
Principles of Robot Autonomy I
The Robot Operating System (ROS)



The Pub/Sub design pattern

l Stands for Publish-Subscribe
l Each component (i.e. node) can:

l Publish: send messages regardless of whether someone is listening

l Subscribe: receive messages if anyone is sending them regardless of who

9/16/20 2AA 274 | Lecture 2



The Pub/Sub design pattern

Note: there are countless ways to IMPLEMENT pub/sub!

9/16/20 3AA 274 | Lecture 2



What is ROS?

• An implementation of a network-aware pub/sub* geared towards 
robotic applications
• Lots of open-source software shared by the community:
• SLAM (gmapping, amcl)

• Vision (OpenCV, PCL, OpenNI)

• Arm Navigation (MoveIt)

• Simulation (Gazebo)

9/16/20 4AA 274 | Lecture 2



The main components

l Nodes
l talk to each other over topics (think chat rooms).

l Master
l coordinates the whole thing

l Message types: abstraction away from specific hardware
l Camera image

l Laser scan data

l Motion control

9/17/20 5AA 274 | Lecture 2



ROS Node

l A process (typically Python or C++) that runs some computation
l The “fundamental” building block
l Can act as a subscriber, publisher or both
l Nodes talk to each other over “topics”
l Run them using rosrun <package> <node>

l Initialize using rospy.init_node()

Note: nodelets are different. They are not individual processes, they share memory

9/16/20 6AA 274 | Lecture 2



ROS Master

l A process that is in charge of coordinating nodes, publishers and 
subscribers

l Exactly one of them running at any time
l Nodes will not be able to find each other without Master

9/16/20 7AA 274 | Lecture 2



Abstraction vs Implementation

l Pub/sub is only an abstraction, a way to think about the 
architecture of your software

l Ex: Messages do NOT go through Master

9/16/20 8AA 274 | Lecture 2



A bit of networking…

l Two important environment variables:
l ROS_MASTER_URI

l The IP address of the computer running master

l ROS_IP
l The IP address of your computer

9/16/20 9AA 274 | Lecture 2



Getting help

l ROS wiki (http://wiki.ros.org/)
l Github
l Stack Overflow
l The Construct / Robot Ignite Academy
l Google :)

9/16/20 10AA 274 | Lecture 2



Example 1: camera

9/17/20 11AA 274 | Lecture 2

• Installing packages
• apt-get / system-wide
• From source

• Live demo



Example 2: sublisher

9/17/20 12AA 274 | Lecture 2

• A bit of networking
• Talking to an Arduino (rosserial_python)
• Moveit (MoveGroup)
• Combined publisher/subscriber
• Alternate version

• Live demo



9/17/20 AA 274 | Lecture 2 13



Offline question 1

• What are some other kinematic models that are commons in 
robotics? Is it common to have to derive kinematic model for every 
new robotic system/component, or they usually share similar 
kinematic model for each module that can be easily reused?

• Unicycle model is part of a family of models often used for wheeled robots 
(bicycle model, Dubin car etc. ). 
• Stanford teaches an entire class on this: ME 227
• For most complicated robot, people rely on urdf’s and dedicated packages 

that compute dynamics from them 
• Bullet, Drake, MuJoCo, Matlab Simscape, RigidBodyDynamics.jl …

9/17/20 AA 274 | Lecture 2 14



9/17/20 AA 274 | Lecture 2 15



Offline question 2

• In slide 31, we briefly went through a catkin_create_pkg command 
to build ROS package. Do dependencies always have to be pass via 
command-line? Or if there's a way for us to specify dependencies 
via the XML or a config file?

• catkin_create_pkg is just a helper function to get you started
• The xml files in the package can be edited to add dependencies 

(package.xml in this case)
• rosdep is another tool that lets you deal with system dependencies

9/17/20 AA 274 | Lecture 2 16



Other questions?

9/16/20 17AA 274 | Lecture 2


