
Principles of Robot Autonomy I
Markov localiza,on and EKF-localiza,on



Today’s lecture

11/7/19

• Aim
• Learn about Markov localiza,on, with an emphasis on EKF and non-

parametric localiza,on

• Readings
• S. Thrun, W. Burgard, and D. Fox. Probabilis,c robo,cs. MIT press, 2005. 

Sec,ons 7.2 – 7.6, 8.3
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Mobile robot localization

• Problem: determine pose of a robot relative to a given map

m

• Localiza,on can be interpreted as 
the problem of establishing 
correspondence between the map 
coordinate system and the robot’s 
local coordinate frame
• This process requires integra,on 

of data over ,me
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Local versus global localiza>on

• Position tracking assumes that the initial pose is known -> local 
problem well-addressed via Gaussian filters
• In global localization, the initial pose is unknown -> global problem 

best addressed via non-parametric, multi-hypothesis filters
• In kidnapped robot localization, initial pose is unknown and during 

operation robot can be “kidnapped” and “teleported” to some other 
location -> global problem best addressed via non-parametric, multi-
hypothesis filters
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Static versus dynamic environments

• Static environments are environments were the only variable quantity 
is the pose of the robot
• Dynamic environments possess objects (e.g., people) other than the 

robot whose locations change over time -> addressed via either state 
augmentation or outlier rejection 
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Passive versus active localization

• In passive localization, localization module only observes the robot; 
i.e., robot’s motion is not aimed at facilitating localization
• In active localization, robot’s actions are aimed at minimizing the 

localization error
• Hybrid approaches are possible
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Single-robot versus mul>-robot

• In single-robot localiza,on, a single, individual robot is involved in the 
localiza,on process
• In mul,-robot localiza,on, a team of robots is engaged with 

localiza,on, possibly coopera,vely (or even adversarially!)

In this class we will focus on local & global, sta,c (or quasi-sta,c), 
passive, single-robot localiza,on problems 
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Cas>ng the localiza>on problem within a 
Bayesian filtering framework
• State 𝑥", control 𝑢" and measurements 𝑧" have the same meaning as 

in the general filtering context
• For a differential drive robot equipped with a laser range-finder 

(returning a set of range 𝑟' and bearing 𝜙' measurements)
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Casting the localization problem within a 
Bayesian filtering framework
• A map m is a list of objects in the environment along with their 

properties 

• Maps can be
• Location-based: index 𝑖 corresponds to a specific location (hence, they are 

volumetric)
• Feature-based: index 𝑖 is a feature index, and 𝑚' contains, next to the 

properties of a feature, the Cartesian location of that feature 
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Location-based maps

11/7/19

Ver,cal cell decomposi,on Fixed cell decomposition (occupancy grid)
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Feature-based maps

11/7/19

Topological mapLine-based map

node

edge
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Cas>ng the localiza>on problem within a 
Bayesian filtering framework
• Motion model is probabilistic

• Key fact:
• Useful approximation (tight at high update rates) 

11/7/19

Consistency of state 
𝑥" with map 𝑚

Uses approxima,on
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Casting the localization problem within a 
Bayesian filtering framework
• Measurement model is probabilis,c

• Sensors usually generate more than one measurement when queried

• Typically, independence assump,on is made 
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Markov localiza>on

• Straightforward application 
of Bayes filter
• Requires a map m as input
• Addresses:
• Global localization
• Position tracking
• Kidnapped robot problem
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Markov localization: typical choices 
for initial belief
• Initial belief, 𝑏𝑒𝑙(𝑥/) reflects initial knowledge of robot pose
• For position tracking

• If initial pose is known,

• If partially known,

• For global localization 
• If initial pose is unknown,

11/7/19 AA 274 | Lecture 17 15



Markov localization: example
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Markov localization: example
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Markov localization: example
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Instantiation of Markov localization

• To make algorithm tractable, we need to add some structure to the 
representa,on of 𝑏𝑒𝑙(𝑥")

1. Gaussian representa,on    
2. Par,cle filter representa,on
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Extended Kalman filter (EKF) localization

• Key idea: represent belief 𝑏𝑒𝑙(𝑥") by its first and second moment, i.e., 
𝜇" and Σ"
• We will develop the EKF localiza,on algorithm under the assump,ons 

that:
1. A feature-based map is available, consis,ng of point landmarks

2. There is a sensor that can measure the range 𝑟 and the bearing 𝜙 of the 
landmarks rela,ve to the robot’s local coordinate frame

• Key concepts carry forward to other map / sensing models
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Location of the 
landmark in the global 
coordinate frame
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Range and bearing sensors

• Range & bearing sensors are common: features extracted from range 
scans and stereo vision come with range 𝑟 and bearing 𝜙 information 
• At time t, a set of features is measured (assumed independent) 

• Assuming that the i-th measurement at time t corresponds to the j-th
landmark in the map, the measurement model is
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Gaussian noise
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The issue of data associa>on

• Data associa,on problem: uncertainty may exists regarding the 
iden,ty of a landmark
• Formally, we define a correspondence variable between measurement 
𝑧"' and landmark 𝑚3 in the map as (assume 𝑁 landmarks) 

• I           if i-th measurement at ,me t corresponds to j-th landmark

• if a measurement does not correspond to any landmark 

• Two versions of the localiza,on problem
1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF localiza>on with known correspondences

• Algorithm is derived from EKF filter
• Assume motion model (in our case, differential drive robot)

• Assume range and bearing measurement model
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EKF localization with known correspondences
• Main difference with EKF filter: 

multiple measurements are 
processed at the same time
• We exploit conditional 

independence assumption

• Such assumption allows us to 
incrementally add the 
information, as if there was zero 
motion in between 
measurements
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Innova,on 
covariance
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Example of EKF-localiza>on: predic>on step

11/7/19

• Observations measure relative 
distance and bearing to a 
marker
• For simplicity, we assume that 

the robot detects only one 
marker at a time
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Example of EKF-localiza>on: 
measurement predic>on step
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Example of EKF-localiza>on: 
correc>on step
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EKF localiza>on with unknown correspondences

• Key idea: determine the identity of a landmark during localization via 
maximum likelihood estimation, whereby one first determines the 
most likely value of 𝑐", and then takes this value for granted
• Formally, the maximum likelihood estimator determines the 

correspondence that maximizes the data likelihood

• Challenge: there are exponentially many terms in the maximization 
above!
• Solution: perform maximization separately for each 𝑧"'
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Estimating the correspondence variables

• Step #1: find

• Derivation (sketch) 
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Estimating the correspondence variables

• Performing the algebraic calcula,ons

• Step #2: es,mate correspondence as 
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EKF localization with unknown correspondences

11/7/19

Correspondence 
estimation

• Same as before, plus the 
inclusion of a maximum 
likelihood estimator for the 
correspondence variables
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Comments

• Other popular features include lines, corners, distinct patterns
• In the case of lines, an observation would be
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Comments

• Alterna,ve approach to es,mate correspondences is to use a 
valida8on gate: 

• A more general approach to deal with data associa,on is the mul,-
hypothesis tracking filter, where a belief is represented by a mixture 
of Gaussians (each tracking a sequence of data associa,on decisions)
• UKF localiza,on is another popular approach for feature-based 

localiza,on
11/7/19

Match landmark j with measurement i if

Mahalanobis distance
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Monte Carlo localization (MCL)

• Key idea: represent belief 𝑏𝑒𝑙 𝑥" by 
a set of M particles 

• Requires a map m as input
• Addresses:
• Global localization
• Position tracking
• Kidnapped robot problem (by injecting 

random particles)
• Can handle dynamic environments 

via outlier rejection
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MCL: example
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Next time
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