
Principles of Robot Autonomy I
Trajectory tracking and closed-loop control



Motion control
• Given a nonholonomic system, how to control its motion from an 

initial configuration to a final, desired configuration

• Aim
• Learn how to handle bound constraints via space-time separation
• Learn about trajectory tracking 
• Learn about closed-loop control

• Readings
• B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: modelling, planning and 

control. 2010. Chapter 11.
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Summary of previous lecture

• A nonlinear system 𝐱̇ = 𝐚(𝐱, 𝐮) is differentially flat if there exists a 
set of outputs 𝐳 such that

• One can then use any interpolation scheme (e.g., polynomial) to 
plan the trajectory of 𝐳 in such a way as to satisfy the appropriate 
boundary conditions
• The evolution of the state variables 𝐱, together with the associated 

control inputs 𝐮, can then be computed algebraically from 𝐳
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Summary of previous lecture

• Constraints on the system can be transformed into the flat output 
space and (typically) become limits on the curvature or higher order 
derivative properties of the curve 

• An important class of constraints is represented by bounds on some 
of the system variables, and in particular the inputs, for example:

|𝑣 𝑡 | ≤ 𝑣!"# and |𝜔(𝑡)| ≤ 𝜔!"#

• Bound constraints can be effectively addressed via time scaling
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Path and time scaling law

• The problem of planning a trajectory can be divided into two steps:
1. computing a path, that is, a purely geometric description of the sequence 

of configurations achieved by the robot, and 
2. devising a time scaling law, which specifies the times when those 

configurations are reached

• Mathematically, a trajectory 𝐱(𝑡) can be broken down into a 
geometric path 𝐱(𝑠) and a timing law 𝑠 = 𝑠(𝑡), with the parameter 
𝑠 varying between 𝑠 𝑡! = 𝑠! and 𝑠 𝑡" = 𝑠" in a monotonic 
fashion, i.e., with 𝑠̇ 𝑡 > 0

• A possible choice for 𝑠 is the arc length along the path (in this case, 
𝑠! = 0, and 𝑠" = 𝐿, the length of the path)
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Enforcing bound constraints 
• Such a space-time separation implies that 

𝐱̇ 𝑡 =
𝑑𝐱(𝑡)
𝑑𝑡

=
𝑑𝐱(𝑠(𝑡))
𝑑𝑠

𝑠̇ 𝑡

• Thus, once the geometric path is determined, the choice of a timing 
law 𝑠 = 𝑠(𝑡)will identify a particular trajectory along this path, with 
a corresponding set of time-scaled inputs (Problem 1 in pset)

• Example, for unicycle model 
• 𝑣 𝑡 = $|𝐱(()|

$( = $|𝐱(*(())|
$* 𝑠̇ 𝑡 = -𝑣(𝑠)𝑠̇ 𝑡

• 𝜔 𝑡 = $+(()
$( = $+(*(())

$* 𝑠̇ 𝑡 = .𝜔 𝑠 𝑠̇ 𝑡 = .𝜔 𝑠 ,(()
-,(*)

• Simplest choice, with 𝑠 being arc length: 𝑠 𝑡 = 𝑡 𝐿/𝑇
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Trajectory tracking

• Back to two-step design strategy

• Reference trajectory and control history (i.e., 𝐱# 𝑡 and 𝐮# 𝑡 ) are 
computed via open-loop techniques (e.g., differential flatness)
• For reference tracking (Problem 3 in pset)
• Geometric (e.g., pursuit) strategies 
• Linearization (either approximate or exact) + linear structure 
• Non-linear control
• Optimization-based techniques (e.g., MPC)
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Trajectory tracking for differentially flat systems
• Key fact (see, e.g,. Levine 2009): a differentially flat system can be 

linearized by (dynamic) feedback and coordinate change, that is it 
can be equivalently transformed into the system 

𝐳(%&') = 𝐰
• One can then design a tracking controller for the linearized system 

by using linear control techniques; in particular, for a given 
reference flat output 𝐳# , define the component-wise error 

𝑒): = 𝑧) − 𝑧),# , which implies 𝑒)
(%&') = 𝑤) −𝑤),#

• For guaranteed convergence to zero of tracking error, one can set
𝑤) = 𝑤),# − ∑+,!

% 𝑘),+𝑒)
(+), 

with the gains {𝑘),+} chosen so as to enforce stability
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Trajectory tracking for differentially flat systems

• Example: dynamically extended unicycle model

• The system is differentially flat with flat outputs (𝑥, 𝑦), in particular
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Trajectory tracking for differentially flat systems

• Then one can use the following virtual control law for trajectory 
tracking:

where 𝑘-. , 𝑘#. , 𝑘-/ , 𝑘#/ > 0 are control gains

• Such a law guarantees exponential convergence to zero of the 
Cartesian tracking error 
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w1 = ẍd + kpx(xd � x) + kdx(ẋd � ẋ)

w2 = ÿd + kpy(yd � y) + kdy(ẏd � ẏ)
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Closed-loop control

• General closed-loop control: we want to find

• Main techniques:
• Hamilton–Jacobi–Bellman equation, dynamic programming
• Lyapunov analysis

For an in-depth study of this topic, see AA203  “Optimal and Learning-
based Control” (Spring 2020)
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Closed-loop control: posture regulation
• Consider a differential drive mobile robot

• Inputs: V (linear velocity of the wheel) and 𝜔 (angular velocity 
around the vertical axis)
• Goal: drive the robot to the origin [0, 0, 0]
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Control based on polar coordinates

• Polar coordinates 
• 𝜌: distance of the reference point of the unicycle from the goal
• 𝛼: angle of the pointing vector to the goal w.r.t. the unicycle main axis
• 𝛿: angle of the same pointing vector w.r.t. the 𝑋. axis

• Coordinate transformation
• 𝜌 = 𝑥/ + 𝑦/
• 𝛼 = atan2 𝑦, 𝑥 − 𝜃 + 𝜋
• 𝛿 = 𝛼 + 𝜃

9/18/20 AA 274A | Lecture 4 13



Equations in polar coordinates

• In polar coordinates, the unicycle equations become

• In order to achieve the goal posture, variables (𝜌, 𝛼, 𝛿) should all 
converge to zero
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Control law

• Closed-loop control law (Problem 2 in pset):

• If 𝑘!, 𝑘", 𝑘# > 0, then closed-loop system is globally asymptotically 
driven to the posture (0,0,0)!

• For more details, see M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino
(1995). Closed loop steering of unicycle like vehicles via Lyapunov
techniques. IEEE Robotics & Automation Magazine.

9/18/20 AA 274A | Lecture 4 15



Summary

• We covered closed-loop control along two main dimensions
1. Trajectory tracking (useful to infuse robustness of point-to-point motion)
2. Posture regulation (useful for final phase of motion)

• We’ll see in Pset 2 how the topics of differential flatness, trajectory 
tracking, posture regulation, and motion planning will lead to an 
end-to-end trajectory optimization module
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Next time: more on direct / indirect methods
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