Principles of Robot Autonomy I

Course overview, mobile robot kinematics

From automation...

...to autonomy

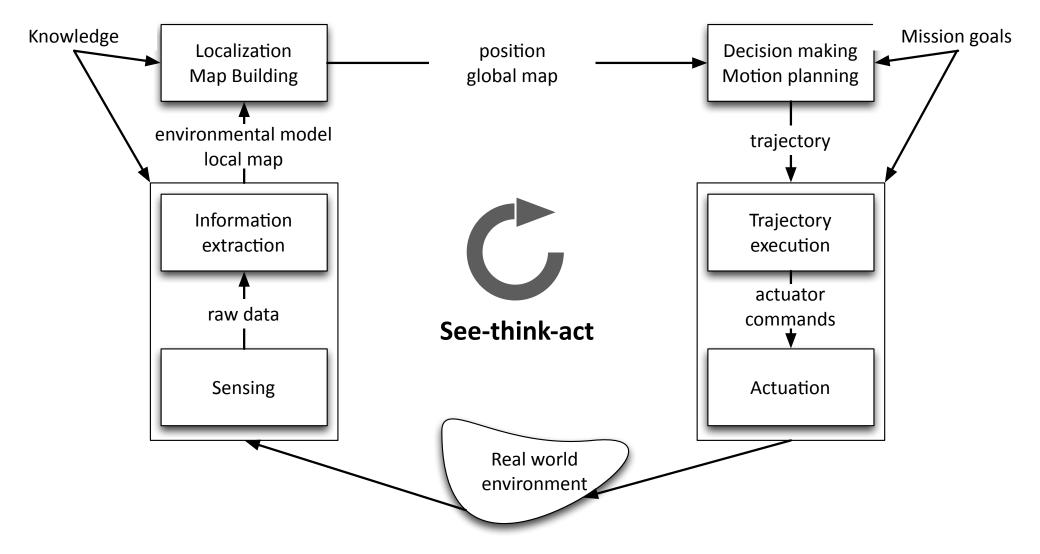
9/13/20

AA 274A | Lecture 1

Course goals

- To learn the *theoretical*, *algorithmic*, and *implementation* aspects of main techniques for robot autonomy. Specifically, the student will
 - 1. Gain a fundamental knowledge of the "autonomy stack"
 - 2. Be able to apply such knowledge in applications / research by using ROS
 - 3. Devise novel methods and algorithms for robot autonomy

The see-think-act cycle



Course structure

- Four modules, roughly of equal length
 - 1. motion control and planning
 - 2. robotic perception
 - 3. localization and SLAM
 - 4. state machines, decision making, and system architecture
- Extensive use of the Robot Operating System (ROS)
- Requirements
 - CS 106A or equivalent
 - CME 100 or equivalent (for linear algebra)
 - CME 106 or equivalent (for probability theory)

Logistics

• Lectures:

- Tuesday and Thursday, 10:30am -11:50am (Zoom)
- Friday 10:00am 11:20am (Zoom)
- Friday lectures are optional for those enrolled in AA 174A
- Course will be taught in a "flipped classroom" format; pre-recorded lecture videos for each week will be released on the preceding Friday

Sections

- Monday, Wednesday, 10:30am 12:30pm (Zoom)
- Monday, 3:00pm 5:00pm (Zoom)
- Tuesday, 4:00pm 6:00pm (Zoom)
- Thursday, 2:00pm 4:00pm (Zoom)

Logistics

- Office hours:
 - Prof. Pavone: Tuesday, 1:00 2:00pm (Zoom) and by appointment
 - CAs: Tuesday, 2:00 4:00pm; Thursday, 4:00 6:00pm (Zoom)
- Course websites:
 - For course content and announcements: http://asl.stanford.edu/aa274a/
 - For course-related questions: https://piazza.com/stanford/fall2020/aa274a
 - For homework submissions: https://www.gradescope.com/courses/175144
 - For lecture videos: https://canvas.stanford.edu/courses/123351
 - To submit pre-lecture questions: https://forms.gle/8snGsRR6eiYcqsjf7
- To contact the AA274 staff, use the email: <u>aa274a-aut2021-staff@lists.stanford.edu</u>

Grading

- Course grade calculation
 - (20%) final project
 - (60%) homework
 - (20%) sections
 - (extra 5%) participation on Piazza

Team

Instructor

Marco Pavone Associate Professor AA, and CS/EE (by courtesy)

CAs

Somrita Banerjee

Mengxi Li

Abhishek Cauligi

Joseph Lorenzetti

Collaborators

- Benoit Landry
- Daniel Watzenig

Labs

9/13/20 AA 274A | Lecture 1

Boris Ivanovic

Schedule

Date	Topic	Assignment			
09/15 09/17 09/18	Course overview, mobile robot kinematics Introduction to the Robot Operating System (ROS) No lecture	HW1 out	$ \begin{array}{r} 10/20 \\ 10/22 \\ 10/23 \end{array} $	Intro to localization & filtering theory Parameteric filtering (KF, EKF, UKF) * Nonparameteric filtering (PF)	HW3 due, HW4 out
$ \begin{array}{r} 09/22 \\ 09/24 \\ 09/25 \end{array} $	Trajectory optimization Trajectory tracking & closed loop control * Advanced methods for trajectory optimization		$ \begin{array}{r} 10/27 \\ 10/29 \\ 10/30 \end{array} $	EKF localization EKF SLAM * Monte Carlo localization and particle filter SLAM	Final project released
$ \begin{array}{r} 09/29 \\ 10/01 \\ 10/02 \end{array} $	Motion planning I: graph search methods Motion planning II: sampling-based methods No lecture	HW1 due, HW2 out	11/03 11/05 11/06	Multi-sensor perception & sensor fusion Software for autonomous systems No lecture	
10/06 10/08 10/09	Robotic sensors & introduction to computer vision Camera models & camera calibration * Stereo vision	HW2 due, HW3 out	11/10 11/12 11/13	State machines Decision making under uncertainty No lecture	HW4 due Final project check-in
10/13 10/15 10/16	Image processing, feature detection & description Information extraction & classic visual recognition * Modern robotic perception		11/17 11/19 11/20	Reinforcement learning Conclusions Final Project Demo	

Mobile robot kinematics

• Aim

- Understand motion constraints
- Learn about basic motion models for wheeled vehicles
- Gain insights for motion control

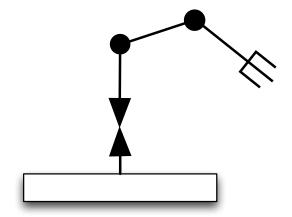
Readings

- R. Siegwart, I. R. Nourbakhsh, D. Scaramuzza. Introduction to Autonomous Mobile Robots. MIT Press, 2nd Edition, 2011. Sections 3.1-3.3.
- B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. Robotics: Modelling, Planning, and Control. Springer, 2008 (chapter 11).

Holonomic constraints

• Let $\xi = [\xi_1, ..., \xi_n]^T$ denote the configuration of a robot (e.g., $\xi = [x, y, \theta]^T$ for a wheeled mobile robot)

- Holonomic constraints
 - $h_i(\xi) = 0$, for i = 1, ..., k < n
 - Reduce space of accessible configurations to an n-k dimensional subset
 - If all constraints are holonomic, the mechanical system is called holonomic
 - Generally the result of mechanical interconnections



14

Kinematic constraints

Kinematic constraints

$$a_i(\xi, \dot{\xi}) = 0, \qquad i = 1, \dots, k < n$$

- constrain the instantaneous admissible motion of the mechanical system
- generally expressed in Pfaffian form, i.e., linear in the generalized velocities

$$a_i^T(\xi)\dot{\xi} = 0, \qquad i = 1, \dots, k < n$$

 Clearly, k holonomic constraints imply the existence of an equal number of kinematic constraints

$$\frac{d h_i(\xi)}{dt} = \frac{\partial h_i(\xi)}{\partial \xi} \dot{\xi} = 0, \qquad i = 1, \dots, k < n$$

• However, the converse is not true in general...

Nonholonomic constraints

- If a kinematic constraint is not integrable in the form $h_i(\xi) = 0$, then it is said *nonholonomic* -> nonholonomic mechanical system
- Nonholonomic constraints reduce mobility in a completely different way. Consider a single Pfaffian constraint

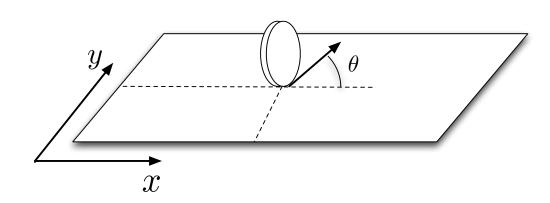
$$a^T(\xi)\,\dot{\xi}=0$$

- Holonomic
 - Can be integrated to $h(\xi) = 0$
 - Loss of accessibility, motion constrained to a level surface of dimension n-1

- Nonholonomic
 - Velocities constrained to belong to a subspace of dimension n-1, the null space of $a^T(\xi)$
 - No loss of accessibility

Example of nonholonomic system

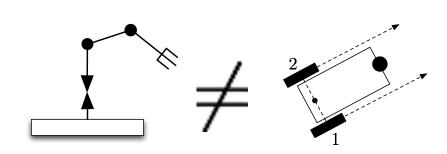
- System: disk that rolls without slipping
- $\xi = [x, y, \theta]^T$



• No side slip constraint

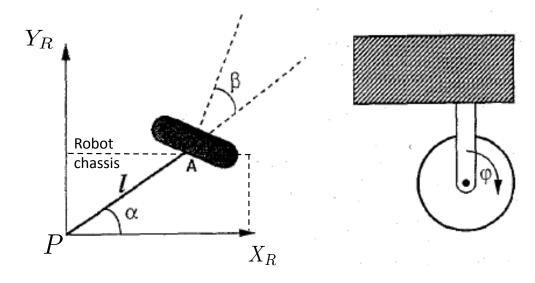
$$[\dot{x},\,\dot{y}]\cdotegin{bmatrix} \sin heta \ -\cos heta \end{bmatrix}=\dot{x}\sin heta-\dot{y}\cos heta=\left[\sin heta,-\cos heta,0
ight]\dot{\xi}=0$$

- Facts:
 - No loss of accessibility
 - Wheeled vehicles are generally nonholonomic

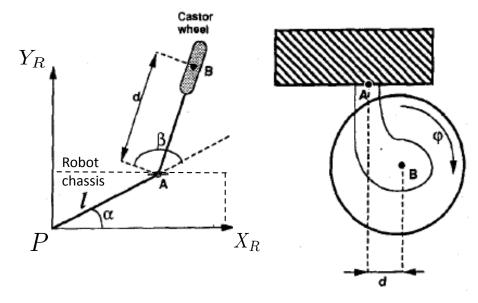


Types of wheels

Standard wheels (four types)



Standard wheel -- fixed or steerable



Standard, off-centered wheel (caster) -- passive or active

 Special wheels: achieve omnidirectional motion (e.g., Swedish or spherical wheels)

Kinematic models

Assume the motion of a system is subject to k Pfaffian constraints

$$\begin{bmatrix} a_1^T(\xi) \\ \vdots \\ a_k^T(\xi) \end{bmatrix} \dot{\xi} := A^T(\xi)\dot{\xi} = 0$$

- Then, the admissible velocities at each configuration ξ belong to the (n-k)-dimensional null space of matrix $A^T(\xi)$
- Denoting by $\{g_1(\xi), ..., g_{n-k}(\xi)\}$ a basis of the null space of $A^T(\xi)$, admissible trajectories can be characterized as solutions to

$$\dot{\xi} = \sum_{j=1}^{n-k} g_j(\xi) u_j = G(\xi) u - \text{Input vector}$$

Example: unicycle

• Consider pure rolling constraint for the wheel:

$$\dot{x}\sin\theta - \dot{y}\cos\theta = [\sin\theta, -\cos\theta, 0]\dot{\xi} = a^T(\xi)\dot{\xi} = 0$$

Consider the matrix

$$G(\xi) = \begin{bmatrix} g_1(\xi), g_2(\xi) \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{bmatrix}$$

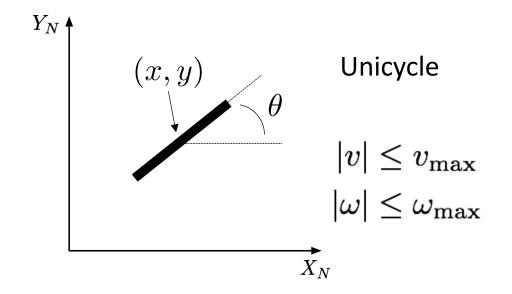
where $[g_1(\xi), g_2(\xi)]$ is a basis of the null space of $a^T(\xi)$

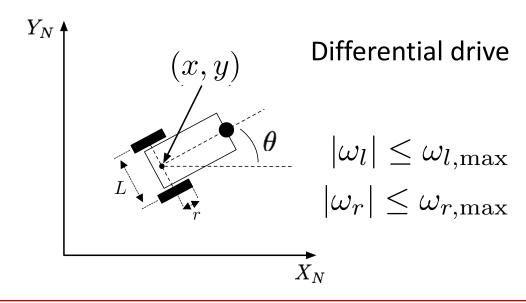
• All admissible velocities are therefore obtained as linear combination of $g_1(\xi)$ and $g_2(\xi)$

Unicycle and differential drive models

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix} v + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \omega$$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \frac{r}{2}(\omega_l + \omega_r)\cos\theta \\ \frac{r}{2}(\omega_l + \omega_r)\sin\theta \\ \frac{r}{L}(\omega_r - \omega_l) \end{pmatrix}$$



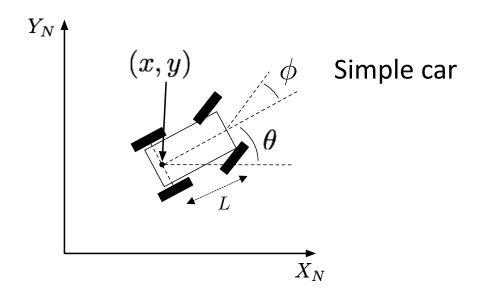


The kinematic model of the unicycle also applies to the differential drive vehicle, via the one-to-one input mappings: $v=rac{r}{2}(\omega_r+\omega_l)$ $\omega=rac{r}{L}(\omega_r-\omega_l)$

Simplified car model

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} v \cos \theta \\ v \sin \theta \\ \frac{v}{L} \tan \phi \end{pmatrix}$$

$$|v| \le v_{\text{max}}, \ |\phi| \le \phi_{\text{max}} < \frac{\pi}{2}$$
 $v \in \{-v_{\text{max}}, v_{\text{max}}\}, \ |\phi| \le \phi_{\text{max}} < \frac{\pi}{2}$
 $v = v_{\text{max}}, \ |\phi| \le \phi_{\text{max}} < \frac{\pi}{2}$



- Simple car model
- Reeds&Shepp's car
- Dubins' car

References: (1) J.-P. Laumond. Robot Motion Planning and Control. 1998. (2) S. LaValle. Planning algorithms, 2006.

From kinematic to dynamic models

- A kinematic state space model should be interpreted only as a subsystem of a more general dynamical model
- Improvements to the previous kinematic models can be made by placing integrators in front of action variables
- For example, for the unicycle model, one can set the speed as the integration of an action α representing acceleration, that is

$$\dot{x} = v \cos \theta, \quad \dot{y} = v \sin \theta, \quad \dot{\theta} = \omega, \quad \dot{v} = a$$

Next time

