
Principles of Robot Autonomy I
Decision making and dynamic programming



Today’s lecture
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• Aim
• Learn the fundamental principles of Markov decision processes and dynamic 

programming

• Readings
• D. Bertsekas. Reinforcement Learning and Optimal Control, 2019. Chapters 1 

and 2.



Basic decision-making problem (deterministic)

• System: 𝐱"#$ = 𝑓" 𝐱", 𝐮" , 𝑘 = 0,… ,𝑁
• Control constraints: 𝐮"∈ 𝑈(𝐱")
• Cost: 

𝐽(𝐱2; 𝒖2, … , 𝒖56$ ) = 𝑔5 𝐱5 + 9
":2

56$

𝑔" 𝐱", 𝐮"

• Decision-making problem:

𝐽∗(𝐱2) = min
𝐮?∈@ 𝐱? , 𝑘 :2,…,56$

𝐽(𝐱2; 𝒖2, … , 𝒖56$ )
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Key points

• Discrete-time model
• Additive cost (central assumption)
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Principle of op@mality

The key concept behind the dynamic programming approach is the 
principle of optimality
Suppose optimal path for a multi-stage decision-making problem is

• first decision yields segment 𝑎 − 𝑏 with cost 𝐽DE
• remaining decisions yield segments 𝑏 − 𝑒 with cost 𝐽EG
• optimal cost is then 𝐽DG∗ = 𝐽DE + 𝐽EG
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Principle of optimality

• Claim: If 𝑎 − 𝑏 − 𝑒 is optimal path from 𝑎 to 𝑒, then 𝑏 − 𝑒 is optimal 
path from 𝑏 to 𝑒
• Proof: Suppose 𝑏 − 𝑐 − 𝑒 is the optimal path from 𝑏 to 𝑒. Then

𝐽EIG < 𝐽EG
and

𝐽DE + 𝐽EIG < 𝐽DE + 𝐽EG = 𝐽DG∗
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Contradiction!



Principle of optimality

Principle of optimality (for deterministic systems): Let {𝐮2∗ , 𝐮$∗, … , 𝐮56$∗ } be 
an optimal control sequence, which together with 𝐱2∗ determines the 
corresponding state sequence {𝐱2∗ , 𝐱$∗, … , 𝐱5∗ } . Consider the subproblem 
whereby we are at 𝐱"∗ at time 𝑘 and we wish to minimize the cost-to-go 
from time 𝑘 to time 𝑁, i. e.,

𝑔" 𝐱"∗ , 𝐮" + ∑P:"#$56$ 𝑔P 𝐱P, 𝐮P + 𝑔5 𝐱5

Then the truncated optimal sequence {𝐮"∗ , 𝐮"#$∗ , … , 𝐮56$∗ } is optimal for 
the subproblem

• Tail of optimal sequences optimal for tail subproblems
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Applying the principle of op@mality
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Principle of optimality: if 𝑏 − 𝑐 is the 
initial segment of the optimal path from 
𝑏 to 𝑓, then 𝑐 − 𝑓 is the terminal 
segment of this path

Hence, the optimal trajectory is found 
by comparing:

𝐶EIR = 𝐽EI + 𝐽IR∗

𝐶ESR = 𝐽ES + 𝐽SR∗

𝐶EGR = 𝐽EG + 𝐽GR∗



Applying the principle of optimality

• need only to compare the concatenations of immediate decisions 
and optimal decisions → significant decrease in computation  / 
possibilities 
• in practice: carry out this procedure backward in time
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Example
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Optimal cost: 18
Optimal path: 𝑎 → 𝑑 → 𝑒 → 𝑓 → 𝑔 → ℎ



DP Algorithm
• Start with

𝐽5∗ (𝐱5) = 𝑔5(𝐱5),   for all 𝐱5

• and for 𝑘 = 0,… ,𝑁 − 1, let

𝐽"∗ 𝐱" = min
𝐮?∈@(𝐱?)

𝑔 𝐱", 𝐮" + 𝐽"#$∗ 𝑓 𝐱", 𝐮" for all 𝐱"

Once the functions 𝐽2∗, … , 𝐽5∗ have been determined, the optimal 
sequence can be determined with a forward pass
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Comments

• discretization (from differential equations to difference equations)
• quantization (from continuous to discrete state variables / controls)
• interpolation 
• global minimum
• constraints, in general, simplify the numerical procedure 
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Basic decision-making problem (stochastic)

• System: 𝐱"#$ = 𝑓" 𝐱", 𝐮",𝐰" , 𝑘 = 0,… ,𝑁 − 1
• Control constraints: 𝐮"∈ 𝑈(𝐱")
• Probability distribution: 𝑃"(⋅ |𝐱", 𝐮")
• Policies: 𝜋 = {𝜋2, … , 𝜋56$},    where 𝐮" = 𝜋"(𝐱")
• Expected cost: 

𝐽](𝐱2) = 𝐸 𝑔5 𝐱5 + 9
":2

56$

𝑔" 𝐱", 𝜋" 𝐱" ,𝐰"

• Decision-making problem:

𝐽∗(𝐱2) = min
]

𝐽](𝐱2)
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Key points

• Discrete-Qme model
• Markovian model
• ObjecQve: find opQmal closed-loop policy
• AddiQve cost (central assumpQon)
• Risk-neutral formulaQon 

Other communiQes use different notaQon: 
• Powell, W. B. AI, OR and control theory: A RoseYa Stone for stochasQc 

opQmizaQon. Princeton University, 2012. 
hYp://castlelab.princeton.edu/Papers/AIOR_July2012.pdf 
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Principle of optimality

Principle of optimality (for stochastic systems): Let 𝜋∗:=
{𝜋2∗, 𝜋$∗, … , 𝜋56$∗ } be an optimal policy. Assume state 𝐱" is reachable. 
Consider the subproblem whereby we are at 𝐱" at time 𝑘 and we wish 
to minimize the cost-to-go from time 𝑘 to time 𝑁. Then the truncated 
policy {𝜋"∗ , 𝜋"#$∗ , … , 𝜋56$∗ } is optimal for the subproblem

• tail policies optimal for tail subproblems
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DP Algorithm
DP Algorithm: For every initial state 𝐱2, the optimal cost 𝐽∗(𝐱2) is equal to 
𝐽2(𝐱2), given by the last step of the following algorithm, which proceeds 
backward in time from stage 𝑁 − 1 to stage 0:

𝐽5(𝐱5) = 𝑔5(𝐱5)

𝐽" 𝐱" = min
𝐮?∈@(𝐱?)

𝐸𝐰? 𝑔" 𝐱", 𝐮",𝐰" + 𝐽"#$(𝑓" 𝐱", 𝐮",𝐰" ,	 𝑘 = 0,… ,𝑁 − 1

Furthermore, if 𝐮"∗ = 𝜋"∗(𝐱") minimizes the right-hand side of the above 
equation for each 𝐱" and 𝑘, the policy {𝜋2∗, 𝜋$∗, … , 𝜋56$∗ } is optimal 
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Example: Inventory Control Problem (1/2) 

• Stock available 𝑥" ∈ ℕ, inventory 𝑢" ∈ ℕ, and demand 𝑤" ∈ ℕ
• Dynamics: 𝑥"#$ = max(0, 𝑥" + 𝑢" − 𝑤")
• Constraints: 𝑥" + 𝑢" ≤ 2
• ProbabilisQc structure: 𝑝 𝑤" = 0 = 0.1, 𝑝 𝑤" = 1 = 0.7, and 
𝑝(𝑤" = 2) = 0.2
• Cost

𝐸 0 +9
":2

k

( 𝑢" + 𝑥" + 𝑢" − 𝑤" k)
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Example: Inventory Control Problem (1/2) 

• Algorithm takes form for 𝑘 = 0,1,2

𝐽" 𝑥" = min
2l m?l k6n?

𝐸o? 𝑢" + 𝑥" + 𝑢" − 𝑤" k + 𝐽"#$ max 0, 𝑥" + 𝑢" − 𝑤"

• For example
𝐽k 0 = min

mp : 2,$,k
𝐸op 𝑢k + 𝑢k − 𝑤k k = min

mp : 2,$,k
{𝑢k + 0.1 𝑢k k + 0.7 𝑢k − 1 k + 0.2 𝑢k − 2 k}

which yields 𝐽k(0) = 1.3, and 𝜋k∗(0) = 1

• Final solution 𝐽2(0) = 3.7, 𝐽2(1) = 2.7, and 𝐽2(2) = 2.818
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Difficul@es of DP 

• Curse of dimensionality:
• Exponential growth of the computational and storage requirements
• Intractability of imperfect state information problems 

• Curse of modeling: if “system stochastics” are complex, it is difficult to 
obtain expressions for the transition probabilities 

• Curse of time
• The data of the problem to be solved is given with little advance notice 
• The problem data may change as the system is controlled—need for on-line 

replanning
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Approximation approaches in RL

• There are two general types of approximation in DP-based suboptimal 
control

1. Approximation in value space, where we aim to approximate the optimal 
cost function 

2. Approximation in policy space, where we select the policy by using 
optimization over a suitable class of policies
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Approximation in value space

• In approximation in value space, we approximate the optimal cost-to-
go functions 𝐽"∗ with some other functions s𝐽"
• We then replace 𝐽"∗ in the DP equation as 

t𝜋" 𝐱" ∈ argmin
𝐮?∈@(𝐱?)

𝐸𝐰? 𝑔" 𝐱", 𝐮",𝐰" + s𝐽"#$ (𝑓" 𝐱", 𝐮",𝐰"

• Several possibilities for computing s𝐽", for example:
• Problem approximation 
• On-line approximate optimization 
• Parametric cost approximation (e.g., neural networks)
• Aggregation
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Approxima@on in policy space

• In approximaQon in policy space, one selects the policy from a 
suitably restricted class of policies, usually a parametric class of some 
form, e.g., 

𝜋"(𝐱", 𝐫"), where 𝐫" is a parameter (e.g., weights of a NN)
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Next time
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