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Today’s lecture

* Aim
* Learn about the general SLAM problem
* Learn about EKF SLAM

* Readings
e S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT press, 2005.
Sections 8.1 -8.3, 10.1-10.4
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Simultaneous Localization and Mapping

The SLAM problem:
given measurements
Z1.¢ and controls uq.¢,
find the path (or pose)
of the robot and
acquire a map of the
environment
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Forms of SLAM

* Online SLAM problem: estimate the posterior over the momentary
pose along with the map

p(xtvmlzlitvulit) or p(xtamact Zl:taulzt)

* Full SLAM problem: estimate posterior over the entire path along
with the map

p(xlztam‘ Zl:taulzt) or p(xlztamact Zl:taulzt)
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Graphical models of SLAM

Online SLAM Full SLAM
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The challenge of SLAM

* Robot path and map are both unknown

* Path error is correlated with map error
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R EEEEEEEEE—————S——m—m—m———
EKF SLAM

* Historically the earliest SLAM algorithm

* Key idea: apply EKF to online SLAM using maximum likelihood data
association

* Assumptions:

1. Gaussian assumption for motion and perception noise, and Gaussian
approximation for belief (essential)

2. Feature-based maps (essential)

* Two versions of the problem

1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF SLAM with known correspondences

 Similar to EKF localization algorithm with known correspondences

* Key difference: in addition to estimate the robot pose x;, the EKF
SLAM algorithm also estimates the coordinates of all landmarks

e Define combined state vector
[ Tt) 0 T
Yt .= m o (.fl?, Y, U, mlgiU? ml:fw ma,z, mQ:y e mN,a:a mN’y)
3 + 2N vector
* Goal: calculate the online posterior

p(yta m | Z1:ts ul:t)
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Motion and sensing model

* (Following discussion is for illustration purposes; setup can be
generalized to other motion and sensing models)

* Assume motion model with state x; = (x,y,0)

Yt = g(utayt—l) + €4, €t " N(07 Rt)a Gy = Jg(utalut—l)

where we assume that the landmarks are static, that is

1. g(u¢, ye—q) is a 3+2N vector, whose last 2N components are the same as
those in y;_4

2. Ry has zero entries, except for the top left 3 x 3 block
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Motion and sensing model

* Assume range and bearing measurement model

3 mge—2)? % (ny —y)> N (o2 0
T (atanZ(mj,y — Y, Mje —T) — 0 e e AR, R 0 035

::h’(yt:j)

* Usual linear approximation for sensing model (with j = c,f)

ah(ﬁta ])
DYy

h(ye, j) = My, j) + HZ(yt — 1), where Ht'f =
* Since h depends only on x; and m;, H! can be factored as

Hr= heE, .
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Motion and sensing model

* First term, a 2 x 5 matrix, is the Jacobian of h(y,,j) at ji; w.r.t. x, and m;:
ﬁt,m_ﬁj,m ﬁt,y_ﬁj,y O Ej,a:_ﬁt,a: ﬁj,y_ﬁt,y

hz’ - ah(:uta]) - VALY V4t V4t B /—th
t a(xt, m]) Fiy  Ft,y Ht oz Hj x _1 Hi oy Hj oy Hijox—Ht x
qt,j dt,; qt,;j qt,j

where q; ;= (jp = Fea)” + (Hjy = Firy)®

* Second term, a 5 x (3+2N) matrix, maps ht into H}:

(1 0O 0 0---0 0 O O---O\

o1 0 0---0 0 0 0---0
P o o0 1 0---0 0 0 0---0
“10 0 0 0---0 1 0 0---0
o 0 0 0---0 0 1 0---0

N—— N——

\ 2j—2 2N—2j)
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e
Initialization
* Initial belief expressed as

1o = (0,0,0...0)F

Initialization 0O 0 O 0 O\
flione /0 0 0 0 0
0 0 0 0 0

/20: 0 0 0 oo 0
(3+2N) x (3+2N) X : . :
\0 0 0 0 ... o)
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Initialization

* When a landmark is observed for the first time, the landmark
T
estimate (ﬁj,x, /Ij,y) s initialized with the expected position, that is

(ﬁj:lj) = (ﬁt,x) a1 (7“2 COS(QS% +Et,9))
:Uj,y ﬁt,y "“2 SlIl(Qﬁ% I ﬁt,é’)

* Bearing only SLAM would require multiple sightings
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EKF SLAM algorithm Dlaee v B sl E

Result: (¢, 2¢)
ﬁt - g(utnut—l);

. . . . . N o i& y
e Similar to EKF localization; main 2y = CppaCry g

. T 7 B &
differences: for‘;.afh(jt = \rpse)” do
= ci;
° Augmented state vector if landmark j never seen before then
e Augmented dynamics (with trivial ‘ <ﬁ_ij> = (%*) + (',:i :i:éfjﬁ;”’;)
. < 1,1 e MUY M
dynamics for the landmarks) e ik '
* Initialization of unseen landmarks . ( \/(ﬁj,x — Ty a)?+ (Fyy — e y)? >;
* Augmented measurement Jacobian atan2(fr; , — He oy Bjx — Br,p) — P

St = H; 3¢ [H{]" + Qy;
Ki =X [H{" [SH] Y
B, = B + Ki(2} — 2))
Y= - KZHZ) 2t;
end

[y = T, and. Xy = Y,
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Example

(<)
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EKF SLAM with unknown correspondences

* Key idea: use an incremental maximum likelihood estimator to
determine correspondences

 Similar to EKF localization with unknown correspondences, but now
we also need to create hypotheses for new landmarks

* Caveat: maximum likelihood data association often makes the
algorithm brittle, as it is not possible to revise past data associations
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COFFESpOﬂdEﬂCES

* In the measurement update
oop, we first create the
hypothesis of a new
andmark

* A new landmark is created
if the Mahalanobis distance
to all existing landmarks
exceeds the value «
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EKF SLAM with unknown

Data: (p¢—1,%¢-1),us, 2, N1
Result: (g, 24)

N; = N;_q1; Hypothesis
fir = g(ue, pre—1); for new

S = GiX4-1Gy' + Ry landmark
foreach 2! = (r!, ¢1)T do s

(ﬁNt—f—l,IL’) — (ﬁt,:c) 4 (7“2 COS(Q% +Et,9)>.

ﬁNt—Fl,y ﬁt,y T% Sll’l((b% + /’Lt.ﬂ) ’

for k=1 to N; +1 do

o ( VB = Fun) + [y = By )
atanz(/jj,y - ,Ut,ya ,Uj,x - Et,a:) — Mg

St = HET, (HET + Qs

mr = (2t — 25)T [SE1 7" (2 — 2F); .

s v Mahalanobls

distance

TN+1 = Q5

j(i) = argmin,, m;;«—— Hypothesis test
N; = max{Ny, j(i)};

Ki =%, [H]9)T [$]9)

B =T, + Ki(2i — 8,

S = (I - KiH]Y) 5,

end

e = iy and Xy = it;
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Making EKF SLAM robust

* A key issue is represented by the fact that fake landmarks might be
created; furthermore, EKF can diverge if nonlinearities are large

* Several techniques exist to mitigate such issues
1. Outlier rejection schemes, for example via provisional landmark lists

2. Strategies to enhance the distinctiveness of landmarks

e Spatial arrangement
* Signatures
* Enforcing geometric constraints

* Dilemmma of EKF SLAM: accurate localization typically requires dense
maps, but EKF requires sparse maps due to quadratic update
complexity
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Next time
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