
AA 274A: Principles of Robot Autonomy I

Problem Set 3: Perception

Due date: Thursday, October 22

Starter code for this problem set has been made available online through github; to get started download
the code by running git clone https://github.com/PrinciplesofRobotAutonomy/AA274A_HW3.git in a
terminal window.

For your final submission, you will submit a single pdf with your answers for written questions (denoted by

the symbol) and the python files that contains your code for code questions (denoted by the symbol).

NOTE: In this problem set, we’ll be using a very popular open-source computer vision package named
OpenCV. To install it locally, please execute pip install opencv-python (please do not do this on genbu
though, it is already installed there).

Problem 1: Camera Calibration

This problem will be done in your final project groups. Once assigned a group number, you can
TurboVNC into your group account on genbu.stanford.edu. DO NOT try to log into another group’s
account.

In this problem, the objective is to estimate the intrinsic parameters of a camera, which will allow you to
accurately project any point in the real world onto the pixel image output by the camera.

To accomplish this, we will be using a popular method proposed in Z. Zhang, “A Flexible New Technique for
Camera Calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000 (there are a
couple of versions online; use the version here: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.220.534). This method uses images of a known pattern on a 2D plane, such as a chessboard, captured
at different positions and orientations. By processing at least 3 (and preferably many more) images, the
camera parameters can be often be accurately estimated using a direct linear transformation as described in
lecture.

In performing this calibration, it will be important to keep the relevant coordinate frames in mind (the paper
by Zhang will be the main reference, so note any differences in notation from Lecture 9):

• (X,Y, Z) A point in a world coordinate system (attached to each checkerboard)

• (x, y) Ideal, distortion-free, normalized image coordinates

• (u, v) Ideal, distortion-free, pixel image coordinates

• (x̆, y̆) Real, distorted, normalized image coordinates

• (ŭ, v̆) Real, distorted, pixel image coordinates

The observed points we extract in the (ŭ, v̆) frame for calibration can be denoted by (umeas, vmeas).
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The scripts cam_calibrator.py and cal_workspace.py are given to provide a framework for the calibration.
You will be editing methods in the CameraCalibrator class which cal_workspace.py calls. Please take a
look at the code and see how cam_calibrator.py and cal_workspace.py interact before you begin.

NOTE: Any code for Problem 1 should be run within your preferred ROS-installed environment, be it
Genbu or your local VM or Docker installation (there’s a dependency on a ROS component). It does not
have to be placed in a catkin workspace or anything like that, just that the scripts can import some ROS
python packages.

To take a look at the chessboard images that you will be processing, run ./cal_workspace.py. The corner
grid is 7×9 and the side length of each square is dsquare = 20.5 mm. The corner locations (umeas, vmeas) for
each chessboard are extracted for you using OpenCV. You should see something like in Figure 1 (click on
the image to go to the next image).

Let’s begin!

NOTE: You do not need to include these images in your write-up (unless you want to for your own future
reference). While grading, we will run your code and these images should be generated.

NOTE: Please pay EXTREMELY close attention to the notation specified in the Zhang paper. It changes
from section to section and is a major source of problems for readers trying to apply their methods! Most
notable are changes in what subscripts mean, e.g., in Section 2.2 the ith column of a matrix is indicated with
a subscript i, however in Appendix A that same subscript refers to the ith row of a matrix!

(i) Modify genCornerCoordinates to generate the world coordinates (X,Y ) for each corner in each
chessboard. It is important that the ordering corresponds exactly to the points in (umeas, vmeas)!

(ii) Next modify estimateHomography, using the singular value decomposition (SVD) method outlined
in Appendix A of [1] to estimate the homography matrix H for each chessboard.

(iii) Use SVD again in getCameraIntrinsics to estimate the linear intrinsic parameters of the camera,
using the homographies H. These parameters should be packed into a single matrix A. As a sanity
check, the skewness parameter γ should be small (|γ| � α) and the principal point (u0, v0) should be
near the center of the image pixel dimensions.

(iv) Next modify getExtrinsics, use your estimated A and the H for each chessboard to estimate the
rotation R and translation t of each chessboard when the images were captured. (Note that your initial
R estimates will likely not be genuine rotation matrices! Once again, SVD comes to the rescue — see
Appendix C in [1] for details.)

(v) You are now in a position to create some important coordinate transformations. Implement
transformWorld2NormImageUndist and transformWorld2PixImageUndist in order to switch from (X,Y, Z)
to (x, y) or (u, v) in the undistorted image frames. It will be helpful to make use of homogeneous and
inhomogeneous coordinates.

(a) Now you can check to see how well you are doing! Pass your estimated camera matrix A and
chessboard extrinsic parameters R and t into the plotBoardPixImages function (leave the k argu-
ment unspecified) to see where your calibration is mapping the corners, compared to the original
measurements. Refer to Figure 2 to see what the expected results should be. (Click on the image
to move to the next image.)

(b) As a second check, pass your extrinsic parameters to plotBoardLocations to see the estimated
locations and orientations of the chessboards relative to the camera. Refer to Figure 3 to see what
the expected results should be. (Hit enter in the terminal to move to the next image.)

In ROS, the camera calibration parameters you have just calculated are often sent to a set camera info
service broadcast by the package running a given camera. They are then packed into a .yaml file in a
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Figure 1: Corner extraction of chess-
boards.

Figure 2: Example plots for (v)(a).

Figure 3: Example plots for (v)(b).

standard location from which they can be automatically loaded whenever the camera starts. Pass your
calibration parameters into the writeCalibrationYaml function to generate this configuration file.

3



Stanford Aeronautics & Astronautics Fall 2020

Problem 2: Line Extraction

In this problem, you will implement a line extraction algorithm to fit lines to (simulated) Lidar range data.
Consider the overhead view of a typical indoor environment:

Figure 4: 2D Schematic of a typical 10 m x 10 m indoor environment.

A mobile robot needs to explore and map this room using only a (2D) LIDAR sensor, which casts equally
spaced laser beams from the center of the robot to form a 360° view. The first step in mapping is to extract
meaningful information from the range measurements. Line Extraction is a common technique used to fit a
series of straight line segments to range data in an attempt to define the border of objects in the environment.

Line Fitting

A range scan describes a 2D slice of the environment. Points in a range scan are specified in a polar coordinate
system with the origin at the location of the sensor. It is common to assume that the noise on measurements
follows a Gaussian distribution with zero mean, some range variance and negligible angular uncertainty. We
choose to express a line using polar parameters (r, α) as defined by the line equation (1) for the Cartesian
coordinates (x, y) of the points lying on the line

x cosα+ y sinα = r, (1)

where −π < α ≤ π is the angle between the x-axis and the shortest connection between the origin and the
line. This connection’s length is r ≥ 0 (see Figure 5). The goal of line fitting in polar coordinates is to
minimize

S =

n∑
i
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i

(ρi cos(θi − α)− r)2 (2)
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Figure 5: In polar coordinates, a line fitted to data (θi, ρi) can be uniquely defined by (α, r).
We make the assumption that there is Gaussian noise on the range measurement (ρi) but none
in the angle (θi).

Line Extraction

There are many algorithms that have been successfully used to perform line extraction (e.g. Split-and-
Merge, Line-Regression, RANSAC, Hough-Transform, etc.). Here, we will focus on the “Split-and-Merge”
algorithm, which is arguably the fastest, albeit not as robust to outliers as other algorithms. See Algorithm
1 below and Section 4.7.2.1 in the textbook [2] for more details.

Algorithm 1: Euclid’s algorithm for finding the greatest common divisor of two nonnegative inte-
gers

1 function SplitLinesRecursive (θ, ρ, a, b);

Input : θ ∈ RN , ρ ∈ RN , start index a ∈ N, end index b ∈ N
Output: α ∈ RM , r ∈ RM , line indices i ∈ NM×2

2 α, r ← FitLine(θa:b, ρa:b);
3 if b− a ≤ MIN POINTS PER SEGMENT then
4 return α, r, (a, b);
5 end
6 s← FindSplit(θa:b, ρa:b, α, r);
7 if s is not found then
8 return α, r, (a, b);
9 end

10 α1, r1, i1 ← SplitLinesRecursive(θ, ρ, a, a+ s);
11 α2, r2, i2 ← SplitLinesRecursive(θ, ρ, a+ s, b);
12 return (α1, α2), (r1, r2), (i1, i2);

The scripts ExtractLines.py and PlotFunctions.py are provided to structure and visualize the line extrac-
tion algorithm. You will be modifying/adding functions in ExtractLines.py to perform the Split-and-Merge
line extraction.

There are three data files provided, rangeData <xr> <yr> <npts>.csv, each containing range data from dif-
ferent locations in the room and of different angular resolutions, where <xr> is the x-position of the robot (in
meters), <yr> is the y-position, and <npts> is the number of measurements in the 360° scan. The provided
function ImportRangeData(filename) extracts x r, y r, theta, and rho from the csv file. Figure 6 illustrates
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these three data sets.

Figure 6: Lidar range data for three different locations in the room and three dif-
ferent resolutions, corresponding to rangeData 4 9 360.csv, rangeData 5 5 180.csv, and
rangeData 7 2 90.csv, respectively

(i) For each of the three data sets, run ./ExtractLines.py to extract line segments from the data
and plot them on the map. The main ExtractLines function has been provided for you. Your job
is to populate the SplitLinesRecursive, FindSplit, FitLine, and MergeColinearNeigbors functions.
More details can be found in the script comments.

There are four suggested parameters to control segmentation:

• LINE POINT DIST THRESHOLD: The maximum distance a point can be from a line before the line is
split

• MIN POINTS PER SEGMENT: The minimum number of points per line segment

• MIN SEG LENGTH: The minimum length of a line segment

• MAX P2P DIST: The maximum distance between two adjacent points in a line segment

These parameters act as knobs you can tune to better fit lines for each set of range data. You are
welcome to add other parameters/constraints as you see fit.

NOTE: There is not one correct answer to this problem. Slightly different implementations of the
algorithm may produce different lines. However, better results will, of course, smoothly fit the actual
contours of the objects in the room and minimize the number of false lines (e.g. that jump between
objects). Also feel free to edit the ExtractLines function or any of the plotting in PlotFunctions.py
if you’d like.

(ii) Submit three plots showing the extracted lines for each of the data sets; include your segmentation
parameter choices with each plot.
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Problem 3: Linear Filtering

The field of computer vision includes processing complex and high dimensional data (up to millions of pixels
per image) and extracting relevant features that can be used by other components in a robotic autonomy
stack. Nowadays, many computer vision techniques rely on deep learning and machine learning algorithms for
classification and depend heavily on computational tools that can efficiently process, learn, and do inference
on the data. However, these methods can be quite computationally expensive to use (often requiring GPU
acceleration). What else can we do if we have a limited computational budget? How did robots perceive
and detect objects in their environments before the advent of machine learning?

Note: The indexing we use in this problem set differs slightly from what you’ve seen in lecture. The reason
for this is one of practicality, it is much easier to handle generally-sized filters in the manner we use in this
problem set. Mathematically, the exact same operation is performed, the only thing that changes is the
coordinate at which we perform the correlation denotes the top-left element of the filter and image region.
Additionally, as a result the output image will be shifted up and to the left, but this is remedied by indexing
into the output in the exact same way (referring to the top-left coordinate).

(i) As a warm up, let us analyze how grayscale filters affect grayscale images when correlated with
them. The correlation operator G = F ⊗ I is

G(i, j) =

k∑
u=1

∑̀
v=1

F (u, v) · I(i+ u− 1, j + v − 1)

The correlation operator takes as input an image I ∈ Rm×n and filter F ∈ Rk×` and produces an image
G ∈ Rm×n. In words, G is an image whose pixels are a locally-weighted sum of the original image I’s
pixels (weighted by the entries in F ). Knowing this, if I is

I =

1 2 3
4 5 6
7 8 9

 ,
manually compute G as the result of G = F ⊗ I when F is the following.

Note: Along edges, we zero-pad the input image I so that the output G has the same height and
width as I (this is commonly known as “same” padding). Specifically, this means that we zero-pad the
image so that it has dimensions (m+ k)× (n+ `) before we correlate on it.

(a) F =

0 0 0
0 1 0
0 0 0


(b) F =

0 0 0
0 0 1
0 0 0


(c) F =

−1 0 1
−1 0 1
−1 0 1

. For this example, also add a one sentence explanation as to what this filter is

doing to the image, and why this might be useful in computer vision. If you cannot answer this
right away, come back to this after you’ve implemented correlation and run your code with this
filter!

(d) F = 1
16

1 2 1
2 4 2
1 2 1

. For this example, also add a one sentence explanation as to what this filter is

doing to the image, and why this might be useful in computer vision. If you cannot answer this
right away, come back to this after you’ve implemented correlation and run your code with this
filter!
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(ii) We’ll now switch gears to correlation with color images. Prove that correlation can be written as
a dot product of two specially-formed vectors. Specifically, find the vectors f and tij such that

G(i, j) =

k∑
u=1

∑̀
v=1

c∑
w=1

F (u, v, w) · I(i+ u− 1, j + v − 1, w) can be written as G(i, j) = fT tij

(iii) Implement the correlation operation within the corr function in linear_filter.py which takes in
a color filter F and color image I and outputs G, where G = F ⊗ I. Specifically, implement it using
the dot product result you showed above (otherwise it will be too slow). Remember to implement
zero-padding to maintain correct sizes! Run your code with the filters in linear_filter.py on the
provided image test_card.png and include the resulting images in your submission.

(iv) Typical implementations of correlation on these sizes of images and filters run in less than 20 ms.
Report the runtime of your correlation function, how does it compare? Suggest two ways it could be
sped up (no need to actually implement these, also, only reason about the grayscale case for these
suggestions).

HINT: Do we need to compute each of the pixels in G sequentially?

HINT: What is the runtime of the correlation operator as-is (how many multiplication and addition
operations need to be performed)? What happens if the filter you use can be written as an outer
product, i.e. F = ffT , where f ∈ Rk×1 and F ∈ Rk×k? As it turns out, many filters have this property!

(v) How could you obtain the vector f in the second hinted speed-up method above (i.e. F = ffT )?
Give a mathematical condition on F that enables this speed-up method to be used. This problem does
not require solving the previous one and, again, only reason about the grayscale case.

(vi) We’ve seen that correlation can be written as a dot product, and, from linear algebra/geometry we
know that the dot product can be viewed as a measure of similarity between two vectors (think about
why this makes sense). Thus, the value of G(i, j) obtained from correlation can be viewed as a measure
of similarity between the filter and the image at that location. As a result, by correlating F across an
input image I we can find regions in I which are similar to F . This is “Template Matching”, we are
literally trying to “match” a “template” F somewhere inside an input image I. After correlating the
filter across the image, we simply choose the highest values of G(i, j) and center a filter-sized bounding
box there, yielding our detection.

While correlation alone will work, unfortunately the value it gives is hard to threshold (i.e. to identify
when a detection is made), as the output value G(i, j) has a scale that is dependent on the content of
the image (and thus changes per image). One way of fixing this is to normalize the correlation value
(making a perfect match yield a value of 1). This is called normalized cross-correlation. Formally,

G(i, j) =
fT tij

‖f‖ · ‖tij‖

Implement this within the norm_cross_corr function in linear_filter.py

(vii) You might have heard the term “convolution” being thrown around recently. Convolution is similar
to correlation; it is also linear operator that, from input matrices F and I, creates an image G = F ∗ I.
Specifically,

G(i, j) =

k∑
u=1

∑̀
v=1

F (u, v) · I(i− u+ k − 1, j − v + `− 1)

Explain how convolution can be implemented with correlation.
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Problem 4: Template Matching

Building on the previous problem, in this problem you will familiarize yourself with Template Matching, a
classic computer vision technique for detecting specific objects within an image.

(i) Fill in template_match wintin template_matching.py and call it with the template valdo.png to
find Valdo, Waldo’s buff cousin, within the provided clutter.png image. Include the detection image
with your submission.

HINT: OpenCV has functions for this! cv.matchTemplate(img, template, method=cv2.TM_CCORR_NORMED)
will perform template matching with template on img with normalized cross-correlation. Note that
it will only perform the cross-correlation for you, you will still have to threshold the output to find
matches!

(ii) Looks like template matching works pretty well when the template is taken straight out of the
image. How does it generalize? What if we wanted to take a template of an object from one image, to
detect that object in other images? Run your template matching implementation with the stop sign
template stop_signs/stop_template.jpg on the other images available in the stop_signs/ directory.
Use these detection images to help answer the following question.

(iii) How does template matching perform on other images? Suggest two ways (excluding scaling) to
improve template matching.
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Problem 5: Stop Sign Detection and FSM in ROS

This problem will be done in your final project groups. Once assigned a group number, you can
TurboVNC into your group account on genbu.stanford.edu. DO NOT try to log into another group’s
account.

IMPORTANT: When trying to execute any commands listed in this PDF document, you MUST type
them out yourself in the terminal. Copy-pasting code or terminal commands from PDFs is, in general, a
terrible idea.

You might need to pull new files to your asl_turtlebot package. Go to the package directory and make
sure that no files show up when you type

$ cd ∼/ catk in ws / s r c / a s l t u r t l e b o t
$ g i t s t a t u s

If there are any files that are listed as having been changed, you should check them out so that they do not
conflict with the new files.

$ g i t checkout the f i l e tha tyouchanged . py

Now you can pull the new changes.

$ g i t p u l l

If the above fails, delete the asl_turtlebot directory and clone the asl_turtlebot repository again (https:
//github.com/StanfordASL/asl turtlebot).

There is probably no need to rebuild asl_turtlebot since there are no new custom message types that need
to be compiled, but you may want to rebuild just in case.

$ cd ∼/ catk in ws
$ catkin make

Let’s now get back to building our stack for the Turtlebot. In the context of ROS, a stack usually means a
collection of nodes and other software that is used on a robot. In the problem, you will be asked to implement
a part of your stack that will allow the Turtlebot to move towards a goal and stop if it sees a stop sign on
the way there. This is similar to what you would expect an autonomous car to do on the road.

This is an example of how your perception algorithms (computer vision/object detection) would be used to
inform your path planning and control modules.

Here is a description of the new code you have just pulled and also a bird eye’s view of what this problem
is about.

• pose_controller.py The controller node. This is a ROS node wrapper for the PoseController class
you wrote in homework 1.

• detector.py The image detector node. We have pretrained a Convolutional Neural Network (CNN)
to classify Gazebo stop signs and calculate bounding boxes for them 1. However the CNN detector can
be slow, so it is disabled by default and the node instead uses a simple color thresholding to detect
stop signs (IMPORTANT: this second detection method will NOT work on the real robot or in any
more complicated scenario, but we opted to also implement this in order to reduce the computational
burden of running the simulation - your real Turtlebots will be running the CNN though so poke at
it!). This node takes in camera images, camera information and laser scan information in order to
estimate the location of the stop sign in the Turtlebot’s reference frame.

1In general, when you are deploying robots in the real world, you will need to train a network on images relevant to your
robot. Fortunately, there exists pretrained CNN classifiers (Inception, MobileNet) where you need to only train the last few
layers for your specific dataset. In this case, we have collected a dataset of Gazebo stop signs and trained the network using
those.
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• supervisor.py The supervisor node. This will encode your Finite State Machine (FSM) for your robot.
Your robot will be in different states and your state machine will encode how your robot may transition
between these states.

• turtlebot3_signs.launch The launch file that will launch Gazebo (with the Turtlebot3 and a stop
sign), detector.py and pose_controller.py. By default, this launch file does not start Gazebo’s
graphical interface (which can be enabled by passing gui:=true to the launch file) and instead starts
a simplified 2D visualizer gazebo_plot.py. The detector should also start another window, which
corresponds to the camera images being sent by the robot (it should look mostly gray). Feel free to
have a poke around this launch file to get an idea of how launch files work. It is likely you may write
your own as part of your final project.

The Turtlebot is receiving raw camera images2 from the (sophisticated white box) camera we have placed on
it and from our detector node, it can identify and detect stop signs. It is also receiving camera information
reminiscent of Problem 1. Using this information, we can estimate the direction of the stop sign relative to
the Turtlebot and using laser scan information, estimate how far away the stop sign is. We can then act
intelligently with the knowledge that there is a stop sign at some known relative position from the robot.

In this problem, you will be drawing upon your knowledge from Problem 1 and also design your own state
machine for the Turtlebot to obey traffic rules (stop at a stop sign before moving past it.) The goals of the
problem are:

• Incorporate perception into your decision-making.

• Learn about and use Finite State Machines (FSM) to command your robot to execute non-trivial tasks.

• Gain more familiarity with ROS by working with multiple ROS nodes that publishes/subscribes to
multiple topics.

• Learn about different ROS messages and how to use them.

(i) Take a look at supervisor.py. What information does it publish? What is the message type?

(ii) Copy your P2_pose_stabilization.py file from HW1 to ˜/catkin_ws/src/asl_turtlebot/HW1.
Then modify pose_controller.py so that it subscribes to a topic of desired goal poses and feeds these
poses to your PoseController to compute control commands. The required information for this is in
the comments.

(iii) Fortunately, the simulated camera provides its own calibration so you do not have to implement
Problem 1 again (we promised you would have to go through the pain only once!). But you want
to extract the necessary information from this calibration in order to transform objects from pixel
coordinates to a heading angle. This information is encoded in the CameraInfo ROS message. Read
the documentation http://docs.ros.org/api/sensor msgs/html/msg/CameraInfo.html to help you
extract the focal lengths and principal points in the camera_info_callback function in detector.py.
More information is given in the code. Pay close attention to the dimension of the field you may be
accessing in the message.

(iv) Given the focal lengths and principal points, edit project_pixel_to_ray in detector.py to com-
pute the ray/direction (as a unit vector) of the stop sign in the camera’s frame of reference. You may
find Figure 7 helpful (note that in our case u in the code would be x̃ in the diagram, cx in the code
would be x̃0 in the diagram and that we have different focal lengths for each axes of this camera).

2We have simulated a camera in Gazebo.
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You will now implement a FSM for your Turtlebot. A FSM (https://en.wikipedia.org/wiki/Finite-state
machine) is defined by a finite list of states, and conditions that describe how you can transition in and out
of a state. You must also specify your initial state. This can be viewed as a mathematical model for your
logic.

Initially, the Turtlebot should just be navigating to its desired pose (in POSE mode). If it sees a stop
sign though, it must then stop for 3 seconds (see STOP_TIME variable) when it is sufficiently close to it
(approximately 0.5 meters - see STOP_MIN_DIST variable). Then it shall “cross the intersection” (i.e. move
while ignoring any stop sign it might be seeing) and then eventually transition back into its regular pose
seeking state (the mode denoted as POSE).

(vi) Draw out the state diagram for a FSM respecting the description above and that you think you
could implement. Think carefully about what the transitions should be and think whether or not the
Turtlebot will get “stuck” in an undesirable loop.

(vii) Code up your FSM. Note that if you run the code before editing supervisor.py, the Turtlebot will
just move towards (xg, yg, θg) = (1.5,−4, 0) without stopping at the stop sign (traffic violation!). To
help you get started, we have given you a template of what a FSM could look like and a list of states
that we think may be useful (see the Mode class). From this template, you would need to implement
two new states (look at the loop method) and one callback (look at the stop_sign_detected_callback
method) for it to accomplish the task. However, you are free to modify the code beyond this.

To test your FSM and see how your turtlebot performs, type:

$ ros launch a s l t u r t l e b o t t u r t l e b o t 3 s i g n s s i m . launch gui := true

This one command will run Gazebo, pose_controller.py, detector.py and gazebo_plot.py. The
gui:=true flag enables Gazebo rendering. You should also see a window that simulates what the
camera is seeing, which should be nothing initially. This might take a few seconds to load.

To test supervisor.py, in a new terminal window, run supervisor.py (remember how to run a node
from sections?). If done correctly, your Turtlebot should start moving. The terminal window in which
you are running the supervisor should also be printing mode changes.

(viii) Take a screenshot of the path and velocity profile that should get drawn in one of the windows.
We should be able to see the turtlebot navigate to its goal location, and most importantly see the 3
seconds of stopping in the velocity profile (corresponding to stopping at the stop sign).
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Figure 7: Projecting a point from pixels to camera frame

Running on your local machine (optional): If you want to try running this code on your local non-
Linux machine, you’ll need to run the launch file without gui:=true since Gazebo is too slow inside virtual
machines. The procedure for running with Docker is as follows. The procedure for running with the Windows
VM is the same, just without a need to prepend commands with ./run.sh or ./run.sh --display 1

1. Update the Docker image.

$ cd aa274−docker
$ g i t p u l l
$ . / bu i l d docke r . sh

2. Terminal 1: Run roscore.

$ . / run . sh r o s c o r e

3. Terminal 2: In a new terminal window (leave roscore running), run the launch file with the plot
rendered to display 1. You will be able to view this display through TurboVNC. You can use any display
number you want (doesn’t have to be 1); this just changes the TurboVNC hostname you connect to in
the next step.

$ . / run . sh −−d i s p l a y 1 ros launch a s l t u r t l e b o t t u r t l e b o t 3 s i g n s s i m . launch

Enter in a password for your TurboVNC session.

4. TurboVNC: Connect to display 1 with the server hostname localhost:1 and the password you set
above.

5. Terminal 3: Run the supervisor to start the Turtlebot.

$ . / run . sh rosrun a s l t u r t l e b o t s u p e r v i s o r . py
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Figure 8: Turtlebot and stop sign in
Gazebo.

Figure 9: Camera’s view of the stop sign.
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Extra Problem: Image Pyramids

We now have a working template matching implementation! However, there is a big catch that we have not
addressed yet. What if the object in the image is much larger or much smaller than our template? What if
it is not exactly in our plane of view? Template matching alone cannot address these. We’ll now dive into
addressing these challenges.

The main topic we’ll be focusing on in this question is image pyramids. The core idea of image pyramids
is scaling an image up (zooming in) and down (zooming out). Thus, if there is an object that matches our
template in the image, even if it has a different scale than our template, we’ll detect it.

(i) As a start, let us implement scaling down as selecting every even-indexed row and column to
create a 1/2-sized image. Fill in half_downscale within the image_pyramids.py file. Test your code by
passing in ndarrays of varying shape, checking that their downscaled shapes match your expectations.

(ii) Call half_downscale three times on test_card.png to get a 1/8-sized image. Include this image
in your submission. Comment on its quality, why did we lose so much detail compared to the original?

(iii) A method to fix this is to first blur the image before downscaling it. First, explain why this will help
fix the issue we saw above. Then, implement this in blur_half_downscale within image_pyramids.py.

Note: You do not need to use your code from Problem 3. Actually, we encourage you not to as
it is better to get exposure to OpenCV’s methods. To blur an image before downsampling, use
cv2.GaussianBlur(image, ksize=(5, 5), sigmaX=0.7)

(iv) Call blur_half_downscale three times on test_card.png to get a 1/8-sized image. Include this
image in your submission. Compare this image to the original test card and the one downsampled with
half_downscale.

(v) Great! Now let’s focus on the other end: upscaling. As a start, let us implement scaling up
as repeating every row and column twice to create a 2x-sized image. Fill in two_upscale within the
image_pyramids.py file. Test your code by passing in ndarrays of varying shape, checking that their
upscaled shapes match your expectations.

HINT: numpy.repeat is a helpful function here.

(vi) Call two_upscale three times on favicon-16x16.png to get an 8x-sized image. Include this image
in your submission. Comment on its quality, why does it look so blocky?

(vii) To fix this, we can use a more sophisticated method to upscale images: bilinear interpolation. As
the name implies, it linearly interpolates in both the x and y dimensions to produce an upscaled image.

On the web, there are many long and complicated formulas for computing bilinear interpolation.
However, we are going to ignore them and perform bilinear interpolation simply via correlation! To do
this,

1. Create an image which is the desired output size.

2. Copy the original image’s pixels to every n pixels in the output image, the rest being zeros.

3. Return G where G = F ⊗ Iscaled and the filter F is a provided 2D tent function (search this online
to see why it is called this).
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For example, if we were upscaling an image I by a factor of 3, the process would look like this

I =

[
1 2
3 4

]
⇒ Iscaled =


1 0 0 2
0 0 0 0
0 0 0 0
3 0 0 4



G = F ⊗ Iscaled = Fprovided ⊗


1 0 0 2
0 0 0 0
0 0 0 0
3 0 0 4

 =


1 1.33 1.67 2

1.67 2 2.33 2.67
2.33 2.67 3 3.33

3 3.33 3.67 4


Implement bilinear interpolation this way in bilinterp_upscale. Call it with scale=8 on favicon-16x16.png
to get an 8x-sized image. Include this image in your submission and compare it to the one upscaled
with two_upscale. Finally, explain intuitively why this method works, i.e., why does this yield a
bilinearly-interpolated image? If you need a hint, print out the filter in the code.

Note: You do not need to use your correlation function from Problem 3 to perform the last correlation
step. Instead, use OpenCV’s filter2D method like so: cv2.filter2D(image_scaled, -1, filt)

(viii) Finally, we can implement full template matching with Gaussian image pyramids. Specifically,
you’ll be combining what you made in the previous problems into one algorithm for object detection
and classification:

1. Create a Gaussian image pyramid of the originally given image. A “Gaussian image pyramid”
is simply a series of up and downscaled versions of the image (called so because it looks like a
pyramid when visualized in 3D).

2. Perform template matching on each image in the Gaussian pyramid.

3. Return a detection if the normalized cross-correlation score is greater than a given threshold.

Implement this within scaled_template_matching.py and run it on the image and template specified
within. Include your detection image with your submission.

HINT: OpenCV has many functions for this! cv2.pyrUp(img) and cv2.pyrDown(img) can be used to
scale img up or down by a factor of 2 (applying Gaussian blur along the way). cv.matchTemplate(img,
template, method=cv2.TM_CCORR_NORMED) will perform template matching with template on img with
normalized cross-correlation. Note that it will only perform the cross-correlation for you, you will still
have to threshold the output to find matches! You can also use your solution from Problem 4 to do
the template matching part.

(ix) Run your template matching with Gaussian image pyramids algorithm with the stop sign template
stop_signs/stop_template.jpg on the other images available in the stop_signs/ directory. How does
it perform on these images?

The behavior you’re seeing at the end of this problem is one of the main reasons why modern robotic
perception algorithms don’t use such algorithms anymore, including your Turtlebots!
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