
Principles of Robot Autonomy I
Information extraction



Techniques for information extraction
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• Aim
• Learn how to extract information from sensor measurements

• Readings
• Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile 

Robots. Sections: 4.1.3, 4.6.1 - 4.6.5, 4.7.1 - 4.7.4



Information extraction

• Next step is to extract information from images, such as 
• Geometric primitives (e.g., lines and circles): useful, for example, for robot 

localization and mapping
• Object recognition and scene understanding: useful, for example, for 

localization within a topological map and for high-level reasoning
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Geometric feature extraction

• Geometric feature extraction: extract geometric primitives from 
sensor data (e.g., range data)
• Examples: line, circles, corners, planes, etc.
• We focus on line extraction from range data (a quite common task); 

other geometric feature extraction tasks are conceptually 
analogous
• The two main problems of line extraction from range data

1. Which points belong to which line? -> segmentation
2. Given an association of points to a line, how to estimate line parameters? -

> fitting
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• It is useful to work in polar coordinates:

• Equation of a line in polar coordinates 
• Let 𝑃 = 𝜌, 𝜃 be an arbitrary point on the line
• Since 𝑃, 𝑃&, 𝑂 determine a right triangle

• 𝑟, 𝛼 are the parameters of the line

Step #2: line fitting 

• Goal: fit a line to a set of sensor measurements
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or



Step #2: line fitting 

• Since there is measurement error, the equation of the line is only 
approximately satisfied
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Error

• Assume n ranging measurement points 
represented in polar coordinates 
as 𝜌*, 𝜃*
• We want to find a line that best “fits” all 

the measurement points



Step #2: line fitting 

• Consider, first, that all measurements are equally uncertain
• Find line parameters 𝑟, 𝛼 that minimize squared error 

• Unweighted least squares
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Step #2: line fitting 

• Consider, now, the case where each measurement has its own, 
unique uncertainty
• For example, assume that the variance for each range measurement 
𝜌* is 𝜎*
• Associate with each measurement a weight, e.g., 𝑤* = 1/𝜎*/

• Then, one minimizes 

• Weighted least squares
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Step #2: line fitting solution
• Assume that the n ranging measurements are independent 
• Solution:

10/24/19 AA 274 | Lecture 12 9

r =

P
i wi⇢i cos(✓i � ↵)P

i wi

↵ =
1

2
atan2

 P
i wi⇢2i sin 2✓i � 2P

i wi

P
i

P
j wiwj⇢i⇢j cos ✓i sin ✓j

P
i wi⇢2i cos 2✓i � 1P

i wi

P
i

P
j wiwj⇢i⇢j cos(✓i + ✓j)

!
+

⇡

2



Step #1: line segmentation

• Several algorithms are available
• We will consider three  popular algorithms 

1. Split-and-merge
2. RANSAC
3. Hough-Transform
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Split-and-merge algorithm
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• Most popular line extraction algorithm



Split-and-merge: 
iterative-end-point-fit variant
• Iterative-end-point-fit: split-and-merge where the line is 

constructed by simply connecting the first and last points
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Split Split Split

No more splitsMerge Credit: SNS



RANSAC

• RANSAC: Random Sample Consensus
• General method to estimate parameters of a model from a set of 

observed data in the presence of outliers, where outliers should 
have no influence on the estimates of the values
• Typical applications in robotics: line extraction from 2D range data, 

plane extraction from 3D point clouds, feature matching for 
structure from motion, etc.
• RANSAC is iterative and non-deterministic: the probability of finding 

a set free of outliers increases as more iterations are used
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RANSAC
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RANSAC iterations

• In principle, one would need to check all possible combinations of 2 
points in dataset
• If 𝑆 = 𝑁, number of combinations is 𝑁(𝑁 − 1)/2-> too many
• However, if we have a rough estimate of the percentage of inliers, 

we do not need to check all combinations…
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RANSAC iterations: statistical characterization

• Let 𝑤 be the percentage of inliers in the dataset, i.e.,

• Let 𝑝 be the desired probability of finding a set of points free of outliers 
(typically, 𝑝 = 0.99)
• Assumption: 2 points chosen for line estimation are selected 

independently
• 𝑃 both points selected are inliers = 𝑤/

• 𝑃 at least one of the selected points is an outlier = 1 − 𝑤/

• 𝑃 RANSAC nevers selects two points that are both inliers = 1 − 𝑤/ Q
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RANSAC iterations: statistical characterization

• Then minimum number of iterations R𝑘 to find an outlier-free set 
with probability at least 𝑝 is:

• Thus if we know 𝑤 (at least approximately), after R𝑘 iterations 
RANSAC will find a set free of outliers with probability 𝑝
• Note:
• R𝑘 depends only on  𝑤, not on 𝑁!
• More advanced versions of RANSAC estimate 𝑤 adaptively 
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Hough transform
• Key idea: each point votes for a set of plausible line parameters
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• A line has two parameters: 𝑚, 𝑏

• Given a point (𝑥*, 𝑦*), the lines that could pass 
through this point are all 𝑚, 𝑏 satisfying



Hough transform

• A point in image space maps into a line in Hough space
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Image space Hough parameter space



Hough transform

• Key fact: all points on a line in image space yield lines in parameter 
space which intersect at a common point, (𝑚∗, 𝑏∗)

10/24/19 AA 274 | Lecture 12 20



Hough transform algorithm
1. Initialize an accumulator array 𝐻(𝑚, 𝑏) to zero
2. For each point (𝑥*, 𝑦*), increment all cells that satisfy 𝑏 = −𝑥*𝑚 +

𝑦*
3. Local maxima in array 𝐻(𝑚, 𝑏) corresponds to lines
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12 points voted for this line
-> local maximum



Hough transform algorithm:
polar coordinate representation
• Equation of a line in polar coordinates

• The parameter space transform of a point is a sinusoidal curve
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• Avoids infinite slope
• Constant resolution



Hough transform algorithm, revised
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Hough transform: example
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Hough transform: example

• With noise, peaks may be hard to detect
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Object recognition
• Object recognition: capability of naming discrete objects in the 

world 
• Why is it hard? Many reasons, including:

1. Real world is made of a jumble of objects, which all occlude one another 
and appear in different poses

2. There is a lot of variability intrinsic within each class (e.g., dogs)

• In this class, we will look at three methods:
1. Template matching
2. Bag of visual words
3. Neural network methods (treated as a black box, take AA274B for details)
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Template matching

• How can we find Waldo?
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Source: Sanja Fidler 



Template matching

• Slide and compare!
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Image I

Filter F

Source: Sanja Fidler 



Template matching

• In practice, remember correlation:

• One can equivalently write: 𝐼\ 𝑥, 𝑦 = 𝐟^ ⋅ 𝐭ab

• To ensure that perfect matching yields one, we consider normalized
correlation, that is

𝐼\ 𝑥, 𝑦 =
𝐟^ ⋅ 𝐭ab
𝐟 𝐭ab
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Vector representation of filter

Vector representation of 
neighborhood patch



Template matching

Result:
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Source: Sanja Fidler 



Template matching

• Problem: what if the object in 
the image is much larger or 
much smaller than our 
template?

• Solution: re-scale the image 
multiple times, and do 
correlation on every size!

• This leads to the idea of image 
pyramids
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Image pyramids: scaling down
• Naïve solution: keep only some rows and columns
• E.g.:  keep every other column to reduce image by 1/2 in width direction
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Source: 
Sanja Fidler 



Image pyramids: scaling down
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Source: 
Sanja Fidler 

• Naïve solution: keep only some rows and columns
• E.g.:  keep every other column to reduce image by 1/2 in width direction



Image pyramids: scaling down
• Solution: blur the image via Gaussian, then subsample
• Intuition: remove high frequency content in the image
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Source: 
Sanja Fidler 



Image pyramids: scaling down
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• Solution: blur the image via Gaussian, then subsample
• Intuition: remove high frequency content in the image

Source: 
Sanja Fidler 



Image pyramids: scaling down
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• Solution: blur the image via Gaussian, then subsample
• Intuition: remove high frequency content in the image

Source: 
Sanja Fidler 



Image pyramids 

• A sequence of images created with Gaussian blurring and down-
sampling is called a Gaussian pyramid
• The other step is to perform up-sampling (nearest neighbor, 

bilinear, bicubic, etc), see Extra Problem in pset
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Bags of Visual Words

• Key idea: compute the 
distribution (histogram) of 
visual words found in the 
query image

• Compare this distribution to 
those found in the training 
images in order to perform 
classification
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A different paradigm:
using CNNs for recognition
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Nest time
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