Principles of Robot Autonomy |

Finite state machines

% Stan fO I'd AS’EY
&%/ University :

Today’s lecture

e Aim
* Introduce and formalize the concept of Finite State Machines (FSMs)
* Discuss their relevance, strengths and limitations
* Introduce tools to allow you to use them effectively

* Readings
» Chapter 4 of Leslie Kaelbling, Jacob White, Harold Abelson, Dennis
Freeman, Tomas Lozano-Pérez, and Isaac Chuang. 6.01SC Introduction to

Electrical Engineering and Computer Science I. Spring 2011. Massachusetts
Institute of Technology: MIT OpenCourseWare.

11/19/19 AA 274 | Lecture 23 2

Finite State Machines

Definition: A computational model for systems whose output depends
on the entire history of their inputs.

*A finite state machine is a modeling framework, NOT an algorithm

(similarly to Markov decision processes, probability densities, factor
graphs etc.)”

11/19/19 AA 274 | Lecture 23 3

Finite State Machines in practice

* In practice, used in many different ways
 Synthetically (specifies a program)

* E.g. a product manager and an engineer specifies how an ATM machine should
“behave” before starting its implementation

 Analytically (describe the behavior of a combination of systems)

* E.g.two self-driving cars could be modeled as FSMs. An engineer could try to see if
they might end up stuck in some infinite loop at an intersection

* Predictively (to predict interaction with an environment)

 Aself-driving car could have an internal model of a pedestrian as an FSM and use it to
figure out how it should behave around it

11/19/19 AA 274 | Lecture 23 4

Why are we teaching FSMs?

* For the practitioner: designing the extremely complex state
machines required to fly drones, drive self-driving cars or operate
warehouse robots is still one of the most time-consuming/difficult
task faced by companies...

* How do we handle the failure of a combination of sensors
gracefully?

* How do we negotiate an intersection?
* How do | get my turtlebot to start backtracking after a collision?

11/19/19 AA 274 | Lecture 23 5

-
Why are we teaching FSMs?

* For the researcher: It’s a fundamental building block of how we
understand computation, and still relevant to research today...

alphabet (concepts)

The State Machine table /
on 108 transition @

Color: brown (0.92) '

ell0

banand &]/ Material: wood (0.8) =
/

Inside right ﬂ'«

maker a_Plie
man . 4 Color: red (0.95) =

IOOkIHQ Iy ‘\ Sha: P (0 87) =
0

smiling @
/ Mood: happy (0.78) m-=m
Posture: sitting (0.82) wmm

What is the red fruit inside the bowl :“’:::: right m inside red —> apple
e i / DN

to the right of the coffee maker?

\ instructions properties disentangled
representation

Hudson, Drew A., and Christopher D. Manning. "Learning by abstraction: The neural
state machine." arXiv preprint arXiv:1907.03950 (2019).

11/19/19 AA 274 | Lecture 23

Mathematical definition

* Sets:
* Aset of states S
» Aset ofinputs I, called the input vocabulary
» Aset of outputs O, called the output vocabulary

* Maps:
* Next-state function that maps input and the state to the next state
n(it, St) = St41
» Output function o(it, s¢) — o

* An initial state s,

11/19/19 AA 274 | Lecture 23 7

Graphical representation

* Given the sets (S, 1, 0), itis common to express the maps (n, o) by
using a graph

S:{so, 51,57} @
: {io, i1, 02}

11/19/19 AA 274 | Lecture 23 8

Graphical representation

The transition (next-state)
map is represented by arrows
between states, with their

associated input alongside it

11/19/19 AA 274 | Lecture 23 9

Graphical representation

The output map is written
alongside each transition

11/19/19 AA 274 | Lecture 23 10

Example: parking gate control

The gate can be in one of three positions: ‘top’, ‘middle’ or ‘bottom’
A sensor tells the gate if a car is waiting in front of it
A sensor tells the gate if a car has just passed through it

The gate can take the following actions: raise the gate, lower the gate, no
operation (nop).

We want the following behavior:

* If a car wants to come through, need to raise the arm to ‘top’ position
* The gate has to stay there until the car has driven though the gate

* The gate has to go back down after the car has gone through

4
Ve

11/19/19 AA 274 | Lecture 23

s
Ve

11

Example: parking gate control

» States: ‘waiting’, ‘raising’, ‘raised’, ‘lowering’

* Input: ‘no car at gate’, ‘car at gate’, ‘gate at top’, ‘not
gate at top’, ‘gate at bottom’, ‘not gate at bottom’, ‘car
just exited’, ‘not car just existed’

* Qutput: ‘raise’, ‘lower’, ‘nop’
Pd
v
Ve

11/19/19 AA 274 | Lecture 23 12

Example: parking gate control

¢ TranSitiOnS nottop/;;e>

o

carAtGate / raise

not carAtGate / nop @ carJustExited / nop

bottom / nop carJustExited / lower

top / nop

not bottom / lower

11/19/19 AA 274 | Lecture 23 13

Example: parentheses balancing

* We want to design an automata that can read a string of text of any
length and say whether or not the parentheses in the string are
balanced or not

e Balanced:”1+(2+3-(4*5))”
* Not balanced: “1+(2+3-4*5))”

« “...astring of text of any length...”

* A robot that can accomplish such a task would need an infinite
number of states... and cannot therefore be represented by a finite
state machine

11/19/19 AA 274 | Lecture 23 14

FSM in the bigger picture of computation

* In terms of computational power, (deterministic) finite state
machines are actually somewhat low on the totem pole of

automata... with Turing Machines somewhere close to the top.

A Turing Machine

Pushdown automaton : E‘;‘:éﬂfﬁe'ggs"“r
Finite State Machine p?(l)abrfecmgg

Combinatorial Logic]

/

11/19/19 AA 274 | Lecture 23 15

Architecture

* The architecture of finite state machines can become quite complex

 Additional states can generate an exponential number of
transitions.

* Strategies to keep the architecture tractable:
1. Reduction of redundant states
2. Hierarchical finite state machines
3. Composition using common patterns

11/19/19 AA 274 | Lecture 23 16

Finite State Machine optimization

* Algorithms exist to identify and combine states that have equivalent
behavior

* Equivalent states:
* Same output
* Forall input combinations, state transition to same or equivalent states

» Sketch of polynomial time algorithm:
* Place all state in one set
* Initially partition set based on output behavior
* Successively partition resulting subsets based on next state transitions
* Repeat until no further partitioning

11/19/19 AA 274 | Lecture 23 17

Finite State Machine optimization

Input Next State Output

Sequence Present State | X=0 X=1 X=0 X=1

Reset SO S1 S2 0 0

0 S1 S3 S4 0 0

1 S2 S5 S6 0 0

00 S3 SO SO 0 0

01 S4 SO SO 1 0

10 S5 SO SO 0 0

11 S6 SO SO 1 0
Input Next State Output
Sequence Present State| X=0 X=1 =0 X=1
Reset SO S1 s1' 0 0
0+1 s1' S3 sS4’ 0 0
X0 S3' SO SO 0 0
X1 s4' SO SO 1 0

11/19/19

AA 274 | Lecture 23

Sequence detector for 010 or 110

(S0 S1S2S354S5S6)
(S0S1S2S3S5) (S4S6)
(S0S3S5) (S1S2) (S4S6)
(SO) (S3S5) (S1S2) (S4S6)

18

Hierarchical Finite State Machines

» Some states might not be equivalent, but it might still be beneficial
to group closely related ones together

* This lead to the following two concepts:

« Super-states (groups of states)
* Generalized transitions (transitions between super-states)

11/19/19 AA 274 | Lecture 23 19

Composition

 Cascade
e Requirement: output vocabulary of m1 must match input vocabulary of m2
* Resulting state: concatenation of states
* Resulting input: input of m1
 Resulting output: output of m2

—_ i1 >‘ m1 |~ 04 = |2 —>‘ O —

Cascade(m; m,)

11/19/19 AA 274 | Lecture 23 20

Composition

* Parallel
* Requirement: Input vocabularies must be the same
* Resulting state: concatenation of states
* Resulting input: same as input vocabulary of component machines
 Resulting output: concatenation of outputs

—> m, 0 —»

Parallel(m; mj)

11/19/19 AA 274 | Lecture 23 21

Composition

 Feedback

* Requirement: Input and output vocabularies must be the same
* Resulting state: same

* Resulting input: partial input

* Resulting output: same

_i_t[o —»

Feedback2(m)

11/19/19 AA 274 | Lecture 23 22

Implementation

e Aim of this section

* Understand that you do NOT have to use anything in particular in order to
implement a FSM

* Understand that there are however common ways to implement finite state
machines

* Grow awareness of tools available to help you build and analyze them

11/19/19 AA 274 | Lecture 20 23

Implementation

* Acommon strategy is to exploit Object Oriented Programming
(OOP) and implement a class that corresponds to your finite state
machine

* The class keeps track of which state the FSM is in (e.g. in a variable)
* A loop repeats at some fixed rate
* Each loop, the FSM input is red (e.g. sensors, clock)

* The current state is executed (as an if/else block)
 Actions that need to be taken (e.g. set actuator setpoints)
 Transition to next state (e.g. state variable updated)

11/19/19 AA 274 | Lecture 20 24

Example implementation

* PX4:in many ways the leading open source flight software for
drones

11/19/19 AA 274 | Lecture 20 25

Example implementation

« Commander.cpp

while ('should_exit()) {

bool nav_state_changed = set_nav_state(&status,

 state_machine_helper.cpp

switch (internal_state->main_state) {

case commander_state_s::MAIN_STATE_ACRO:
status—>nav_state = vehicle_status_s::NAVIGATION_STATE_ACRO;
break;

11/19/19 AA 274 | Lecture 20 26

Example implementation

* 14 open issues that involve a “state machine”...

® 14 Open v 93 Closed Author ~ Labels ~ Projects ~ Milestones ~ Assignee ~ Sort

® Commander mode initialization [enhancement [ZIEETY stale 21
#12688 opened on Aug 13 by MaEtUgR

® Incorrect log publisher topic by commander modules [Eig] (s
#12670 opened on Aug 8 by tecnic08

® Unable to build px4 native on beaglebone blue [T enhancement ETEETI] -
#12509 opened on Jul 18 by Kirito1136

@® Improved Fixed Wing Loss of GPS (global position) failsafe behavior when landing a7

enhancement -

#10906 opened on Nov 24, 2018 by Antiheavy

@® add support for MAV_CMD_DO_MOTOR_TEST (GCS driven motor testing) l 7

enhancement w

#10782 opened on Oct 29, 2018 by dagar Release v1.10.0

@ Need to prevent Arming when in configurations (e.g. modes or waypoints) not an
approprate for takeoff. [enhancement |EHiNiRg]
#10657 opened on Oct 5, 2018 by Antiheavy

® State Machine Options (Library, Framework, Generator, Compiler, etc) |enhancement EER 312

#10584 opened on Sep 27, 2018 by dagar

® Simulated RC via QGC is broken [Blg stale [1] J24
#9318 opened on Apr 17, 2018 by RomanBapst

11/19/19 @ **Feature Request**: block arming after sensor calibration, require system reboot J113 27
(or graceful re-init) prior to flight /enhancement FTih 1

Example implementation

STATE MACHINE LOGIC
. # some transitions handled by callbacks
* Your ve 'y own nawgato r.py! el e = Tode TS
elif self.mode == Mode.ALIGN:
if self.aligned():
self.current_plan_start_time = rospy.get_rostime()
self.switch_mode(Mode.TRACK)
elif self.mode == Mode.TRACK:
if self.near_goal():
self.switch_mode(Mode.PARK)
elif not self.close_to_plan_start():
rospy.loginfo("replanning because far from start")
self.replan()
elif (rospy.get_rostime() - self.current_plan_start_time).to_sec() > self.current_plan_duration:
rospy.loginfo("replanning because out of time")
self.replan() # we aren't near the goal but we thought we should have been, so replan
elif self.mode == Mode.PARK:
if self.at_goal():
forget about goal:
self.x_g = None
self.y_g = None
self.theta_g = None
self.switch_mode(Mode.IDLE)

self.publish_control()
rate.sleep()

11/19/19 AA 274 | Lecture 20 28

e
ROS State Machines: SMACH

 AROS tool that allows you to synthesize FSMs more easily
* Provides visualization tools

* Support hierarchical state machines

* Enables easy composition

11/19/19 AA 274 | Lecture 20 29

SMACH: Basic Syntax

 Two main main components:
* SMACH State
* SMACH Container (e.g. FSM)

11/19/19 AA 274 | Lecture 20 30

SMACH: Basic Syntax

« SMACH State

* The basic state abstraction. Corresponds 1:1 with the FSM states described
earlier

 Inheritfrom smach.State and mustimplement two functions:
e init
e execute.

 execute should return‘outcomes’

11/19/19 AA 274 | Lecture 20 31

SMACH: Basic Syntax

class Foo(smach.State):
def init (self, outcomes=['outcomel', 'outcome2']):
Your state initialization goes here

def execute(self, userdata):
Your state execution goes here
if xxxx:
return 'outcomel'
else:
return 'outcome2'

11/19/19 AA 274 | Lecture 20 32

SMACH: Basic Syntax

 SMACH Container
* Roughly corresponds to the idea of a finite state machine, with variations.
* You are most likely to use the container smach.StateMachine
* States can be added to containers
* Containers can be composed

11/19/19 AA 274 | Lecture 20 33

SMACH: Basic Syntax

sm = smach.StateMachine(outcomes=['outcomed4’', 'outcome5'])
with sm:
smach.StateMachine.add('FOO', Foo(),
transitions={'outcomel': 'BAR',
'outcome2': 'outcomed'})
smach.StateMachine.add('BAR', Bar(),

transitions={'outcome2'’

'FOO'})

11/19/19 AA 274 | Lecture 20 34

SMACH: Basic Example

SM_PATH

outcome?2

11/19/19 AA 274 | Lecture 20 35

-
SMACH: Basic Example

define state Foo
class Foo(smach.State):
def init (self):
smach.State. init (self, outcomes=['outcomel', 'outcome2’'])
self.counter = 0

def execute(self, userdata):
rospy.loginfo('Executing state FOO0')
if self.counter < 3:
self.counter += 1
return 'outcomel'
else:
return 'outcome2'

11/19/19 AA 274 | Lecture 20 36

SMACH: Basic Example

define state Bar
class Bar(smach.State):
def init (self):
smach.State. init (self, outcomes=['outcome2'])

def execute(self, userdata):

rospy.loginfo('Executing state BAR')
return 'outcome2'

11/19/19 AA 274 | Lecture 20 37

SMACH: Basic Example

main
def main():
rospy.init node('smach example state machine')

Create a SMACH state machine
sm = smach.StateMachine(outcomes=['outcome4', 'outcome5'])

Open the container
with sm:
Add states to the container
smach.StateMachine.add('FO0', Foo(),
transitions={'outcomel':'BAR',
'outcome2': 'outcome4d'})
smach.StateMachine.add('BAR', Bar(),
transitions={'outcome2':'F00"'})

Execute SMACH plan
outcome = sm.execute()

11/19/19 AA 274 | Lecture 20 38

SMACH: Composition

* The composition operations described earlier (cascade, parallel,
feedback) are also possible in SMACH

Cascade ->smach.Sequence E [A e N I
Cascade(m, m,)

Parallel -> smach.Concurrence

Feedback ->smach.Iterator

\ 4

my 0y —»

> my 0 —» —i

Parallel(my m,)

l

m

Feedback2(m)

11/19/19 AA 274 | Lecture 20 39

SMACH: Visualization

* The package smach_visualizer allowsyou to easily inspect
and monitor your state machine

STATE_MACHINE

STATE_MACHINE

[sus Expanded

utcomed

(o) N

11/19/19 AA 274 | Lecture 20 40

11/19

/19

DEMO: AA274 Navigator using SMACH

Next time

11/19/19 AA 274 | Lecture 23 42

