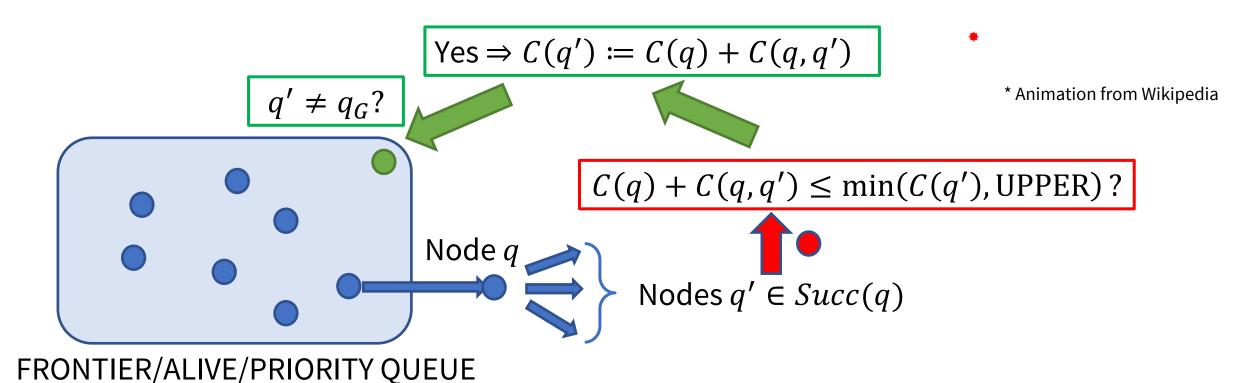
Grid-based approaches

- Discretize the continuous world into a grid
 - Each grid cell is either free or forbidden
 - Robot moves between adjacent free cells
 - Goal: find sequence of free cells from start to goal
- Mathematically, this corresponds to pathfinding in a discrete graph G = (V, E)
 - Each vertex $v \in V$ represents a free cell
 - Edges $(v, u) \in E$ connect adjacent grid cells



Graph search algorithms

- Having determined decomposition, how to find "best" path?
- Label-Correcting Algorithms: C(q): cost-of-arrival from q_I to q



Label correcting algorithm

Step 1. Remove a node q from frontier queue and for each child q' of q, execute step 2

Step 2. If $C(q) + C(q, q') \le \min(C(q'), \text{UPPER})$, set $C(q') \coloneqq C(q) + C(q, q')$ and set q to be the parent of q'. In addition, if $q' \ne q_G$, place q' in the frontier queue if it is not already there, while if $q' = q_G$, set UPPER to the new value $C(q) + C(q, q_G)$

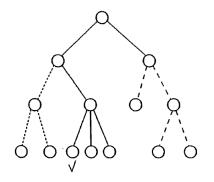
Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞ , except for the label of the origin node, which is set to 0

GetNext() ?

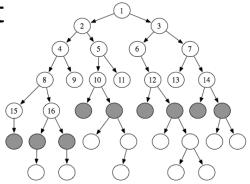
Depth-First-Search (DFS): Maintain Q as a **stack** – Last in/first out

• Lower memory requirement (only need to store part of graph)



Breadth-First-Search (BFS, Bellman-Ford): Maintain *Q* as a **list** – First in/first first out

- Update cost for all edges up to current depth before proceeding to greater depth
- Can deal with negative edge (transition) costs



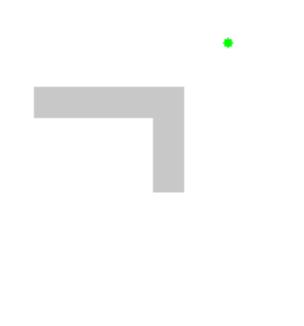
Best-First (BF, Dijkstra): Greedily select next $q: q = \operatorname{argmin}_{q \in Q} C(q)$

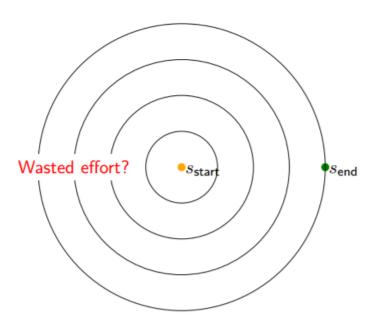
- Node will enter the frontier queue at most once
- Requires costs to be non-negative

Correctness and improvements

Theorem

If a feasible path exists from q_I to q_G , then algorithm terminates in finite time with $\mathcal{C}(q_G)$ equal to the optimal cost of traversal, $\mathcal{C}^*(q_G)$.





A*: Improving Dijkstra

- Dijkstra orders by optimal "cost-to-arrival"
- Faster results if order by "cost-to-arrival"+ (approximate) "cost-to-go"
- That is, strengthen test

$$C(q) + C(q, q') \le \text{UPPER}$$

to

$$C(q) + C(q, q') + h(q') \le UPPER$$

where h(q) is A heuristic for optimal cost-to-go (specifically, a positive *underestimate*)

- In this way, fewer nodes will be placed in the frontier queue
- This modification still guarantees that the algorithm will terminate with a shortest path

Dijkstra

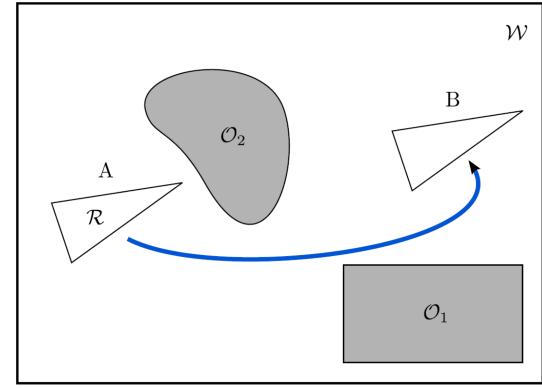
A*

Grid-based approaches: summary

- Pros:
 - Simple and easy to use
 - Fast (for some problems)
- Cons:
 - Resolution dependent
 - Not guaranteed to find solution if grid resolution is not small enough
 - Limited to simple robots
 - Grid size is exponential in the number of DOFs

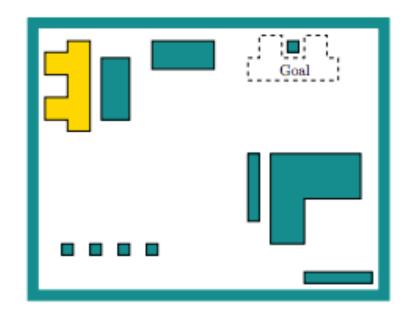
Back to continuous motion planning

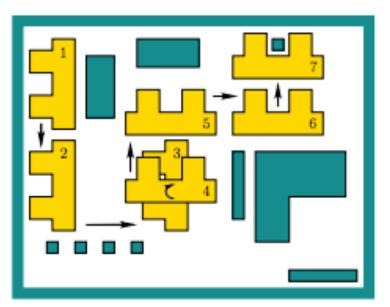
- A robot is a geometric entity operating in continuous space
- Combinatorial techniques for motion planning capture the structure of this continuous space
 - Particularly, the regions in which the robot is not in collision with obstacles
- Such approaches are typically complete
 - i.e., guaranteed to find a solution;
 - and sometimes even an optimal one



Simplest setup revisited

- Assume 2D workspace: $\mathcal{W} \subseteq \mathbb{R}^2$
- $\mathcal{O} \subset \mathcal{W}$ is the obstacle region with polygonal boundary
- Robot is a rigid polygon
- Problem: Given initial placement of robot, compute how to gradually move it into a desired goal placement so that it never touches the obstacle region

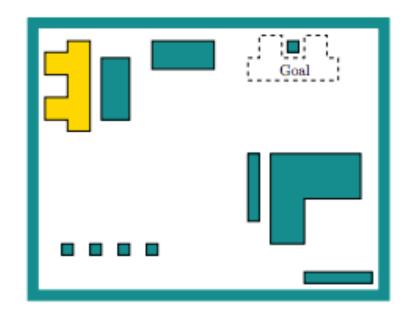


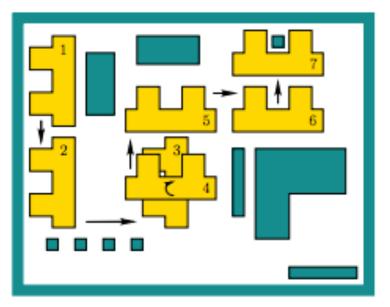


16

Simplest setup

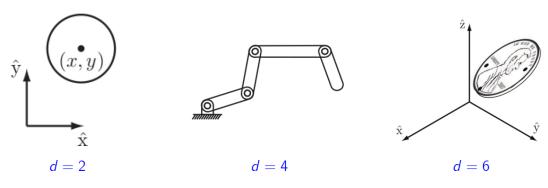
Key point: motion planning problem described in the real-world, but it really lives in another space -- the configuration (C-) space!





Configuration space

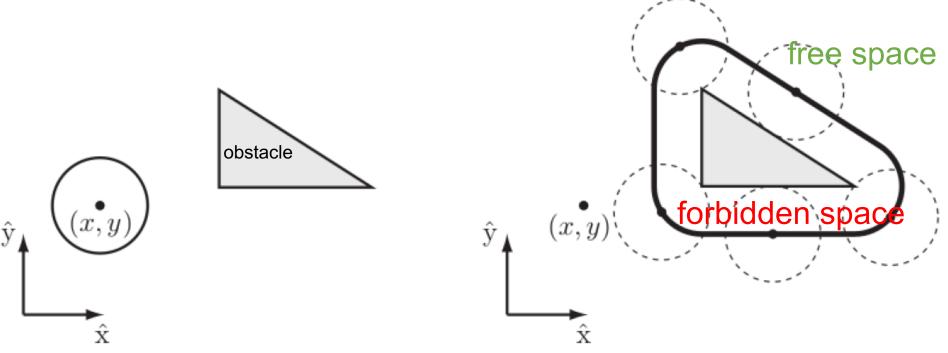
- C- space: captures all degrees of freedom (all rigid body transformations)
- More in detail, let $\mathcal{R} \subset \mathbb{R}^2$ be a polygonal robot (e.g., a triangle)
- The robot can rotate by angle θ or translate $(x_t, y_t) \subset \mathbb{R}^2$
- Every combination $q = (x_t, y_t, \theta)$ yields a *unique* robot placement: configuration
- So C- space is a subset of \mathbb{R}^3
- Note: $\theta \pm 2\pi$ yields equivalent rotations \Rightarrow C- space is: $\mathbb{R}^2 \times \mathcal{S}^1$
- Concept of *C* space extends naturally to higher dimensions (e.g., robot linkages)



Configuration free space

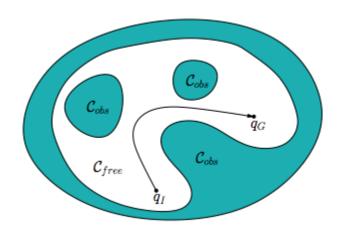
• The subset $\mathcal{F} \subseteq \mathcal{C}$ of all collision free configurations is the **free**

space



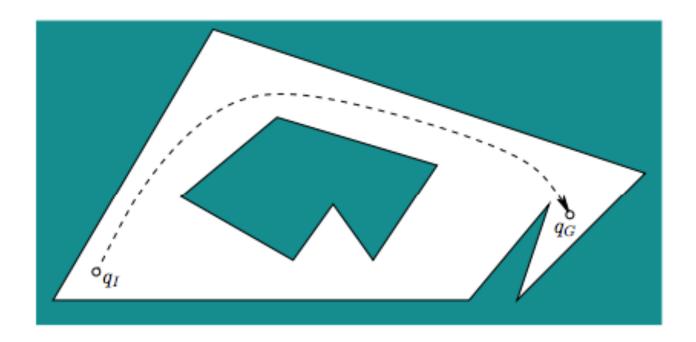
Planning in C-space

- Let $R(q) \subset W$ denote set of points in the world occupied by robot when in configuration q
- Robot in collision $\Leftrightarrow R(q) \cap O \neq \emptyset$
- Accordingly, free space is defined as: $C_{free} = \{q \in C | R(q) \cap O = \emptyset\}$
- Path planning problem in *C*-space: compute a **continuous** path: $\tau: [0,1] \to C_{free}$, with $\tau(0) = q_I$ and $\tau(1) = q_G$



Combinatorial planning

Key idea: compute a roadmap, which is a graph in which each vertex is a configuration in $C_{\rm free}$ and each edge is a path through $C_{\rm free}$ that connects a pair of vertices



Free-space roadmaps

Given a complete representation of the free space, we compute a roadmap that captures its connectivity

A roadmap should preserve:

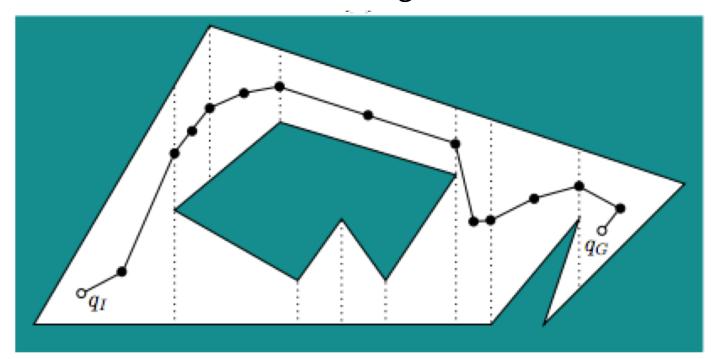
- 1. Accessibility: it is always possible to connect some q to the roadmap (e.g., $q_I \rightarrow s_1, q_G \rightarrow s_2$)
- 2. Connectivity: if there exists a path from q_I to q_G , there exists a path on the roadmap from s_1 to s_2

Main point: a roadmap provides a discrete representation of the continuous motion planning problem without losing any of the original connectivity information needed to solve it

Cell decomposition

Typical approach: cell decomposition. General requirements:

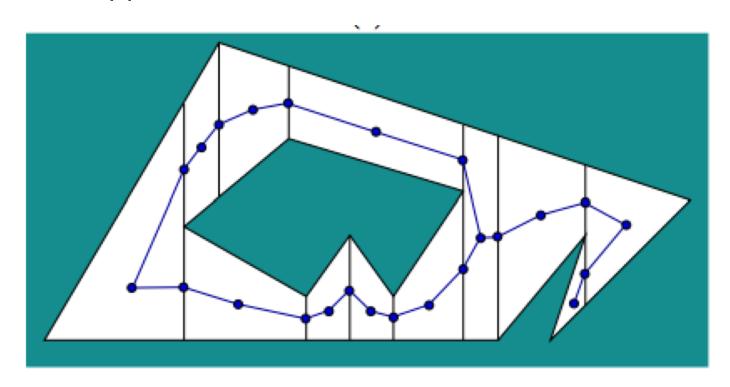
- Decomposition should be easy to compute
- Each cell should be easy to traverse (ideally convex)
- Adjacencies between cells should be straightforward to determine



Computing a trapezoidal cell decomposition

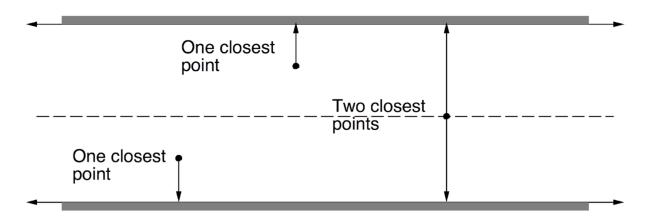
For every vertex (corner) of the forbidden space:

- Extend a vertical ray until it hits the first edge from top and bottom
 - Compute intersection points with all edges, and take the closest ones
 - More efficient approaches exists

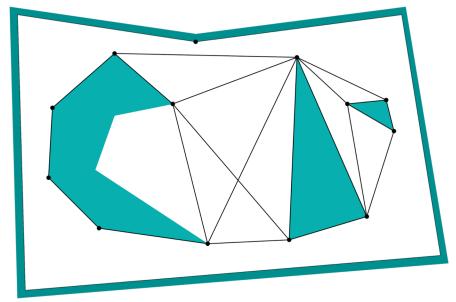


Other roadmaps

Maximum clearance (medial axis)



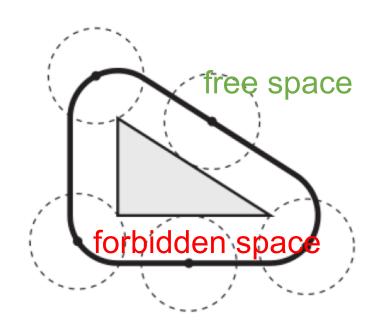
Minimum distance (visibility graph)



Note: No loss in optimality for a proper choice of discretization

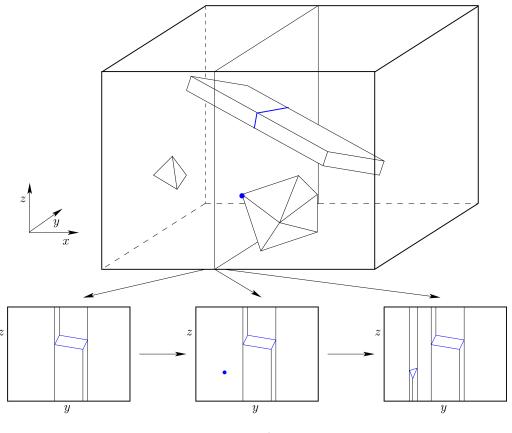
Caveat: free-space computation

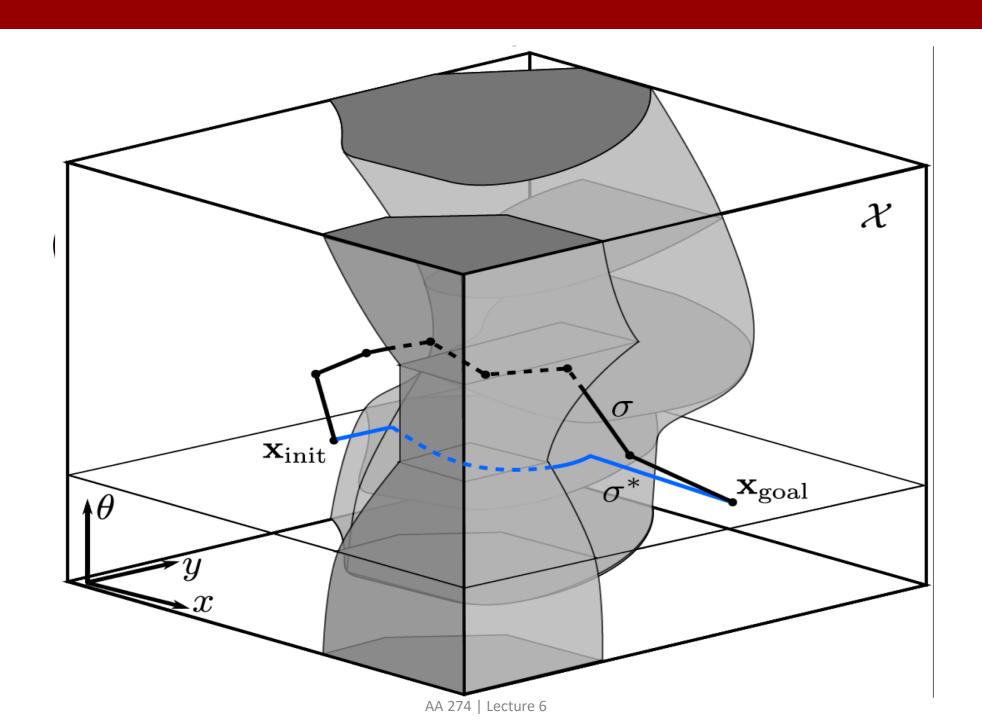
- The free space is not known in advance
- We need to compute this space given the ingredients
 - Robot representation, i.e., its shape (polygon, polyhedron, ...)
 - Representation of obstacles
- To achieve this we do the following:
 - Contract the robot into a point
 - In return, inflate (or stretch) obstacles by the shape of the robots



Higher dimensions

 Extensions to higher dimensions is challenging ⇒ algebraic decomposition methods





10/7/19

Additional resources on combinatorial planning

- Visualization of C-space for polygonal robot: <u>https://www.youtube.com/watch?v=SBFwgR4K1Gk</u>
- Algorithmic details for Minkowski sums and trapezoidal decomposition: de Berg et al., "Computational geometry: algorithms and applications", 2008

Mark de Berg

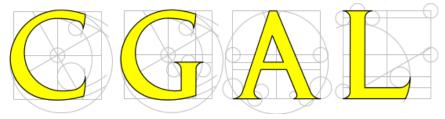
Otfried Cheong Marc van Kreve Mark Overmars

Computational

Algorithms and Applications

Geometry

Implementation in C++:
 Computational Geometry Algorithms Library



10/7/19 AA 274 | Lecture 6

Combinatorial planning: summary

- These approaches are complete and even optimal in some cases
 - Do not discretize or approximate the problem
- Have theoretical guarantees on the running time
 - I.e., computational complexity is known
- Usually limited to small number of DOFs
 - Computationally intractable for many problems
- Problem specific: each algorithm applies to a specific type of robot/problem
- Difficult to implement: require special software to reason about geometric data structures (CGAL)

Next time: sampling-based planning

