Principles of Robot Autonomy |

Reinforcement Learning

%) Stanford AS&'
&%/ University

oooooooooooooooooooo

What is Reinforcement Learning?

Learning how to make good decisions by interaction.

action
a,

'y
e .
" s | Environment

12/3/19 AA 274 | Lecture 25 2

Why Reinforcement Learning

* Only need to specify a reward function. Agent learns everything else!

* Successes in
e Helicopter acrobatics

e Superhuman Gameplay: Backgammon, Go, Atari
* Investment portfolio management

* Making a humanoid robot walk

12/3/19 AA 274 | Lecture 25 3

Why Reinforcement Learning?

* Only need to specify a reward function. Agent learns everything else!

* Successes in
e Helicopter acrobatics
e positive for following desired traj, negative for crashing
e Superhuman Gameplay: Backgammon, Go, Atari
* positive/negative for winning/losing the game
* Investment portfolio management
* positive reward for SSS

* Making a humanoid robot walk
 positive for forward motion, negative for falling

12/3/19 AA 274 | Lecture 25 4

Outline

* Formalisms
* Algorithms
* Deep Reinforcement Learning

 RL in Robotics

12/3/19 AA 274 | Lecture 25 5

Markov Decision Process (MDP)

State: x €X (often s € §)

Action: ueuU (often a € A)

Transition Function: T(xp |x—1,u—q) = p(xe|Xp_1, Up_1)
Reward Function: . = R(Xx¢, Up)

Discount Factor: 14
Horizon: H

MDP: M = (X,UT,R,y, H)

12/2/19 AA 274 | Lecture 25 6

Markov Decision Process (MDP)
MDP: M = (X,UT,R,y, H)
Policy: uy = m(x;)

Goal: Choose policy that maximizes cumulative reward.

— H -
m* = arg max E Z YR (xs, (x;))
t=0 :

T

12/3/19 AA 274 | Lecture 25

-
Solving MDPs

If you know the model, use dynamic programming
* Value lteration / Policy Iteration

RL: Learning from interaction
* Model-Based

* Model-free
* Value based
* Policy based

12/2/19 AA 274 | Lecture 25 8

Dynamic Programming in MDPs

Define a policy’s value function as the expected cumulative discounted
reward when acting according to the policy from a given state.

_ k -
VE@ =E|) v R(xm())Ixo = »
Lt=0 i

_—

Value with k steps to go

VE@) = R(x,m() +y) T m(x) Vi, (x')

x'ex

12/3/19 AA 274 | Lecture 25 9

-
Optimality in MDPs

The optimal policy " is a policy that has the highest value.

m; (x) = arg max V" (x)
T

There exists a unique optimal value function:

Vi(x) = th* (%)

12/3/19 AA 274 | Lecture 25 10

Gridworld Example

 Reward: -1 at each timestep
e Actions: N/S/E/W

Start e State: 2D location

Goal

Gridworld Example

Optimal Policy

EEEEE?

> o

Optimal Value

EIEEIEIEIEN
-1 5 n

Start | -16

n

Value |teration

* Dynamic programming for MDPs
* Initialize V5 (x) = 0 for all states x
* Loop until finite horizon / convergence:

Vi = max| ROuw) +y) TG u) Ve (x)
u

x'ex

12/3/19 AA 274 | Lecture 25 13

Q-functions

Another related function in MDPs is the Q function, which is a function
of state and action, and corresponds to the value of taking a given
action and then acting according to the given policy:

Qr(x,u) =R(x,u) +y z T(x |x,) V' {(x")
x'ex
Similarly, we can define the optimal Q function:
Q.(x,u) =R(x,u) +y z T |x,u) V,;_(x")
x'ex

12/3/19 AA 274 | Lecture 25 14

Q functions

Vi = max (R(x, u)+vy Z T (x"|x,u) V,j(x’))

x'ex

G /
Y

Vi1 (X) = max Qr+1 (X, 1)

12/4/19 AA 274 | Lecture 25 15

Policy Iteration

Suppose we have a policy T (x)
We can use DP to compute Q™k(x, u)

Define ;41 (x) = arg max Q™k(x,u)
u

Proposition: V@ k+1(x) > V™ (x)Vx € X
Inequality is strict if i is suboptimal.

Use this procedure to iteratively improve policy until convergence.

12/3/19 AA 274 | Lecture 25 16

Recap

* Value Iteration
e Estimate Optimal Value Function
* Compute optimal policy from optimal value function

* Policy Iteration
e Start with random policy

* |teratively improve it until convergence to optimal
policy

* Require model of MDP to work!

12/3/19 AA 274 | Lecture 25 17

Learning from Experience

* Without access to the model, agent
needs to optimize a policy from
interaction with an MDP

* Only have access to trajectories in state

MDP:

* T = (X, Ug, T X1y ey U—1,TH—1, X1)

12/4/19 AA 274 | Lecture 25

reward
r.’

Agent

" s | Environment

action
a,

Learning from Experience

How to use trajectory data?

* Model based approach: estimate T'(x’|x, u), then use model to plan

* Model free:
* Value based approach: estimate optimal value (or Q) function from data

* Policy based approach: use data to determine how to improve policy
 Actor Critic approach: learn both a policy and a value/Q function

12/4/19 AA 274 | Lecture 25 19

Exploration vs Exploitation

In contrast to standard machine learning on fixed data sets, in RL we
actively gather the data we use to learn.

* We can only learn about states we visit and actions we take
* Need to explore to ensure we get the data we need
* Efficient exploration is a fundamental challenge in RL!

Simple strategy: add noise to the policy.

e-greedy exploration:

* With probability €, take a random action; otherwise take the most promising
action

12/4/19 AA 274 | Lecture 25 20

Model-free, value based: Q Learning

For simplicity, let’s assume H = oo, so optimal value and policy don’t
depend on time. Why?

Optimal Q function satisfies
Q" (x,u) = R(x,u) +y z T(x"|x,u) max Q" (x",u’)
x'ex v
So, in expectation,
E [Q*(xt»ut) — (Tt + Y max Q*(xtﬂ,u’))] =0
O u

J

Y

Temporal Difference (TD) error

12/4/19 AA 274 | Lecture 25 21

Q Learning

Initialize Q (x, u) for all states and actions.
Let m(x) be an e-greedy policy according to Q.
Loop:
Take action: u; ~ m(x;).
Observe reward and next state: (7, X¢41).
Update Q to minimize TD error:

QCxr, ur) « Qxp,up) + (7" + ml?X Q(Xe4p u) — Q(xt»ut))
t =t+1

12/4/19 AA 274 | Lecture 25 22

-
Fitted Q Learning

Large / Continuous Action Space?
Use parametric model for Q function: Qg (x, u)

Gradient ascent on G:

0<0+a (Tt 4 ml?x Qo (xrr1,u) — Qg (xt'ut)> VoQo (x¢,uy)

| . . d(Squared TD Error) dQ
earning rate 0 10

12/4/19 AA 274 | Lecture 25 23

Q Learning Recap

Pros:

e Can learn Q function from any interaction data, not just trajectories
gathered using the current policy (“off-policy” algorithm)

* Relatively data-efficient (can reuse old interaction data)

Cons:
* Need to optimize over actions: hard to apply to continuous action spaces
e Optimal Q function can be complicated, hard to learn

* Optimal policy might be much simpler!

12/4/19 AA 274 | Lecture 25 24

-
Model-free, policy based: Policy Gradient

Instead of learning the Q function, learn the policy directly!
Define a class of policies mg where 6 are the parameters of the policy.
Can we learn the optimal 8 from interaction?

Goal: use trajectories to estimate a gradient of policy performance w.r.t
parameters 6.

12/4/19 AA 274 | Lecture 25 25

Policy Gradient

A particular value of 8 induces a distribution of possible trajectories.

Objective function:
J(0) = Erponlr(T)]

1(6) = j r()p(x; 0)d

where r(7) is the total discounted cumulative reward of a trajectory.

12/4/19 AA 274 | Lecture 25 26

Policy Gradient

Gradient of objective w.r.t. parameters:

Vo] (0) = JT(T)VQP(T; 6)dt
Vop(t;0)

Trick: Vgp(t;0) = p(z; 0) p(1;0)

= p(t;0)Vglogp(t;0)
Vo) (6) = f (r(D)V logp(x; 0)p(; 0) dr

Vo] (0) = Er p(;0)[r (1) Vg log p(z; 6)]

12/4/19 AA 274 | Lecture 25 27

Policy Gradient

Vo (0) = Evop(z0)[r(t)Vg log p(; 6)]

logp(t;0) = log (l_[T (X412, up)mo (uy |xt))

t=0

— z log T(xt+1|xt,ut) + log g (uy|x¢)

t=0
We don’t need to know
Vg lOg p(T; 9) — E lOg Tlg (ut |xt) the transition model to

t>0 compute this gradient!

12/4/19 AA 274 | Lecture 25 28

Policy Gradient

If we use gy to sample a trajectory, we can approximate the gradient:

Vo (6) =) T(1)Vglogmy (uelx,)

t=0

Intuition: adjust theta to:
* Boost probability of actions taken if reward is high
» Lower probability of actions taken if reward is low

Learning by trial and error.

12/4/19 AA 274 | Lecture 25 29

Policy Gradient Recap

Pros:
 Learns policy directly — often more stable
* Works for continuous action spaces

* Converges to local maximum of J(0)
Cons:

* Needs data from current policy to compute gradient — data inefficient

* Gradient estimates can be very noisy

12/4/19 AA 274 | Lecture 25 30

Actor Critic

Actor: Learned Policy, mg
Critic: Estimated Q function of Actor, Vo
Critic helps reduce variance in gradient estimates for the actor.

Vo) (0) =) [r(®) = Vi (x0)] Vo log mg (uelxe)

t=0

Learn ¢ by minimizing TD error, as before.

Result: learning is more data-efficient.

12/4/19 AA 274 | Lecture 25 31

Deep Reinforcement Learning

* Deep Q learning:
e Use neural network as Q function
 Works in nonlinear, continuous state

y A
space domains \g}“
<‘A’A’L

N\
N

* Deep Policy Gradient:

* Parameterize policy as deep neural
network

* Policy can act on high dimensional

input, e.g. directly from visual nput FC Hidden 1 (16) FC Hidden 2 (16) Output
feedback

12/4/19 AA 274 | Lecture 25 32

Results in simulation

Heess et al., “Emergence of Locomotion Behaviours in Rich Environments”

12/4/19 AA 274 | Lecture 25 33

https://arxiv.org/abs/1707.02286

Results in Robotics

Levine et al., “End-to-End Training of Deep Visuomotor Policies”

12/4/19 AA 274 | Lecture 25 34

https://arxiv.org/pdf/1504.00702.pdf

Results in Robotics

OpenAl, “Solving Rubik's Cube with a Robot Hand”

12/4/19 AA 274 | Lecture 25 35

https://openai.com/blog/solving-rubiks-cube/

Challenges in RL for Robotics

Data-efficiency
Sim-to-real
Exploration

Reward design

12/4/19 AA 274 | Lecture 25 36

Further Reading

Sutton and Barto, Reinforcement Learning: an Introduction
Bertsekas, Reinforcement Learning and Optimal Control

Courses at Stanford
- CS 234 Reinforcement Learning

- CS 332 Advanced Survey of Reinforcement Learning
- MS&E 338 Reinforcement Learning

12/4/19 AA 274 | Lecture 25 37

http://web.stanford.edu/class/cs234/index.html
http://cs332.stanford.edu/
https://web.stanford.edu/class/msande338/

Demo Day lomorrow

Thanks for a great quarter!

12/4/19 AA 274 | Lecture 25 38

