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Advanced methods for trajectory optimization
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Motion control

* Given a nonholonomic system, how to control its motion from an
initial configuration to a final, desired configuration

.

* Revisit trajectory planning as optimal control problem
* Learn key ideas underpinning indirect methods for optimal control
 Establish link between direct and indirect methods

* Readings
* D. K. Kirk. Optimal Control Theory: An introduction. 2004.

9/18/20 AA 274A | Lecture 5 2



Optimal control problem

The problem: ‘S
min h(x(ty),tr) + [ glx(),u(t),b)dt

subject to x(t) = a(x(t),u(t),t)
x(t)e X, u(t)eld

where x(t) € R™, u(t) € R™,and x(t,) = x,

* In trajectory optimization, we typically consider the case

X =R"
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Open-loop control

 We want to find

u”(t) = £(x(to), ?)

* In general, two broad classes of methods:

1. Indirect methods: attempt to find a minimum point “indirectly,” by
solving the necessary conditions of optimality = “First optimize, then

discretize”

2. Direct methods: transcribe infinite problem into finite dimensional,
nonlinear programming (NLP) problem, and solve NLP = “First discretize,

then optimize”
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Preliminaries: constrained optimization

min f(x)
subject to h;(x) =0, i=1,...,m

* Form Lagrangian function L: R**™ - R

L(x +Z)\h

* If x*ais a local minimum which is regular the NOC conditions are
VxL(x*,A") =0
V)\L(X*, >\*) =0
* First order condition represents a system of n + m equations with n +
m unknowns
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Indirect methods: NOC

Assume no state/control constraints
* Form Hamiltonian H := g(x(¢),u(t),t) + p? (¢t)[a(x(t), u(t), )]

* Hamiltonian equations
OH

(1) = o 6" (0, (0), 7 (1), 1)
(1) = — 5 (< (8),u"(6), p° (1), 1
OH

0= (x*(t),u*(t),p"(t),?)
« Boundary conditions: x*(to) = %0, and

oh oh

o X (1) t5) —p*(tf)] 5xf + [H(x*(tf),u*(tf),p*(tf),tf) + ), | oty =0
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Indirect methods: NOC

Assume control inequality constraints: e.g., |u;| < u; foralli
* Form Hamiltonian H := g(x(¢),u(t),t) + p? (¢t)[a(x(t), u(t), )]
* Hamiltonian equations

X (t) — 8—(){ (t),u (t),p (t),t) Pontryagin’s minimum principle
p -
B*(t) = — 5 (x* (), u* (), P*(t), 1

H(x*(t),u*(t),p*(t),t) < H(x*(t),u(t),p*(t),?), Vu(t)eU
« Boundary conditions: x*(to) = %0, and

oh oh

o X (L) t) = P*(tf)] 0Xy + [H(X*(tf)aU*(tf)ap*(tf)atf) + 5 (X7 (tr) ty) | 0ty =0
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Substitutions for boundary conditions

Problem Substitution
by fixed 5tf =0
x(tf) fixed 5Xf =0

x*(tg) = x
BC (o) =xo

Problem Substitution
by fixed 5tf =0
x(ty)  free 0x s arbitrary

X* (to) = Xy

. BC oh, , .

X" (tf) = xg 5 X (t7) —p"(ty) = 0
Problem Substitution Problem Substitution
ty free oty arbitrary tr free 0ty arbitrary

x(tf) fixed oxf =0 x(ty) free dx ¢ arbitrary

x*(to) = Xo x*(to) = %o
BC  x'(t5) = xy c 9ok

H(x* (1), 0 (t), D% (1), 1) + S0 (< (1), ) = 0
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o X () ts) —P7(ts) =0

H(x"(ty),u*(ts), p*(ts), t5) +

oh

ot

(x*(ts),ty) =0



Indirect methods: practical aspects

Reference for NOC: D. K. Kirk. Optimal Control Theory: An
introduction. Dover Publications, 2004.

In practice: To obtain solution to the necessary conditions for
optimality, one needs to solve two-point boundary value problems

* For example, in Python:
https://pythonhosted.org/scikits.bvp solver/

* Allows to solve problem of the form
Z = g(Z7 t)a l(z(tO)a Z(tf)) =0

* Syntax: solve (bvp problem, solution guess)
* In Matlab: bvp4c
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https://pythonhosted.org/scikits.bvp_solver/

Example
Z'l (t) = Z2(t)
z2(t) = —|21(1)]
<1 (4) = —2
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Extensions

* What about problems whose necessary conditions do not fit directly the
“standard” form (e.g., free end time problems)?

* Handy tricks exist to convert problems into standard form: Ascher, U., &
Russell, R. D. (1981). Reformulation of boundary value problems into
“standard” form. SIAM review, 23(2), 238-254.

Important case: free final time (Problem 4 in pset)

1. Rescaletimesothatt = t/ts,thent € [0,1]
d

2. Change derivatives L = tr—
dt dt

3. Introduce dummy state r that corresponds to tr with dynamics7 = 0

4. Replace allinstances of ty with r
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Example

* Dynamics:
£ =u, x(0) =10, 2(0) =0, z(tf) =0, 2(tf) =0

e Cost:

1, 1 %

 Analytical solution gives:
tr = (1800b/c)t/"
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Example (solution)

* Definestateasz = [x, p, ]

* BC are:
z1(0) =10, z2(0) =0, z1(tf) = 0, z2(tf) = 0,

— 0.5b(—p2(t7)/b)* + aty =0 a0 1
« BVP becomes I [ ]

dz dz A —B%l]/b,\()-
— =tr— = 25 0 — O z
ar — 7 dt 0 0 o H
21(0) = 10 22(0) — O 21(1) = O, 22(1) — 0,

— 0.5b(—24(1)/b)? -I—az5( ) =0
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Direct methods - nonlinear programming transcription

Forward Euler time discretization

1. Selectadiscretization0 = t, <ty < - <ty = tr forthe
interval [to, tf] and, foreveryi =0, ..., N — 1, define
x;~x(t), u; ~u(t), t € (t;, t;+1] and x,~x(0)

Ly
min f Gx(E),u(e),£) dt
t

0

(t) = t),u(t),t), t €[ty t . . "
x(t) = a(x(t),u(t),t) [to, t] 2. Bydenoting h; = t;,1 — t;, (OCP) is transcribed into the

(OCP) following nonlinear, constrained optimization problem
x(0) = x,, x(tf) € My N—1
u(t) e U S R™, tE [ty ty] MIN(x;,u;) Z hig (X, t;)
=0
(NLOP)

Xiy1 = X; + hia(xi,ui, ti)) (i=0,...,N—1
wevU,i=0,..,.N—1, F(xy)=0
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Direct methods - nonlinear programming transcription

Consistency of Time Discretization Forward Euler time discretization
Is this approximation consistent with the 1. Selectadiscretization0 = t, <ty < - <ty = tr forthe
original formulation? interval [to, t;] and, forevery i = 0,..., N — 1, define

x;~x(t), u; ~u(t), t € (t;, t;+1] and x,~x(0)
Yes! | | o
2. Bydenoting h; = t;;1 — t;, (OCP) is transcribed into the

. following nonlinear, constrained optimization problem
Indeed, the KKT conditions for (NLOP) converge 5 P P

to the necessary optimality conditions for (OCP), N-1
that are given by the Pontryagin’s Minimum min Z hea(X: Wt
Principle, when h; — 0 (i) 19 (i, Wi, &)

1=0

NLOP

( ) Xiy1 = X; + hia(xi,ui, ti), (i=0,...,N—1
weU,i=0,..,N—1, F(xy)=0
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Consistency of time discretization

Simplified Formulation Pontryagin’s Minimum Principle (PMP)

Recall that the necessary optimality conditions for (OCP) are
given by the following expressions

t
min j fg(x(t),u(t)) dt * Co-state equaation:
0 . d / ag
p(t) = —&(x(t),u(t)) p(&) — o (x(0), u(®)
x(t) = a(x(t), u(®)), t €0, ty]
(OCP)
x(0) = x,

Control equation:

Jda / ag —
= (x(0,u(®) PO + == (x(©),u(®) = 0
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Consistency of time discretization

Simplified Formulation Related non-linear program (NLOP)

After discretization in time:

( N-1
min j g(x(®),u(t)) dt min g, y,) z h;g(X;, u;) (NLOP)
0 i=0
x(t) = a(x(t),u(t)), t € [0, tf] X; + h;a(x;,u;) — X;44 =0, i=0,..,,N—1
(OCP)
x(0) = x,
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Consistency of time discretization

KKT Related to (NLOP) Related non-linear program (NLOP)
Denote the Lagrangian related to (NLOP) as After discretization in time:
L = ZO hig(xi; ui) + ZO )\; (Xi + hia(xi; ui) - Xi+1) min(Xi,lli) z hl'g(xl’ ul) (N LOP)
l= l= —

Then, the KKT conditions related to (NLOP) read as:

L X; + h;a(x;,u;) —Xx;.1 =0, i=0,..N—-1
. Derlvatlvewrtxl: l alx, u;) t+1

da
(xl,ul)+ A — A+ h—

6 9%, (xl, u;))'A;, =0
e Derivativew.r.t. u; :
ag
hi a_ul (Xi) ui) + h a (Xlr ul) A’ =0
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Consistency of time discretization

KKT Related to (NLOP) Consistency with the PMP

Denote the Lagrangian related to (NLOP) as We finally obtain:
A — A da , ag
N-1 N-1 lh—lll = _a_xi (x;,u;)'A; — (3_Xl (x;,u;)
L= Z hig(x;,u;) + z A(x; + halx;,u) — Xi4q) da g ..
i=0 i=0 du; Y du; Y
Then, the KKT conditions related to (NLOP) read as: Let p(t) = A, fort € [ty tua],i = 0,..,N — 1and
. Derivative w.r.t.x; : p(0) = A,. Then, the equations above are the discretized
version of the necessary conditions for (OCP):
(xl,ul) + A=A+ hj— (xl,ul) A =0
a L 0x; , da : g
p(t) = —=—(x(®),u(®)) p(t) — 7 (1), u(®)
e Derivativew.r.t. u; : da (), u( )), - ag( (), u( ))
J —(x(t), u(t t)+—(x(t),u(t))=0
hi _g (Xi) ui) + h (Xlr ul) A’ =0 au( P au
aui 0
19
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Direct methods — software packages

Some software packages:

e DIDO: http://www.elissarglobal.com/academic/products/
PROPT: http://tomopt.com/tomlab/products/propt/
GPOPS: http://www.gpops2.com/

CasADi: https://github.com/casadi/casadi/wiki

ACADO: http://acado.github.io/

For an in-depth study of direct and indirect methods, see AA203
“Optimal and Learning-based Control” (Spring 2020)
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http://www.elissarglobal.com/academic/products/
http://tomopt.com/tomlab/products/propt/
http://www.gpops2.com/
https://github.com/casadi/casadi/wiki
http://acado.github.io/

Next time: graph search methods for motion planning
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