AA 274 Principles of Robotic Autonomy

Stereo vision

Today's lecture

- Aim
- Learn basic techniques to recover scene structure, chiefly stereo and structure from motion
- Readings
- SNS: 4.2.5-4.2.7
- D. A. Forsyth and J. Ponce [FP]. Computer Vision: A Modern Approach (2nd Edition). Prentice Hall, 2011. Sections 7.1 and 7.2.

Stereo vision process

- Stereo vision consists of two steps:

1. fusion of features observed by two (or more) cameras -> correspondence
2. reconstruction of their three-dimensional preimages $->$ triangulation

- Step 2 is relatively easy (as seen before)
- Step 1 requires you to establish correct correspondences and avoid erroneous depth measurements
- Several constraints can be leveraged to simplify Step 1 (e.g., similarity constraint, continuity constraints, etc.); most important: epipolar constraint

Epipolar geometry

- Consider images p and p^{\prime} of a point P observed by two cameras
- These five points all belong to the epipolar plane defined by $p, 0,0^{\prime}$, or equivalently, $p^{\prime}, O, O^{\prime}$
- Epipolar constraint: potential matches for p must lie on epipolar line l^{\prime} (and vice-versa)

Epipolar constraint

- Search for matches can be restricted to the epipolar line instead of the whole image! -> one dimensional search

Epipolar constraint: derivation

- Epipolar constraint: $\overline{O p}, \overline{O^{\prime} p^{\prime}}$, and $\overline{O O^{\prime}}$ must be coplanar, or

$$
\overline{O p} \cdot\left[\overline{O O^{\prime}} \times \overline{O^{\prime} p^{\prime}}\right]=0
$$

Aside: matrix notation for cross product

- Cross product can be expressed as the product of a skew-symmetric matrix and a vector

$$
a \times b=\underbrace{\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]}_{:=[a]_{\times}}\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=[a]_{\times} b
$$

Epipolar constraint: derivation

- Assume that the world reference system is co-located with camera 1
- After some algebra, epipolar constraint becomes [FP, Section 7.1]

$$
p^{T} F p^{\prime}=0
$$

where: $F=K^{-T}[t]_{\times} R K^{\prime-1}$

Key facts

- F is referred to as the fundamental matrix
- $l=F p^{\prime}$ (resp. $l^{\prime}=F^{T} p$) represents the epipolar line corresponding to the point p^{\prime} (resp. p) in the first (resp. second) image. This exploits the homogenous notation for lines.
- $F^{T} e=F e^{\prime}=0->F$ is also singular (as t is parallel to the coordinate vectors of the epipoles)
- F has 7 DoF (9 elements - common scaling $-\operatorname{det}(F)=0$)

Usefulness of fundamental matrix

- Assume F is given
- Given a point in image 1, one can compute the corresponding epipolar line in image 2 without any additional information needed!

Estimating the fundamental matrix

- 8-point algorithm

$$
\begin{aligned}
p=\left[\begin{array}{lll}
u, v, 1
\end{array}\right]^{T}, \quad p^{\prime}=\left[u^{\prime}, v^{\prime}, 1\right]^{T}
\end{aligned} \Rightarrow \quad[u, v, 1]\left[\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right]\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right]=00
$$

- Given $n \geq 8$ correspondences, one then solves

$$
\min _{f \in R^{9}}\|W f\|^{2} \Rightarrow \tilde{F}
$$

$$
\text { subject to }\|f\|^{2}=1
$$

Enforcing the rank constraint

- \tilde{F} satisfies the epipolar constraints, but is not necessarily singular (hence, is not necessarily a proper fundamental matrix)
- Enforce rank constraint (again, via SVD decomposition)

$$
\begin{aligned}
\text { Find } F \text { that minimizes } & \|F-\tilde{F}\|^{2} \longleftarrow \text { Frobenius norm } \\
\text { subject to } & \operatorname{det}(F)=0
\end{aligned}
$$

- 8-point algorithm

1. Use linear least squares to compute \tilde{F}
2. Enforce rank-2 constraint via SVD

Parallel image planes

- Assume image planes are parallel
- Epipolar lines are horizontal
- v coordinates are equal
- Easier triangulation
- Easier correspondence problem
- Is it possible to warp images to simulate a parallel image plane?

Image rectification

- Achieved by applying an appropriate projective transformation
- Several algorithms exist
- From now on, we assume rectified image pairs

Back to stereo vision process

- Recall that stereo vision consists of two steps:

1. fusion of features observed by two (or more) cameras (correspondence)
2. reconstruction of their three-dimensional preimages (triangulation)

- Correspondence problem

Triangulation under rectified images

- We already saw how to triangulate correspondences in the general case
- Triangulation problem under rectified images:

From similar triangles:

$$
z=\frac{b f}{p_{u}-p_{u}^{\prime}}
$$

Large baseline: Object might be visible from one camera, but not the other
Small baseline: large depth error

Disparity map

- Disparity: pixel displacement between corresponding points
- Disparity map: holds the disparity values for every pixel
- Nearby objects experience largest disparity

Stereo pair

Disparity map

Structure from motion (SFM)

Given m images of n fixed 3D points

$$
p_{j, k}^{h}=M_{k} P_{j}^{h}
$$

Find:

- m projection matrices M_{k} (motion)
- n 3D points P_{j} (structure)

SFM ambiguity

- It is not possible to recover the absolute scale of the observed scene

Solution to SFM problem (high-level)

- Several approaches available:
- Algebraic approach (by fundamental matrix)
- Bundle adjustment
- Algebraic approach (2-views)

1. Compute fundamental matrix F (e.g., via 8-point algorithm)
2. Use F to estimate projection camera matrices
3. Use projection camera matrices for triangulation

Application of SFM: visual odometry

- Visual odometry: estimate the motion of the robot by using visual input (and possibly additional information)
- Single camera: absolute scale must be estimated in other ways
- Stereo camera: measurements are directly provided in absolute scale

Next time

