Principles of Robot Autonomy I

Decision making and dynamic programming

Today's lecture

- Aim
 - Learn the fundamental principles of Markov decision processes and dynamic programming
- Readings
 - D. Bertsekas. Reinforcement Learning and Optimal Control, 2019. Chapters 1 and 2.

Basic decision-making problem (deterministic)

- System: $\mathbf{x}_{k+1} = f_k(\mathbf{x}_k, \mathbf{u}_k), \ k = 0, ..., N$
- Control constraints: $\mathbf{u}_k \in U(\mathbf{x}_k)$
- Cost:

$$J(\mathbf{x}_0; \boldsymbol{u}_0, \dots, \boldsymbol{u}_{N-1}) = g_N(\mathbf{x}_N) + \sum_{k=0}^{N-1} g_k(\mathbf{x}_k, \mathbf{u}_k)$$

• Decision-making problem:

$$J^{*}(\mathbf{x}_{0}) = \min_{\mathbf{u}_{k} \in U(\mathbf{x}_{k}), \ k = 0, ..., N-1} J(\mathbf{x}_{0}; \mathbf{u}_{0}, ..., \mathbf{u}_{N-1})$$

Key points

- Discrete-time model
- Additive cost (central assumption)

The key concept behind the dynamic programming approach is the principle of optimality

Suppose optimal path for a multi-stage decision-making problem is

- first decision yields segment a b with cost J_{ab}
- remaining decisions yield segments b e with cost J_{be}
- optimal cost is then $J_{ae}^* = J_{ab} + J_{be}$

- Claim: If a b e is optimal path from a to e, then b e is optimal path from b to e
- Proof: Suppose b c e is the optimal path from b to e. Then $J_{bce} < J_{be}$

and

$$J_{ab} + J_{bce} < J_{ab} + J_{be} = J_{ae}^*$$

Contradiction!

Principle of optimality (for deterministic systems): Let $\{\mathbf{u}_0^*, \mathbf{u}_1^*, \dots, \mathbf{u}_{N-1}^*\}$ be an optimal control sequence, which together with \mathbf{x}_0^* determines the corresponding state sequence $\{\mathbf{x}_0^*, \mathbf{x}_1^*, \dots, \mathbf{x}_N^*\}$. Consider the subproblem whereby we are at \mathbf{x}_k^* at time k and we wish to minimize the cost-to-go from time k to time N, i. e.,

$$g_k(\mathbf{x}_k^*, \mathbf{u}_k) + \sum_{m=k+1}^{N-1} g_m(\mathbf{x}_m, \mathbf{u}_m) + g_N(\mathbf{x}_N)$$

Then the truncated optimal sequence $\{\mathbf{u}_k^*, \mathbf{u}_{k+1}^*, \dots, \mathbf{u}_{N-1}^*\}$ is optimal for the subproblem

• Tail of optimal sequences optimal for tail subproblems

Applying the principle of optimality

Principle of optimality: if b - c is the initial segment of the optimal path from b to f, then c - f is the terminal segment of this path

Hence, the optimal trajectory is found by comparing:

$$C_{bcf} = J_{bc} + J_{cf}^{*}$$

$$C_{bdf} = J_{bd} + J_{df}^{*}$$

$$C_{bef} = J_{be} + J_{ef}^{*}$$

Applying the principle of optimality

- need only to compare the concatenations of immediate decisions and optimal decisions → significant decrease in computation / possibilities
- in practice: carry out this procedure backward in time

Example

Optimal cost: 18 Optimal path: $a \rightarrow d \rightarrow e \rightarrow f \rightarrow g \rightarrow h$

DP Algorithm

• Start with

$$J_N^*(\mathbf{x}_N) = g_N(\mathbf{x}_N), \text{ for all } \mathbf{x}_N$$

• and for k = 0, ..., N - 1, let

$$J_k^*(\mathbf{x}_k) = \min_{\mathbf{u}_k \in U(\mathbf{x}_k)} g(\mathbf{x}_k, \mathbf{u}_k) + J_{k+1}^* (f(\mathbf{x}_k, \mathbf{u}_k)) \quad \text{for all } \mathbf{x}_k$$

Once the functions J_0^*, \dots, J_N^* have been determined, the optimal sequence can be determined with a forward pass

Comments

- discretization (from differential equations to difference equations)
- quantization (from continuous to discrete state variables / controls)
- interpolation
- global minimum
- constraints, in general, simplify the numerical procedure

Basic decision-making problem (stochastic)

- System: $\mathbf{x}_{k+1} = f_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k), \quad k = 0, ..., N-1$
- Control constraints: $\mathbf{u}_k \in U(\mathbf{x}_k)$
- Probability distribution: $P_k(\cdot | \mathbf{x}_k, \mathbf{u}_k)$
- Policies: $\pi = \{\pi_0, ..., \pi_{N-1}\}$, where $\mathbf{u}_k = \pi_k(\mathbf{x}_k)$
- Expected cost:

$$J_{\pi}(\mathbf{x}_0) = E\left\{g_N(\mathbf{x}_N) + \sum_{k=0}^{N-1} g_k(\mathbf{x}_k, \pi_k(\mathbf{x}_k), \mathbf{w}_k)\right\}$$

• Decision-making problem:

$$J^*(\mathbf{x}_0) = \min_{\pi} J_{\pi}(\mathbf{x}_0)$$

Key points

- Discrete-time model
- Markovian model
- Objective: find optimal closed-loop policy
- Additive cost (central assumption)
- Risk-neutral formulation

Other communities use different notation:

 Powell, W. B. AI, OR and control theory: A Rosetta Stone for stochastic optimization. Princeton University, 2012. http://castlelab.princeton.edu/Papers/AIOR_July2012.pdf

Principle of optimality (for stochastic systems): Let π^* : = $\{\pi_0^*, \pi_1^*, \dots, \pi_{N-1}^*\}$ be an optimal policy. Assume state \mathbf{x}_k is reachable. Consider the subproblem whereby we are at \mathbf{x}_k at time k and we wish to minimize the cost-to-go from time k to time N. Then the truncated policy $\{\pi_k^*, \pi_{k+1}^*, \dots, \pi_{N-1}^*\}$ is optimal for the subproblem

tail policies optimal for tail subproblems

DP Algorithm

DP Algorithm: For every initial state \mathbf{x}_0 , the optimal cost $J^*(\mathbf{x}_0)$ is equal to $J_0(\mathbf{x}_0)$, given by the last step of the following algorithm, which proceeds backward in time from stage N - 1 to stage 0:

$$J_N(\mathbf{x}_N) = g_N(\mathbf{x}_N)$$

$$J_k(\mathbf{x}_k) = \min_{\mathbf{u}_k \in U(\mathbf{x}_k)} E_{\mathbf{w}_k} \{ g_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k) + J_{k+1}(f_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k)) \}, \ k = 0, \dots, N-1$$

Furthermore, if $\mathbf{u}_k^* = \pi_k^*(\mathbf{x}_k)$ minimizes the right-hand side of the above equation for each \mathbf{x}_k and k, the policy $\{\pi_0^*, \pi_1^*, \dots, \pi_{N-1}^*\}$ is optimal

Example: Inventory Control Problem (1/2)

- Stock available $x_k \in \mathbb{N}$, inventory $u_k \in \mathbb{N}$, and demand $w_k \in \mathbb{N}$
- Dynamics: $x_{k+1} = \max(0, x_k + u_k w_k)$
- Constraints: $x_k + u_k \leq 2$
- Probabilistic structure: $p(w_k = 0) = 0.1$, $p(w_k = 1) = 0.7$, and $p(w_k = 2) = 0.2$
- Cost

$$E\left\{0 + \sum_{k=0}^{2} (u_k + (x_k + u_k - w_k)^2)\right\}$$

Example: Inventory Control Problem (1/2)

• Algorithm takes form for k = 0,1,2

$$J_k(x_k) = \min_{0 \le u_k \le 2 - x_k} E_{w_k} \left\{ u_k + (x_k + u_k - w_k)^2 + J_{k+1} \left(\max(0, x_k + u_k - w_k) \right) \right\}$$

• For example

$$J_2(0) = \min_{u_2 = 0,1,2} E_{w_2} \{ u_2 + (u_2 - w_2)^2 \} = \min_{u_2 = 0,1,2} \{ u_2 + 0.1(u_2)^2 + 0.7(u_2 - 1)^2 + 0.2(u_2 - 2)^2 \}$$

which yields $J_2(0) = 1.3$, and $\pi_2^*(0) = 1$

• Final solution $J_0(0) = 3.7, J_0(1) = 2.7, \text{ and } J_0(2) = 2.818$

Difficulties of DP

• Curse of dimensionality:

- Exponential growth of the computational and storage requirements
- Intractability of imperfect state information problems
- Curse of modeling: if "system stochastics" are complex, it is difficult to obtain expressions for the transition probabilities

• Curse of time

- The data of the problem to be solved is given with little advance notice
- The problem data may change as the system is controlled—need for on-line replanning

Approximation approaches in RL

- There are two general types of approximation in DP-based suboptimal control
 - 1. Approximation in value space, where we aim to approximate the optimal cost function
 - 2. Approximation in policy space, where we select the policy by using optimization over a suitable class of policies

Approximation in value space

- In approximation in value space, we approximate the optimal cost-togo functions J_k^* with some other functions \tilde{J}_k
- We then replace J_k^* in the DP equation as

 $\tilde{\pi}_k(\mathbf{x}_k) \in \underset{\mathbf{u}_k \in U(\mathbf{x}_k)}{\operatorname{argmin}} E_{\mathbf{w}_k}\{g_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k) + \tilde{J}_{k+1} (f_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k))\}$

- Several possibilities for computing \tilde{J}_k , for example:
 - Problem approximation
 - On-line approximate optimization
 - Parametric cost approximation (e.g., neural networks)
 - Aggregation

Approximation in policy space

• In approximation in policy space, one selects the policy from a suitably restricted class of policies, usually a parametric class of some form, e.g.,

 $\pi_k(\mathbf{x}_k, \mathbf{r}_k)$, where \mathbf{r}_k is a parameter (e.g., weights of a NN)

Next time

