Principles of Robotic Autonomy I
Problem Set 2
Due Friday, October 9 (11:59pm)

Starter code for this problem set has been made available online through Github. To get started, download
the code by running git clone https://github.com/PrinciplesofRobotAutonomy/AA274A_HW2.git in a
terminal window.

You will submit your homework to Gradescope. Your submission will consist of (1) a zip folder containing
your code for the programming questions (denoted by the & symbol), and (2) a single pdf with your answers

for written questions (denoted by the 4 symbol), which in this assignment will be a merged pdf printout of
your Jupyter notebook with all figures included.

Introduction

The goal of this problem set is to familiarize you with algorithms for path planning in constrained environ-
ments (e.g. in the presence of obstacles) and techniques to integrate planning with trajectory generation
and control.

Problem 1: A* Motion Planning

To begin, we will implement an A* algorithm for motion planning, as outlined in pseudocode in Algorithm
1. In particular, we will apply this algorithm to 2D geometric planning problems (state x = (z,y)).

In this implementation, we will implicitly represent the free space by a graph, also implicitly defined, which
is traversed by sampling and collision-checking states from a deterministic grid. Thus this implementation
can be categorized as informed, deterministic sampling-based planning (informed due to the A* heuristic).

(1) [Implement the remaining functions in P1_astar.py within the Astar class. These functions repre-
sent many of the key functional blocks at play in motion planning algorithms:
e is_free which checks whether a state is collision-free and valid.
e distance which computes the travel distance between two points.
e get_neighbors which finds the free neighbor states of a given state.

e solve which runs the A* motion planning algorithm.

Be sure to read the documentation for every function for a more detailed description.

(ii) # Now let’s test this implementation in a couple planning environments. To do so, open the associated
Jupyter notebook by running the following command:

$ jupyter notebook sim_astar.ipynb

Feel free to play with the number of obstacles and other parameters of the randomly generated envi-
ronment. When you are satisfied with your figures, print the notebook as a pdf to be merged into your
written pdf submission.

Stanford University Principles of Robot Autonomy I - Fall 2020

Algorithm 1 A* Motion Planning

Require: X;,;t, Xgoal

1: OINIT(Xp4t) > Open set initialized with x;,;¢
2: C.INIT(() > Closed set is initially empty
3: SET_COST_-TO_ARRIVE_SCORE(X;nt,0)
4: SET_EST_COST_THROUGH (%54, HEURISTIC (X st Xgoat))
5: while O.SIZE > 0 do
6: Xeyrrent ¢ LOWEST_EST_COST_THROUGH(O)
7 if Xcurrent = Xgoal then
8: return RECONSTRUCT_PATH
9: end if
10: O.REMOVE (X¢yrrent)
11: C.ADD(Xcyrrent)
12: for x,,cign, in NEIGHBORS (Xcyrrent) do
13: if Xpeign in C then
14: continue
15: end if
16: tentative_cost_to_arrive = GET_COST_TO_ARRIVE(X¢yrrent) + DISTANCE (Xcyrrent s Xneigh)
17: if Xpeign not in O then
18: O.ADD(Xneigh)
19: else if tentative_cost_to_arrive > GET_COST_TO_ARRIVE(Xyeign) then
20: continue
21: end if
22. SET_CAME_FROM (Xpeigh: Xeurrent)
23: SET_COST_TO_ARRIVE(Xpeigh, tentative_cost_to_arrive)
24: SET_EST_COST_THROUGH (Xycign, tentative_cost_to_arrive + HEURISTIC(Xneigh, Xgoat))
25: end for

26: end while
27: return Failure

Note: Notice that we collision-check states but do not collision-check edges. This saves us some computation
(collision-checking is often one of the most expensive operations in motion planning). Also, in this case the
obstacles are aligned with the grid, so paths will remain collision-free. However, outside such special circum-
stances one should add edge collision-checking and/or inflate obstacles to guarantee collision-avoidance.

Problem 2: Rapidly-Exploring Random Trees (RRT)

While our A* planning relies on a predefined set of viable samples, in some scenarios it is useful to draw
samples incrementally and in a less structured fashion. This motivates sampling-based algorithms such as
Rapidly-Exploring Random Trees (RRT) [1], which we will implement in this problem.

Since vanilla RRT builds its tree by extending from the nodes nearest to random samples, we cannot add the
same heuristic as A* to bias search in the direction of the goal. Instead, we will use a goal-biasing approach,
included in the pseudocode in Algorithm 2.

(i) B Implement RRT for 2D geometric planning problems (state x = (z,y)) by filling in RRT.solve,
GeometricRRT.find_nearest, and GeometricRRT.steer_towards in P2_rrt.py.

You can validate your implementations of the parts of this problem in the associated notebook:
$ jupyter notebook sim_rrt.ipynb
(ii) You may have noticed that due to the random sampling in RRT, there is plenty of room to optimize
the length of the resulting paths. This motivates a variety of post-processing methods which locally
2

Stanford University Principles of Robot Autonomy I - Fall 2020

Algorithm 2 RRT [1] with goal biasing.

Require: X;nt, Xgoq:, maximum steering distance € > 0, iteration limit K, goal bias probability p € [0, 1]
1: TINIT(X”L“)
2: for k=1 to K do

3: Sample z ~ Uniform([0, 1])

4: if z < p then

5: Xrand < Xgoal

6: else

T Xrand < RANDOM,STATE()

8: end if

9: Xnear — NEAREST_NEIGHBOR (X;qnd, T)
10: Xnew — STEER_TOWARDS (Xncars Xrands €)
11: if COLLISION _FREE(X,eqr, Xnew) then
12: T.ADD_VERTEX (Xpew)

13: T.ADD_EDGE(Xpear; Xnew)

14: if Xpew = Xgoar then return 7.PATH(X;nit, Xgoal)
15: end if

16: end if

17: end for

18: return Failure

(iii)

optimize motion planning paths. As it turns out, even very simple methods can perform quite well on
this task. We will implement one of the simplest of these algorithms, which we simply call Shortcut [2].

EJ Implement the shortcutting algorithm outlined in the pseudocode in Algorithm 3 by filling in
RRT.shortcut_path. You can test your implementation in the notebook and should notice that in
nearly all cases, Shortcut will be able to refine to a shorter path.

Note: Post-processing algorithms such as this are performing a local optimization, which means the
result may be far from a globally optimal path. For example in this case, shortcutting is not likely
to move the path to the other side of an obstacle (i.e. to a different solution homotopy class), even
if this would result in lower path length. This motivates the use of asymptotically optimal varieties
of sampling-based planners such as RRT*, which perform a global search and are thus guaranteed to
approach the globally optimal solution.

While geometric RRT does rapidly generate collision-free paths, these paths are not ideal candidates
to track with our wheeled robot as the paths’ sharp corners would require stopping and turning at
most nodes.

One way to resolve this issue is through kinodynamic motion planning, where kinematically- and
dynamically-feasible trajectories are built directly in the planner by concatenating subtrajectories.
There are two ways to do this, which each have potential drawbacks. The first is control sampling,
which (a) requires defining a sensible control subtrajectory sampling strategy, (b) can require a large
number of samples when the control-sampling scheme does not provide effective state sampling, and
(c) can struggle to reach a precise goal state or small goal region. The second is state sampling, which
requires a steering function, i.e. connecting to sampled states by solving a 2P-BVP. Unfortunately,
these 2P-BVP problems must be solved many times — for each candidate sub-trajectory and possibly
to measure distance while finding nearest neighbors. In our case, a candidate steering method could be
solving the optimal control problem in the Extra Problem of HW 1. However, this runs far too slowly
to be practical. A more reasonable steering candidate would be the differential flatness approach of
Problem 1 in HW 1. However, this may still require careful implementation to run efficiently, since
with kinodynamic planning we must add orientation and velocities to the state, tripling the problem
dimension.

Rather than exploring this further here, we will instead experiment with a simpler dynamics model
where velocity is fixed, i.e. the Dubins car. This will allow us to leverage as a steering function the
analytical solution that exists for Dubins car shortest paths.

3

Stanford University Principles of Robot Autonomy I - Fall 2020

Algorithm 3 Shortcut (deterministic)

Require: Hpath = (Xinita X1, X2 ny Xgoal)
1: SUCCESS = False
2: while not SUCCESS do
3: SUCCESS = True

4: for x in IL,q:, Where X # X and X # X0 do

5: if COLLISION_FREE(PARENT(x), CHILD(x)) then
6: 4, REMOVE_NODE(x)

7 SUCCESS = False

8: end if

9: end for

10: end while

- Implement RRT for Dubins car planning problems (state x = (z,y, 8), see [3] for steering connection
details) by filling in DubinsRRT. find_nearest and DubinsRRT.steer_towards in P2_rrt.py. Computing
steering solutions in this code relies on installing the following python package:

$ pip install dubins==0.9.2

See https://github.com/AndrewWalker/pydubins/blob/@.9.2/dubins/dubins.pyx for usage details.

(iv) # Test all of the above in your notebook, generate the associated figures, and export the notebook
as a pdf to be included in your written submission.

Problem 3: Geometric Planning to Trajectories and Control

In this problem, we will finally bridge the gap between our planned paths and trackable trajectories for
our differential drive robot. Currently our geometric paths have no time derivatives associated with them
to constitute trajectories, and our Dubins paths are based on the assumption of a fixed velocity, which is
an undue constraint on our robot. As mentioned previously, we can use kinodynamic motion planning to
directly plan trajectories which meet our robot’s kinematic and dynamics constraints, but this can be tricky
to do efficiently. Instead, we will use another simple post-processing technique for our planned paths and
leverage our controllers from Problem Set 1 to generate and follow corresponding trajectories.

(i) B Smooth the paths from A* by fitting a cubic spline to the path nodes. This will be implemented
within the compute_smoothed_traj function of P3_traj_planning.py, and you may need to use the
splrep and splev functions from scipy.interpolate (read through their documentation). The output
of this function will include a trajectory [z,y,0,%, 7, &, 3] from ¢ = 0 to t = t;. Since all we have is a
geometric path, you should estimate the time for each of the points assuming that we travel at a fixed
speed Vs along each segment. Adjust the smoothing parameter « (denoted s in splrep) to strike
a balance between following the original collision-free trajectory and risking collision for additional
smoothness.

You can validate your implementations of the parts of this problem in the associated notebook:

$ jupyter notebook sim_traj_planning.ipynb

Note: There are many ways to ensure smoothed solutions are collision-free (e.g. collision-checking
smoothed paths and running a dichotomic search on « to find a tight fit against obstacles, or inflating
obstacles in the original planning to give additional room for smoothing). This strategy can be used
on geometric sampling-based planning methods as well.

https://github.com/AndrewWalker/pydubins/blob/0.9.2/dubins/dubins.pyx

Stanford University Principles of Robot Autonomy I - Fall 2020

(i) £ Now we will begin leveraging our modules from Problem Set 1. Replace the scripts in the HW1
folder with your own implementations so that they can be imported by P3_traj_planning.py.

Next, fill in the function modify_traj_with_limits to generate control-feasible trajectories using the
time-scaling strategy and differential flatness, just as in in HW 1, Problem 1. You can then step
through the notebook to track these trajectories using the trajectory-tracking controller from HW 1,
Problem 3.

(iii) It may be tempting to stop here. However, run the notebook further to zoom in on the endpoint of
the trajectory. You will notice that the endpoint of the actual trajectory does not match the final
desired pose, due to a combination of both controller tracking error and potentially smoothing of the
original path. Even if we did get lucky and the robot landed close to the desired endpoint, the tracked
trajectory may have a nonzero velocity at its endpoint, quickly moving it off the goal. And in any case,
ongoing disturbances would certainly cause the robot to drift off the goal.

EJ The solution to this is to switch from trajectory tracking to our pose stabilization controller
from HW 1, Problem 2 as the robot approaches the end of the trajectory. To do this, fill in the
function SwitchingController.compute_control to perform this controller switch some number of
seconds before reaching the goal.

In the notebook, we can continue the simulation for some extra time past the nominal final time
to make sure the robot reaches and stays near the final pose. Adjust the control gains on the pose
controller until you are satisfied with the final pose stabilization.

(iv) # Tinish testing all of the above in your notebook, generate the associated figures, and export the
notebook as a pdf to be included in your written submission.

Extra Problem: Bi-Directional Sampling-based Motion Planning

You may have noticed that it occasionally takes a large number of samples for RRT to reach the goal.
Unfortunately, there are many seemingly simple planning scenarios which make this problem much worse.
For example, consider the “bug trap” scenario in the following notebook:

$ jupyter notebook sim_bidirectional_rrt.ipynb

One way to address this issue and improve sample efficiency is through bi-directional sampling-based motion
planning. To explore this, in this problem we will implement a very widely-used bi-directional variant of
RRT called RRT-Connect [1], using the psuedocode outlined in Algorithm 4. You will notice that this is
more detailed than the psuedocode in [1], as we are explicitly accounting for the difference in handling
required for the forward-reaching tree 7T;,q and the backward-reaching tree Tp,q, which is important for
many non-geometric planning problems such as Dubins car planning.

(i) B Implement RRT-Connect for 2D geometric planning problems by filling in RRTConnect.solve
and the GeometricRRTConnect class functions find_nearest_forward and steer_towards_forward in
P4_bidirectional_rrt.py. Notice that in the geometric planning case, the forward and backward
versions of find_nearest and steer_towards are equivalent.

(i) 7 Implement RRT-Connect for Dubins car planning problems by filling the DubinsRRTConnect class
functions find_nearest_forward, find_nearest_backward, steer_towards_forward, and
steer_towards_backward in P4_bidirectional_rrt.py. You may also find the function
DubinsRRTConnect.reverse_heading helpful.

(iii) # Test the above in your notebook, generate the associated figures, and export the notebook as a
pdf to be included in your written submission.

Stanford University Principles of Robot Autonomy I - Fall 2020

Algorithm 4 RRT-Connect [4]

Require: X;nit, Xg0a1, maximum steering distance € > 0, iteration limit K
1: ﬂdeNIT(Xlnzt)
2: %wd-INIT<Xgoal>
3: for k=1to K do
4: Xrand < RANDOM_STATE()

5: Xnear ¢ NEAREST _NEIGHBOR_FORWARD (Xrqnd, Tfwd)
6 Xpew ¢ STEER_.TOWARDS_FORWARD (Xpear: Xrand,)
7. if COLLISION_FREE(Xpc0r; Xnew) then
8: Truwa ADD_VERTEX (Xpeu)
9: ﬂwd.ADD,EDGE(Xnear, Xnew)
10: Xeonneet ¢ NEAREST_NEIGHBOR_BACKWARD (X6, Towd)
11: while True do
12: Xnewconnect < STEER_ TOWARDS_BACKWARD (Xy,ew, Xconnects €)
13: if COLLISION_FREE(Xpecwconnects Xconnect) then
14: Towd ADD_VERTEX (Xcwconnect)
15: 77)11)(1-ADDEDGE(Xnewconnecta Xconnect)
16: if Xnewconnect = Xnew then
17: return RECONSTRUCT_PATH
18: end if
19: Xconnect < Xnewconnect
20: else
21: break
22: end if
23: end while
24: end if

25 Xrand < RANDOM_STATE()

26: Xpear — NEAREST_NEIGHBOR_BACKWARD (X,and; Tywa)
27 Xpew + STEER.TOWARDS_BACKWARD (X, qnd; Xnear: €)
28: if COLLISION_FREE(Xycu, Xnear) then

29: Trwd- ADD_VERTEX (Xpew)

30: Towd-ADD _EDGE(Xpew, Xnear)

31: Xconneet < NEAREST_NEIGHBOR_FORWARD (Xnew, Tfud)
32: while True do

33; Xneweonnect — STEER.TOWARDS_FORWARD (Xeonnects Xnew,)
34: if COLLISION_FREE(Xconnect; Xnewconnect) then

35: Ttuwa ADD_VERTEX (Xpewconneet

36: 7}wd~ADD—EDGE(Xconnect7 Xnewcmmect)

37: if Xnewconnect — Xnew then

38: return RECONSTRUCT_PATH

39: end if

40: Xconnect < Xnewconnect

41: else

42: break

43: end if

44: end while

45: end if

46: end for

47: return Failure

Stanford University Principles of Robot Autonomy I - Fall 2020

References

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Illinois State University,
Tech. Rep., 1998.

[2] R. Geraerts and M. Overmars, “Creating high-quality paths for motion planning,” Int. Journal of Robotics
Research, vol. 26, no. 8, pp. 845-863, 2007.

[3] L. E. Dubins, “On curves of minimal length with a constraint on average curvature and with prescribed
initial and terminal positions and tangents,” American Journal of Mathematics, vol. 79, pp. 497-516,
1957.

[4] J. J. Kuffner and S. M. LaValle, “RRT-Connect: an efficient approach to single-query path planning,”
in Proc. IEEE Conf. on Robotics and Automation, 2000.

