Principles of Robot Autonomy I

Reinforcement Learning

What is Reinforcement Learning?

Learning how to make good decisions by interaction.

Why Reinforcement Learning

- Only need to specify a **reward function**. Agent learns everything else!
- Successes in
 - Helicopter acrobatics
 - Superhuman Gameplay: Backgammon, Go, Atari
 - Investment portfolio management
 - Making a humanoid robot walk

Why Reinforcement Learning?

- Only need to specify a reward function. Agent learns everything else!
- Successes in
 - Helicopter acrobatics
 - positive for following desired traj, negative for crashing
 - Superhuman Gameplay: Backgammon, Go, Atari
 - positive/negative for winning/losing the game
 - Investment portfolio management
 - positive reward for \$\$\$
 - Making a humanoid robot walk
 - positive for forward motion, negative for falling

Outline

- Formalisms
- Algorithms
- Deep Reinforcement Learning
- RL in Robotics

Markov Decision Process (MDP)

State: $x \in \mathcal{X}$ (often $s \in \mathcal{S}$)

Action: $u \in \mathcal{U}$ (often $a \in \mathcal{A}$)

Transition Function: $T(x_t | x_{t-1}, u_{t-1}) = p(x_t | x_{t-1}, u_{t-1})$

Reward Function: $r_t = R(x_t, u_t)$

Discount Factor: γ

Horizon: H

MDP: $\mathcal{M} = (\mathcal{X}, \mathcal{U}, T, R, \gamma, H)$

Markov Decision Process (MDP)

MDP:

$$\mathcal{M} = (\mathcal{X}, \mathcal{U}, T, R, \gamma, H)$$

Policy:

$$u_t = \pi(x_t)$$

Goal: Choose policy that maximizes cumulative reward.

$$\pi^* = \arg\max_{\pi} E\left[\sum_{t=0}^{H} \gamma^t R(x_t, \pi(x_t))\right]$$

Solving MDPs

If you know the model, use dynamic programming

Value Iteration / Policy Iteration

RL: Learning from interaction

- Model-Based
- Model-free
 - Value based
 - Policy based

Dynamic Programming in MDPs

Define a policy's value function as the expected cumulative discounted reward when acting according to the policy from a given state.

$$V_k^{\pi}(x) = E\left[\sum_{t=0}^k \gamma^t R(x_t, \pi(x_t)) | x_0 = x\right]$$

Value with k steps to go

$$V_k^{\pi}(x) = R(x, \pi(x)) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, \pi(x)) V_{k-1}^{\pi}(x')$$

Optimality in MDPs

The optimal policy π^* is a policy that has the highest value.

$$\pi_t^*(x) = \arg\max_{\pi} V_t^{\pi}(x)$$

There exists a unique **optimal value function**:

$$V_t^*(x) = V_t^{\pi^*}(x)$$

Gridworld Example

• Reward: -1 at each timestep

Actions: N/S/E/W

• State: 2D location

Gridworld Example

Value Iteration

- Dynamic programming for MDPs
- Initialize $V_0^*(x) = 0$ for all states x
- Loop until finite horizon / convergence:

$$V_{k+1}^* = \max_{u} \left(R(x, u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, u) V_k^*(x') \right)$$

Q-functions

Another related function in MDPs is the Q function, which is a function of state and action, and corresponds to the value of taking a given action and then acting according to the given policy:

$$Q_k^{\pi}(x, u) = R(x, u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, u) V_{k-1}^{\pi}(x')$$

Similarly, we can define the optimal Q function:

$$Q_k^*(x, u) = R(x, u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, u) V_{k-1}^*(x')$$

Q functions

$$V_{k+1}^* = \max_{u} \left(R(x, u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x, u) V_k^*(x') \right)$$

$$V_{k+1}^*(x) = \max_{u} Q_{k+1}^*(x, u)$$

Policy Iteration

Suppose we have a policy $\pi_k(x)$ We can use DP to compute $Q^{\pi_k}(x,u)$ Define $\pi_{k+1}(x) = \arg\max_u Q^{\pi_k}(x,u)$

Proposition: $V^{\pi_{k+1}}(x) \ge V^{\pi_k}(x) \ \forall \ x \in \mathcal{X}$ Inequality is strict if π is suboptimal.

Use this procedure to iteratively improve policy until convergence.

Recap

- Value Iteration
 - Estimate Optimal Value Function
 - Compute optimal policy from optimal value function
- Policy Iteration
 - Start with random policy
 - Iteratively improve it until convergence to optimal policy
- Require model of MDP to work!

Learning from Experience

- Without access to the model, agent needs to optimize a policy from interaction with an MDP
- Only have access to trajectories in MDP:
- $\tau = (x_0, u_0, r_0, x_1, ..., u_{H-1}, r_{H-1}, x_H)$

Learning from Experience

How to use trajectory data?

• Model based approach: estimate T(x'|x,u), then use model to plan

Model free:

- Value based approach: estimate optimal value (or Q) function from data
- Policy based approach: use data to determine how to improve policy
- Actor Critic approach: learn both a policy and a value/Q function

Exploration vs Exploitation

In contrast to standard machine learning on fixed data sets, in RL we actively gather the data we use to learn.

- We can only learn about states we visit and actions we take
- Need to explore to ensure we get the data we need
- Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

 ϵ -greedy exploration:

• With probability ϵ , take a random action; otherwise take the most promising action

Model-free, value based: Q Learning

For simplicity, let's assume $H=\infty$, so optimal value and policy don't depend on time. Why?

Optimal Q function satisfies

$$Q^*(x,u) = R(x,u) + \gamma \sum_{x' \in \mathcal{X}} T(x'|x,u) \max_{u'} Q^*(x',u')$$

So, in expectation,

$$E\left[Q^{*}(x_{t}, u_{t}) - \left(r_{t} + \gamma \max_{u'} Q^{*}(x_{t+1}, u')\right)\right] = 0$$

Temporal Difference (TD) error

Q Learning

Initialize Q(x, u) for all states and actions.

Let $\pi(x)$ be an ϵ -greedy policy according to Q.

Loop:

Take action: $u_t \sim \pi(x_t)$.

Observe reward and next state: (r_t, x_{t+1}) .

Update Q to minimize TD error:

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \alpha \left(r + \max_{u} Q(x_{t+1}, u) - Q(x_t, u_t) \right)$$

$$t = t + 1$$

Fitted Q Learning

Large / Continuous Action Space?

Use parametric model for Q function: $Q_{\theta}(x, u)$

Gradient ascent on θ :

$$\theta \leftarrow \theta + \alpha \left(r_t + \gamma \max_{u} Q_{\theta}(x_{t+1}, u) - Q_{\theta}(x_t, u_t) \right) \nabla_{\theta} Q_{\theta}(x_t, u_t)$$

learning rate

$$\frac{d(Squared\ TD\ Error)}{dQ}$$

12/4/19 AA 274 | Lecture 25

Q Learning Recap

Pros:

- Can learn Q function from any interaction data, not just trajectories gathered using the current policy ("off-policy" algorithm)
- Relatively data-efficient (can reuse old interaction data)

Cons:

- Need to optimize over actions: hard to apply to continuous action spaces
- Optimal Q function can be complicated, hard to learn
- Optimal policy might be much simpler!

Model-free, policy based: Policy Gradient

Instead of learning the Q function, learn the policy directly!

Define a class of policies π_{θ} where θ are the parameters of the policy.

Can we learn the optimal θ from interaction?

Goal: use trajectories to estimate a gradient of policy performance w.r.t parameters θ .

A particular value of θ induces a distribution of possible trajectories.

Objective function:

$$J(\theta) = E_{\tau \sim p(\tau;\theta)}[r(\tau)]$$

$$J(\theta) = \int_{\tau} r(\tau)p(\tau;\theta)d\tau$$

where $r(\tau)$ is the total discounted cumulative reward of a trajectory.

Gradient of objective w.r.t. parameters:

$$\nabla_{\theta} J(\theta) = \int_{\tau} r(\tau) \nabla_{\theta} p(\tau; \theta) d\tau$$

Trick:
$$\nabla_{\theta} p(\tau; \theta) = p(\tau; \theta) \frac{\nabla_{\theta} p(\tau; \theta)}{p(\tau; \theta)} = p(\tau; \theta) \nabla_{\theta} \log p(\tau; \theta)$$

$$\nabla_{\theta} J(\theta) = \int_{\tau} (r(\tau) \nabla_{\theta} \log p(\tau; \theta)) p(\tau; \theta) d\tau$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p(\tau;\theta)} [r(\tau) \nabla_{\theta} \log p(\tau;\theta)]$$

$$\nabla_{\theta} J(\theta) = E_{\tau \sim p(\tau;\theta)} [r(\tau) \nabla_{\theta} \log p(\tau;\theta)]$$

$$\log p(\tau; \theta) = \log \left(\prod_{t \ge 0} T(x_{t+1} | x_t, u_t) \pi_{\theta}(u_t | x_t) \right)$$

$$= \sum_{t \ge 0} \log T(x_{t+1} | x_t, u_t) + \log \pi_{\theta}(u_t | x_t)$$

$$\nabla_{\theta} \log p(\tau; \theta) = \sum_{t \ge 0} \log \pi_{\theta}(u_t | x_t)$$

We don't need to know the transition model to compute this gradient!

If we use π_{θ} to sample a trajectory, we can approximate the gradient:

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(u_t | x_t)$$

Intuition: adjust theta to:

- Boost probability of actions taken if reward is high
- Lower probability of actions taken if reward is low

Learning by trial and error.

Policy Gradient Recap

Pros:

- Learns policy directly often more stable
- Works for continuous action spaces
- Converges to local maximum of $J(\theta)$

Cons:

- Needs data from current policy to compute gradient data inefficient
- Gradient estimates can be very noisy

Actor Critic

Actor: Learned Policy, π_{θ}

Critic: Estimated Q function of Actor, V_{ϕ}

Critic helps reduce variance in gradient estimates for the actor.

$$\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} [r(\tau) - V_{\phi}(x_0)] \nabla_{\theta} \log \pi_{\theta}(u_t | x_t)$$

Learn ϕ by minimizing TD error, as before.

Result: learning is more data-efficient.

Deep Reinforcement Learning

Deep Q learning:

- Use neural network as Q function
- Works in nonlinear, continuous state space domains

Deep Policy Gradient:

- Parameterize policy as deep neural network
- Policy can act on high dimensional input, e.g. directly from visual feedback

Results in simulation

Heess et al., "Emergence of Locomotion Behaviours in Rich Environments"

Results in Robotics

Levine et al., "End-to-End Training of Deep Visuomotor Policies"

Results in Robotics

OpenAI, "Solving Rubik's Cube with a Robot Hand"

Challenges in RL for Robotics

Data-efficiency

Sim-to-real

Exploration

Reward design

Further Reading

Sutton and Barto, Reinforcement Learning: an Introduction Bertsekas, Reinforcement Learning and Optimal Control

Courses at Stanford

- CS 234 Reinforcement Learning
- CS 332 Advanced Survey of Reinforcement Learning
- MS&E 338 Reinforcement Learning

Demo Day Tomorrow

Thanks for a great quarter!