
Principles of Robot Autonomy I
Finite state machines

Today’s lecture
• Aim
• Introduce and formalize the concept of Finite State Machines (FSMs)
• Discuss their relevance, strengths and limitations
• Introduce tools to allow you to use them effectively

• Readings
• Chapter 4 of Leslie Kaelbling, Jacob White, Harold Abelson, Dennis

Freeman, Tomás Lozano-Pérez, and Isaac Chuang. 6.01SC Introduction to
Electrical Engineering and Computer Science I. Spring 2011. Massachusetts
Institute of Technology: MIT OpenCourseWare.

11/19/19 AA 274 | Lecture 23 2

Finite State Machines

Definition: A computational model for systems whose output depends
on the entire history of their inputs.

*A finite state machine is a modeling framework, NOT an algorithm
(similarly to Markov decision processes, probability densities, factor

graphs etc.)*

11/19/19 AA 274 | Lecture 23 3

Finite State Machines in practice

• In practice, used in many different ways
• Synthetically (specifies a program)

• E.g. a product manager and an engineer specifies how an ATM machine should
“behave” before starting its implementation

• Analytically (describe the behavior of a combination of systems)
• E.g. two self-driving cars could be modeled as FSMs. An engineer could try to see if

they might end up stuck in some infinite loop at an intersection
• Predictively (to predict interaction with an environment)

• A self-driving car could have an internal model of a pedestrian as an FSM and use it to
figure out how it should behave around it

11/19/19 AA 274 | Lecture 23 4

Why are we teaching FSMs?

• For the practitioner: designing the extremely complex state
machines required to fly drones, drive self-driving cars or operate
warehouse robots is still one of the most time-consuming/difficult
task faced by companies…

• How do we handle the failure of a combination of sensors
gracefully?
• How do we negotiate an intersection?
• How do I get my turtlebot to start backtracking after a collision?

11/19/19 AA 274 | Lecture 23 5

Why are we teaching FSMs?

• For the researcher: It’s a fundamental building block of how we
understand computation, and still relevant to research today...

11/19/19 AA 274 | Lecture 23 6

Hudson, Drew A., and Christopher D. Manning. "Learning by abstraction: The neural
state machine." arXiv preprint arXiv:1907.03950 (2019).

Mathematical definition

• Sets:
• A set of states 𝑆
• A set of inputs 𝐼, called the input vocabulary
• A set of outputs 𝑂, called the output vocabulary

• Maps:
• Next-state function that maps input and the state to the next state
𝑛 𝑖&, 𝑠& → 𝑠&*+
• Output function 𝑜 𝑖&, 𝑠& → 𝑜&

• An initial state 𝑠-

11/19/19 AA 274 | Lecture 23 7

Graphical representation

11/19/19 AA 274 | Lecture 23 8

𝑠-

𝑠+

𝑠.

𝑆: 𝑠-, 𝑠+, 𝑠.
I: {𝑖-, 𝑖+, 𝑖.}
O: {𝑜-, 𝑜+}

• Given the sets (𝑆, 𝐼, 𝑂), it is common to express the maps (𝑛, 𝑜) by
using a graph

Graphical representation

11/19/19 AA 274 | Lecture 23 9

𝑠-

𝑠+

𝑠.

𝑖-

𝑖-

𝑖+
𝑖.

The transition (next-state)
map is represented by arrows
between states, with their
associated input alongside it

Graphical representation

11/19/19 AA 274 | Lecture 23 10

𝑠-

𝑠+

𝑠.

𝑖-, 𝑜+

𝑖-, 𝑜-

𝑖+, 𝑜+
𝑖., 𝑜-

The output map is written
alongside each transition

Example: parking gate control

11/19/19 AA 274 | Lecture 23 11

The gate can be in one of three positions: ‘top’, ‘middle’ or ‘bottom’
A sensor tells the gate if a car is waiting in front of it
A sensor tells the gate if a car has just passed through it
The gate can take the following actions: raise the gate, lower the gate, no
operation (nop).

We want the following behavior:
• If a car wants to come through, need to raise the arm to ‘top’ position
• The gate has to stay there until the car has driven though the gate
• The gate has to go back down after the car has gone through

Example: parking gate control

11/19/19 AA 274 | Lecture 23 12

• States: ‘waiting’, ‘raising’, ‘raised’, ‘lowering’

• Input: ‘no car at gate’, ‘car at gate’, ‘gate at top’, ‘not
gate at top’, ‘gate at bottom’, ‘not gate at bottom’, ‘car
just exited’, ‘not car just existed’

• Output: ‘raise’, ‘lower’, ‘nop’

Example: parking gate control

11/19/19 AA 274 | Lecture 23 13

• Transitions

Example: parentheses balancing

• We want to design an automata that can read a string of text of any
length and say whether or not the parentheses in the string are
balanced or not
• Balanced: ”1 + (2 + 3 – (4 * 5))”
• Not balanced: “1 + (2 + 3 – 4 * 5))”

• “… a string of text of any length…”

• A robot that can accomplish such a task would need an infinite
number of states… and cannot therefore be represented by a finite
state machine

11/19/19 AA 274 | Lecture 23 14

FSM in the bigger picture of computation

• In terms of computational power, (deterministic) finite state
machines are actually somewhat low on the totem pole of
automata… with Turing Machines somewhere close to the top.

11/19/19 AA 274 | Lecture 23 15

Turing Machine
Pushdown automaton

Finite State Machine
Combinatorial Logic

A Turing Machine
could solve our
parentheses
balancing
problem!

Architecture

• The architecture of finite state machines can become quite complex
• Additional states can generate an exponential number of

transitions.
• Strategies to keep the architecture tractable:

1. Reduction of redundant states
2. Hierarchical finite state machines
3. Composition using common patterns

11/19/19 AA 274 | Lecture 23 16

Finite State Machine optimization

• Algorithms exist to identify and combine states that have equivalent
behavior
• Equivalent states:
• Same output
• For all input combinations, state transition to same or equivalent states

• Sketch of polynomial time algorithm:
• Place all state in one set
• Initially partition set based on output behavior
• Successively partition resulting subsets based on next state transitions
• Repeat until no further partitioning

11/19/19 AA 274 | Lecture 23 17

Finite State Machine optimization

11/19/19 AA 274 | Lecture 23 18

Sequence detector for 010 or 110

Hierarchical Finite State Machines

• Some states might not be equivalent, but it might still be beneficial
to group closely related ones together

• This lead to the following two concepts:
• Super-states (groups of states)
• Generalized transitions (transitions between super-states)

11/19/19 AA 274 | Lecture 23 19

Composition

11/19/19 AA 274 | Lecture 23 20

• Cascade
• Requirement: output vocabulary of m1 must match input vocabulary of m2
• Resulting state: concatenation of states
• Resulting input: input of m1
• Resulting output: output of m2

Composition

11/19/19 AA 274 | Lecture 23 21

• Parallel
• Requirement: Input vocabularies must be the same
• Resulting state: concatenation of states
• Resulting input: same as input vocabulary of component machines
• Resulting output: concatenation of outputs

Composition

11/19/19 AA 274 | Lecture 23 22

• Feedback
• Requirement: Input and output vocabularies must be the same
• Resulting state: same
• Resulting input: partial input
• Resulting output: same

Implementation

• Aim of this section
• Understand that you do NOT have to use anything in particular in order to

implement a FSM
• Understand that there are however common ways to implement finite state

machines
• Grow awareness of tools available to help you build and analyze them

11/19/19 AA 274 | Lecture 20 23

Implementation

• A common strategy is to exploit Object Oriented Programming
(OOP) and implement a class that corresponds to your finite state
machine
• The class keeps track of which state the FSM is in (e.g. in a variable)
• A loop repeats at some fixed rate
• Each loop, the FSM input is red (e.g. sensors, clock)
• The current state is executed (as an if/else block)
• Actions that need to be taken (e.g. set actuator setpoints)
• Transition to next state (e.g. state variable updated)

11/19/19 AA 274 | Lecture 20 24

Example implementation

• PX4: in many ways the leading open source flight software for
drones

11/19/19 AA 274 | Lecture 20 25

Example implementation

• Commander.cpp

• state_machine_helper.cpp

11/19/19 AA 274 | Lecture 20 26

Example implementation

11/19/19 AA 274 | Lecture 20 27

• 14 open issues that involve a “state machine”…

Example implementation

• Your very own navigator.py!

11/19/19 AA 274 | Lecture 20 28

ROS State Machines: SMACH

• A ROS tool that allows you to synthesize FSMs more easily
• Provides visualization tools
• Support hierarchical state machines
• Enables easy composition

11/19/19 AA 274 | Lecture 20 29

SMACH: Basic Syntax

• Two main main components:
• SMACH State
• SMACH Container (e.g. FSM)

11/19/19 AA 274 | Lecture 20 30

SMACH: Basic Syntax

• SMACH State
• The basic state abstraction. Corresponds 1:1 with the FSM states described

earlier
• Inherit from smach.State and must implement two functions:

• __init__
• execute.

• execute should return ‘outcomes’

11/19/19 AA 274 | Lecture 20 31

SMACH: Basic Syntax

11/19/19 AA 274 | Lecture 20 32

SMACH: Basic Syntax

• SMACH Container
• Roughly corresponds to the idea of a finite state machine, with variations.
• You are most likely to use the container smach.StateMachine
• States can be added to containers
• Containers can be composed

11/19/19 AA 274 | Lecture 20 33

SMACH: Basic Syntax

11/19/19 AA 274 | Lecture 20 34

SMACH: Basic Example

11/19/19 AA 274 | Lecture 20 35

SMACH: Basic Example

11/19/19 AA 274 | Lecture 20 36

SMACH: Basic Example

11/19/19 AA 274 | Lecture 20 37

SMACH: Basic Example

11/19/19 AA 274 | Lecture 20 38

SMACH: Composition

• The composition operations described earlier (cascade, parallel,
feedback) are also possible in SMACH

Cascade -> smach.Sequence
Parallel -> smach.Concurrence
Feedback -> smach.Iterator

11/19/19 AA 274 | Lecture 20 39

SMACH: Visualization

• The package smach_visualizer allows you to easily inspect
and monitor your state machine

11/19/19 AA 274 | Lecture 20 40

DEMO: AA274 Navigator using SMACH

11/19/19 AA 274 | Lecture 20 41

Next time

11/19/19 AA 274 | Lecture 23 42

