Principles of Robot Autonomy I

Modern robotic perception

Today's lecture

- Aim
 - Gain a high-level understanding of how modern techniques from computer vision are applied in robotic systems
- Readings
 - CS 231A Course Notes
 - CS 231N Course Notes
 - Various computer vision conference papers

Where is AA 274A in the perception timeline?

- AA 274A covers computer vision from ~1540s to ~2000s
- What happened from the 2000s to now, and how have these advancements been used in robotics?
- We'll explore methods from 2000s to 2012, and from 2012 to now.

Early 2000s Computer Vision

- Heavily based on structure and inductive biases
 - Feature engineering reigned supreme!
- Edge Detection
- Corner Detection
- Blob Detection
- Keypoint Detectors and Descriptors
 - SIFT, SURF, ORB, etc. How can you best describe a point in an image?

Cool methods, but what do we use them for?

- These are all tools for image processing, what problems are we even trying to solve in computer vision? Why do we care for robotics?
- Shifting from a method-centric view to a problem-centric one.
- Will describe important problems and approaches used to solve them up to a certain special date.

pre-2012

• Find if there is an object of interest in an image. If there is, classify what it is.

General solution idea:

- 1. Describe a region of an image
 - 2. Classify that description
 - 3. Shift your focus to the next part of the image

pre-2012

General solution idea:

- 1. Describe a region of an image
 - HoG, SIFT, Patch Similarity, Codewords, etc.
 - 2. Classify that description
 - Naïve Bayes, Nearest Neighbor, SVMs, Structural SVMs, Boosting, etc.
- 3. Shift your focus to the next part of the image
 - Sliding window

Let's see what HoG + SVM looks like, as an exemplary method

AA 274 | Lecture 13

 $\bullet \bullet \bullet$

Scene Understanding: Semantic Segmentation pre-2016

• Develop an understanding of what's going on in a scene by classifying every observed point.

- Clustering-based Segmentation
 - K-means, Mean Shift
- Graph-based Segmentation
 - PGMs (CRFs specifically)

K-Means Clustering

- A technique to cluster data for which you have no labels.
- For us: A method of grouping together "like" features in feature space.
- Called "K"-means because there's K clusters (a hyperparameter we have to choose before running the algorithm)
- Quite a simple algorithm internally!
 - Feel free to look up how it works

- The key idea is to map each pixel to a 5D feature, [X, Y, R, G, B], and then cluster pixels in this space, assigning them their classification label at the end of the clustering.
- Why?
 - X, Y capture spatial locality
 - R, G, B capture visual locality

Original Image

Original Image

Original Image

Original Image

Semantic Segmentation via Graph-Based Methods

- Take advantage of the grid-like structure of images, reason probabilistically about each pixel and how it's influenced by its neighbors!
- Probabilistic graphical model of choice was a "Conditional Random Field"

• Anyone here take Mykel's DMU course? It's a Bayes Net on steroids

Semantic Segmentation via Graph-Based Methods

- Don't need to simply view images as grids with simple connectivity.
- Literature is quite deep on this topic, with many different hierarchical structures proposed and math developed for them.

Semantic Segmentation via Graph-Based Methods

Coarse output from the pixel-wise classifier

MRF/CRF modelling

Output after the CRF inference

Simultaneous Localization and Mapping

- A key component of robotic motion planning is knowing where you are in the world as well as what's around you. This is the problem of simultaneous localization and mapping (SLAM).
- You'll learn this in AA 274A! 😳
- Traditionally, this was 100% a game of geometry.
 - Remember structure from motion and 3D reconstruction? Exactly that.
- Nowadays, mostly complex large-scale SLAM pipelines.
 - *Significant* engineering effort required for state-of-the-art results.
 - Usually small teams of software engineers and researchers.

Simultaneous Localization and Mapping

Fig. 3: Overview over the complete LSD-SLAM algorithm.

- <u>https://www.youtube.com/watch?v=ufvPS5wJAx0</u> ORB-SLAM
- <u>https://www.youtube.com/watch?v=C6-xwSOOdqQ</u> DSO

What happened in 2012?

- While the world didn't physically end, it might as well have for a large portion of computer vision research prior to then... 😕
- Very large paradigm shift occurred, spinning the entire field on its head within the span of one year.
- What happened??

Background to Understand the Paradigm Shift

It is important to understand another popular field of research that existed around this time (and for decades earlier): Machine Learning.

Core idea, and a *ridiculously large* oversimplification:

We wish to predict a quantity y from input x. Namely, $y = f_{\theta}(x)$

- 1. Formulate a function *L* that encodes how "bad" our predictor *f* is.
- 2. Minimize L with respect to the parameters θ that define f.

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

Background to Understand the Paradigm Shift

- Machine Learning (ML) has existed for decades, if not more, but under different names: Applied Probability, Statistics, and Linear Algebra
- Typically concerned with modeling continuous data (e.g. regression tasks) or performing discrete segmentation (e.g. classification tasks)
- Images were definitely considered as inputs and objects of interest (they are just 2D matrices / 3D tensors). However, existing methods in ML haven't taken advantage of inherent structure in vision.

Computer Vision's Recent Paradigm Shift Results

Computer Vision's Recent Paradigm Shift Results

Computer Vision's Recent Paradigm Shift Results

Convolutional Neural Networks

We wish to predict a quantity y from input x. Namely, $y = f_{\theta}(x)$

- 1. Formulate a function *L* that encodes how "bad" our predictor *f* is.
- 2. Minimize *L* with respect to the parameters $\boldsymbol{\theta}$ that define *f*.

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta})$$

Convolutional Neural Networks are a specific structure of the predictor function *f* , one that reigns supreme for visual data.

Convolutional Neural Networks

Roughly, they are a hierarchical set of successive convolutions with learnable filters (the filters are the θ here).

Modeled after how animals and humans process visual information in the brain.

Convolutional Neural Networks

• Once trained to minimize *L*, they develop some very interesting filters

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Live Demo – Inner Workings of a CNN

- <u>http://scs.ryerson.ca/~aharley/vis/conv/</u>
- There's also a flat version: <u>http://scs.ryerson.ca/~aharley/vis/conv/flat.html</u>

Race to the Lowest Error

• On problems like image recognition, CNNs are extremely powerful.

Classification: ImageNet Challenge top-5 error

10/25/19

post-2012

• Methods now focus on having a CNN architecture both detect regions of interest in images *and* classify them.

Results from Faster R-CNN, Ren et al 2015

post-2012

• Can do this by making *L* incorporate both a classification term and a regression term (for the bounding box locations).

Results from Faster R-CNN, Ren et al 2015

post-2012

3D Detection, Tracking and Motion Forecasting with a Single Convolutional Net (from Uber's Advanced Technologies Group)

Semantic Segmentation with CNNs

CNNs for Semantic Segmentation (from T. Darrell's group at Berkeley)

Semantic Segmentation with CNNs

CRFs still exist as a post-hoc corrective step (if any), but vastly less research effort towards solely using them.

• Ideas and methods from CRFs absolutely live on in probabilistic inference, which is a popular topic due to deep generative models.

Methods like K-means or mean shift are seldom used nowadays for semantic segmentation.

• Both methods are useful standalone algorithms in their own right, and are more known for clustering use cases anyways.

SLAM with CNNs

• There's definitely still hefty software engineering going on, especially with regards to global map updates, loop closure, etc.

Real-time Dense Monocular SLAM with a CNN for Depth Prediction

3-4x better than LSD-SLAM and ORB-SLAM from earlier, and we thought they were amazing!

Heterogeneity of Data

Modern robotic platforms have a wide array of sensors and data modalities available to them.

For example, Waymo vehicles have:

- 1 mid-range lidar
- 4 short-range lidars
- 5 cameras (front and sides)
- Synchronized lidar and camera data
- Sensor calibrations and vehicle poses

Heterogeneity of Data

In pre-2012 computer vision, we would be assigning feature engineering teams to *each* sensor and data modality.

Now, it's as easy* as adding additional input channels, vectors, etc to an existing model (potentially altering *L*) and retraining.

*Easy is used loosely here, it's not trivial to make CNNs behave the way you want them to.

Summary

- Pre-2012, computer vision was engineering-heavy. Published methods were a result of clever feature selection, detection, description, etc.
- Now, a single CNN model takes care of that and optimizes for the best features/descriptor all at the same time.
- New wave of deep learning has revolutionized computer vision, the best of which has now trickled down to related fields such as robotics.
- Still lots of research to be done, much is still unknown!