
Daniele Gammelli, Joseph Lorenzetti,
Katie Luo, Gioele Zardini, Marco Pavone

Principles of Robot
Autonomy

SEPTEMBER 23, 2025

2

Forward

This collection of notes is meant to provide a fundamental understanding of
the theoretical and algorithmic aspects associated with robotic autonomy1. In 1 The field of robotic autonomy is vast

and diverse, encompassing theory and
algorithms from many fields of science,
technology, and engineering. These
notes cannot cover all material and
therefore focuses on the most founda-
tional and widely used techniques.

particular, we cover topics spanning the three main pillars of autonomy: motion
planning and control, perception, and decision-making, and also include some
information on useful software tools for robot programming, such as the Robot
Operating System (ROS). By avoiding extremely in-depth discussions on specific
algorithms or techniques, we focus on providing a high-level understanding
of the full autonomy stack to provide a good starting point for any engineer or
researcher interested in robotics. Some other great references that cover a wide
range of robotics topics include:

R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005

While these notes are meant to be as self-contained as is practical, we gen-
erally assume some prior knowledge of several topics. Specifically, familiarity
with the basics of calculus, differential equations, linear algebra, probability and
statistics, and computer programming is helpful.

Acknowledgments

These notes accompany and are based largely on the content of the courses
AA274A: Principles of Robot Autonomy I and AA274B: Principles of Robot Autonomy
II at Stanford University. We would therefore like to acknowledge the students
who have taken the course and provided useful feedback since its initial offering
in 2017. We also reserve special acknowledgements for the course assistants
who were instrumental in developing and refining the course material, and in
particular Benoit Landry and Edward Schmerling, who were instrumental in
developing the first iteration of the course. In large part, additional material for
the course such as homework and lectures are also publicly available.

Contents

PA R T I R O B O T M O T I O N P L A N N I N G A N D C O N T R O L

1 Modeling Robot Dynamics 11

1.1 State Space Models 11

1.2 Kinematics and Dynamics 16

1.3 Wheeled Robot Motion Models 27

1.4 Simulating Robot Dynamics 31

1.5 Summary 37

1.6 Exercises 37

2 Open-Loop Control & Trajectory Optimization 41

2.1 The Optimal Control Problem 43

2.2 Indirect Methods 47

2.3 Direct Methods 56

2.4 Differentially Flat Systems 59

2.5 Summary 67

2.6 Exercises 67

3 Closed-Loop Control & Trajectory Tracking 75

3.1 Linear Closed-loop Control 76

3.2 Nonlinear Closed-loop Control 79

3.3 Trajectory Tracking Control 82

3.4 Exercises 85

4 Search-Based Motion Planning 87

4.1 Grid-based Motion Planners 89

4.2 Combinatorial Motion Planning 95

4.3 Exercises 97

5 Sampling-Based Motion Planning 101

5.1 Probabilistic Roadmap (PRM) 102

5.2 Rapidly-exploring Random Trees (RRT) 103

4 CONTENTS

5.3 Theoretical Results for PRM and RRT 104

5.4 Fast Marching Tree Algorithm (FMT*) 105

5.5 Kinodynamic Planning 105

5.6 Deterministic Sampling-Based Motion Planning 106

5.7 Exercises 108

PA R T I I R O B O T P E R C E P T I O N

6 Introduction to Robot Sensors 113

6.1 Sensor Classifications 113

6.2 Sensor Performance 114

6.3 Common Sensors on Mobile Robots 117

6.4 Computer Vision 121

7 Camera Models and Calibration 127

7.1 Perspective Projection 128

7.2 Camera Calibration: Direct Linear Method 131

7.3 Camera Auto-Calibration 137

7.4 Challenges 139

7.5 Exercises 141

8 Stereo Vision and Structure From Motion 143

8.1 Stereo Vision 143

8.2 Structure From Motion (SFM) 148

9 Image Processing 151

9.1 Image Filtering 151

9.2 Image Feature Detection 157

9.3 Image Descriptors 160

9.4 Exercises 161

10 Information Extraction 163

10.1 Geometric Feature Extraction 163

10.2 Object Recognition 169

11 Deep Learning Architectures for Perception 173

11.1 Convolutional Neural Networks (CNNs) 173

11.2 Vision Transformers (ViTs) 176

11.3 PointNet and Point Cloud Processing 179

11.4 3D Convolutions: VoxelNet and PointPillars 184

11.5 Multi-modal Fusion Approaches 189

principles of robot autonomy 5

12 Object Detection and Recognition 193

12.1 2D Object Detection Foundations 194

12.2 3D Object Detection 204

12.3 Semantic and Instance Segmentation 211

12.4 Exercise: Exploring YOLO Object Detector 218

PA R T I I I R O B O T L O C A L I Z A T I O N

13 Introduction to Localization and Filtering 223

13.1 Preliminary Concepts in Probability 224

13.2 Markov Models 229

13.3 Bayes Filter 230

14 Approximate Filters for State Estimation 237

14.1 The Gaussian Distribution 238

14.2 Kalman Filter 239

14.3 Extended Kalman Filter (EKF) 243

14.4 Non-parametric Filters: From Grids to Particles 247

14.5 Histogram Filter 248

14.6 Particle Filter 250

14.7 Exercises 253

15 Robot Localization 255

15.1 A Taxonomy of Robot Localization Problems 255

15.2 Robot Localization via Bayesian Filtering 257

15.3 Markov Localization 259

15.4 Extended Kalman Filter (EKF) Localization 260

15.5 Monte Carlo Localization (MCL) 264

15.6 Exercises 264

16 Simultaneous Localization and Mapping (SLAM) 267

16.1 SLAM Paradigms 268

16.2 Front-End 270

16.3 Examples by Sensing Modality 271

16.4 Mathematical foundations of SLAM 274

16.5 Extended Kalman Filter SLAM 278

16.6 Particle Filter-Based SLAM 283

16.7 Graph SLAM 287

16.8 Factor Graph SLAM 290

16.9 Advanced and Emerging Methods 292

16.10Exercises 293

6 CONTENTS

17 Sensor Fusion and Object Tracking 299

17.1 A Taxonomy of Sensor Fusion 300

17.2 Bayesian Approach to Sensor Fusion 301

17.3 Practical Challenges in Sensor Fusion 303

17.4 Object Tracking 304

PA R T I V R O B O T D E C I S I O N M A K I N G

18 Finite State Machines 311

18.1 Finite State Machines 311

18.2 Finite State Machine Architectures 314

18.3 Implementation Details 316

19 Sequential Decision Making 319

19.1 Deterministic Decision Making Problem 320

19.2 Stochastic Decision Making Problem 325

19.3 Markov Decision Processes 329

19.4 Limitations of Dynamic Programming 333

20 Reinforcement Learning 337

20.1 The Reinforcement Learning Problem 337

20.2 Dynamic Programming Methods 342

20.3 Reinforcement Learning Paradigms 346

20.4 A Taxonomy of Reinforcement Learning 351

20.5 Model-free Reinforcement Learning 353

20.6 Model-based Reinforcement Learning 361

20.7 The Promise of Learning from Interaction 365

21 Imitation Learning 367

21.1 Imitation Learning in Robotics 367

21.2 Behavioral Cloning 370

21.3 Inverse Reinforcement Learning 374

PA R T V R O B O T S O F T WA R E

22 Robot System Architectures 383

22.1 Robot System Architectures 383

22.2 Architecture Structures 384

22.3 Architecture Styles 386

23 The Robot Operating System 389

23.1 Challenges in Robot Programming 389

principles of robot autonomy 7

23.2 A Brief History of ROS 390

23.3 Characteristics of ROS 390

23.4 Robot Programming with ROS 392

References 397

Part I

Robot Motion Planning and
Control

1
Modeling Robot Dynamics

Robots can take on a wide variety of forms: they may have rigid or flexible
structures, rely on different types of actuators for control, perceive their sur-
roundings through diverse sensing modalities, or even exist as purely virtual
agents. Despite this variety of embodiments, nearly all robotic systems share a
fundamental characteristic—they are dynamic agents whose states evolve over
time. The most immediate example of robot dynamics is physical motion, en-
compassing changes in position, velocity, joint configurations, and sensor orien-
tations. A deep understanding of the dynamical properties of a robotic system
is essential to its effective design and control. For instance, building a bipedal
robot capable of walking or running requires detailed modeling of its motion
to ensure that the mechanical structure and actuators can withstand the forces
and torques involved. Accurate dynamic models are also critical for designing
control strategies that achieve stable, efficient, and responsive locomotion.

This chapter introduces several foundational topics in modeling robotic sys-
tems. We will start with Section 1.1 by introducing the concept of a state space
model, which provides a mathematical framework to describe the behavior of a
robot’s state over time. Next, in Section 1.2, we will detail how a robot’s kine-
matics and dynamics are used to derive these state space models, focusing on the
principles that govern physical motion and constraints. We will then explore
specific motion models for wheeled robots in Section 1.3, including the unicycle
and differential drive models, to illustrate practical applications of these concepts.
Finally, in Section 1.4, we will discuss computational techniques for simulating
robot dynamics, emphasizing numerical integration methods such as the Euler
and Runge-Kutta methods to approximate and analyze the time evolution of
robotic systems.

1.1 State Space Models

A state space model is a mathematical framework for describing the behavior of
a dynamical system. Every state space model consists of two key components: a
state and a model.

12 modeling robot dynamics

Definition 1.1.1 (State). The state of a dynamical system at time t0 is a minimal
set of variables x(t0) such that, given the control input u(t) for all t ≥ t0, the
future evolution of the system’s state x(t) for all t ≥ t0 is uniquely determined,
independently of the system’s behavior for t < t0.

Formally, the state is a sufficient statistic of the system’s history: given the
current state and the external inputs to the system, the system’s future behavior
is fully determined, independently of how that state was reached. The state of a
robotic system can be finite or infinite-dimensional. For example, a simple mo-
bile robot with a rigid body can be represented by a finite and low-dimensional
state (e.g., the position and velocity of its center of mass), whereas a flexible
robot might require an infinite-dimensional state to describe the continuous de-
formation of its body (e.g., a deflection function that describes the displacement
at every point along the robot’s length).

When modeling the dynamics of a robot, it is important to define the state
in a way that aligns with the specific goals and requirements of the application.
In practice, the complexity of the state representation can often be reduced
by omitting parts of the robot’s dynamics that are irrelevant to the problem
at hand. For instance, in developing software to enable an autonomous car
navigate urban environments, it may be sufficient to model only its position,
orientation, and velocity, while abstracting away the internal mechanics of the
engine, tires, or suspension. Conversely, if the car is being designed for high-
performance racing, these specifics become critical to accurately capture and
optimize its behavior. Throughout this book, we focus on applications where the
state is finite-dimensional and represent it as a vector x ∈ Rn, referred to as the
state vector.

The second key component of a state space model is the model itself, which
defines the rules and equations governing the evolution of the state over time by
relating it to a set of inputs and outputs.

The inputs to a model refer to external factors or control signals that influence
the behavior of the system.1 These can include forces, torques, voltages, com-

1 The term input is used interchangeably
with control and action in different
domains of robotics.

mands, or any other external stimuli that drive the system’s dynamics. As with
the state, the dimensionality of the input may vary, but throughout this book we
assume the input is represented by a finite-dimensional vector, u ∈ Rm.

The outputs of a model are the observable variables or measurements derived
from the system. These typically come from sensors or other measurement de-
vices that capture data reflecting the system’s state and behavior. For example,
a robot equipped with a global navigation satellite system (GNSS) sensor may
directly measure its position but not its heading. In some cases, the relationship
between the state and the output is complex—for example, the connection be-
tween a robot’s inertial pose and a red-green-blue-depth (RGB-D) camera image.
The process of inferring the state from the outputs is referred to as state estima-
tion, and it will be explored in detail in Chapters 13 - 17. We assume the output
is finite-dimensional and denote it by the vector y ∈ Rq.

principles of robot autonomy 13

Definition 1.1.2 (Model). A model describes the evolution of a dynamical system
through two types of equations: state equations and observation equations. The
state equations specify how the state evolves as a function of the current state
and inputs, while the observation equations define how the state influences the
measurable outputs.

State equations are typically modeled as differential equations2 describing the
2 Ordinary differential equations are
most commonly used to model robotic
systems. However, partial differential
equations may be needed for more
complex cases, such as systems with
flexible or deformable structures, where
dynamics vary over both space and
time.

changes in the state with respect to an independent variable, usually time:

ẋ = f (x(t), u(t)), (1.1)

where ẋ = dx(t)
dt is the time derivative of the state vector x(t), and f : Rn ×Rm →

Rn is the dynamics function of the system.
Observation equations take the form:

y(t) = h(x(t), u(t)), (1.2)

where y(t) denotes the output at time t, and h : Rn ×Rm → Rq is a function that
relates the state and inputs to the system’s output.

Together, the definitions of the state x, input u, output y, and Equations (1.1)
and (1.2), form the state space model3.

3 In some contexts, it may be convenient
to represent the evolution of a system
using discrete-time difference equa-
tions. As we will discuss in Chapter 2,
discrete-time models are particularly
well-suited for systems that naturally
evolve in discrete steps, or for approxi-
mating continuous-time systems within
computational frameworks.

Throughout this book, we assume that time is the independent variable and
simplify our notation by writing θ in place of θ(t) for time-dependent variables.

Accordingly, we use θ̇ to represent time derivaties, θ̈ = d2θ(t)
dt2 for second deriva-

tives, and θ(m) = dmθ(t)
dtm for higher-order derivatives.

In summary, state space models provide a powerful formalism for modeling,
analyzing, and controlling robotic systems. Mastering and effectively utilizing
state space models is crucial for advancing robotic capabilities, enabling sys-
tems to autonomously navigate, interact, and adapt in dynamic and complex
environments.

1.1.1 Types of State Space Models

State space models, as represented in Equation (1.1) and Equation (1.2), can be
classified based on two key properties: linearity and time-invariance.

A model is said to be time-invariant if the functions f and h do not explicitly
depend on time t; otherwise, it is time-varying. A model is said to be linear4

4 Often referred to as a linear system.if the functions f and h are linear functions of both the state x and control u.
More generally, a system is linear if it satisfies the superposition principle, which
states that the response to a linear combination of inputs is the corresponding
linear combination of the individual responses. Formally, if x1(t) and x2(t) are
solutions corresponding to inputs u1(t) and u2(t), respectively, then for any
scalars α, β ∈ R, the trajectory αx1(t) + βx2(t) is a solution corresponding to
the input αu1(t) + βu2(t). If this property does not hold, the system is said to be
nonlinear.

14 modeling robot dynamics

Example 1.1.1 (Linear Time-Invariant Model). Consider the system:

ẋ = x + u

y = x.

This model is linear and time-invariant because the functions describing the
system depend linearly on x and u and there is no explicit time dependence.

Example 1.1.2 (Nonlinear Time-Varying Model). Consider the system:

ẋ = tx + u

y = x2.

This model is nonlinear due to the quadratic output term x2, and it is also time-
varying because the state equation explicitly depends on time through the
term tx. Note, however, that the state equation ẋ = tx + u is linear, as it sat-
isfies the superposition principle with respect to x and u. Therefore, the nonlin-
earity in this system arises solely from the output equation, not from the state
dynamics.

Linear Models and Their Standard Form. Linear models are particularly impor-
tant due to their analytical tractability and widespread applicability. They are
commonly expressed in a standard matrix form:

ẋ = A(t)x + B(t)u,

y = C(t)x + D(t)u,
(1.3)

where the matrices A(t), B(t), C(t), D(t) are of appropriate dimensions and
define the linear relationships for the state dynamics and the output. We refer
to the matrix A(t) as the dynamics matrix, B(t) as the control matrix, C(t) as the
output or sensor matrix, and D(t) as the direct or feed-forward matrix5.

5 If the matrices A(t), B(t), C(t),
and D(t) are time-invariant, we have
a Linear Time-Invariant (LTI) system,
which is a cornerstone of control theory.

Despite the inherent nonlinear nature of many real-world systems, linear
models are often employed due to their simplicity and ease of manipulation.
A common practice is to approximate nonlinear systems with linear models
around specific operating points using a technique known as linearization. As we
will discuss in Chapter 3, this approach simplifies analysis and control design,
making linear models a fundamental tool in engineering and control theory.

1.1.2 Converting Higher-Order Models Into State Space Form

The state space model, as described by Equation (1.1), is represented by first-
order differential equations. However, many robotics applications involve
higher-order differential equation models, such as those governing the dynam-
ics of robotic arms or wheeled robots. To analyze and control these systems in
a unified framework, we can convert higher-order models into first-order state
space form by introducing additional state variables.

principles of robot autonomy 15

Consider a linear n-th order differential equation:

θ(n) + an−1θ(n−1) + . . . + a1θ̇ + a0θ = u, (1.4)

where ai ∈ R are constants and θ is the state variable. To convert this differen-
tial equation into state space form, i.e., a set of first-order differential equations,
we can define an n-dimensional state vector:

x =


x1

x2
...

xn

 :=


θ(n−1)

θ(n−2)

...
θ

 .

Given that ẋ1 = θ(n), ẋ2 = x1, ẋ3 = x2 and so on, we can express the higher-
order differential equation as a system of first-order state space equations:

ẋ1

ẋ2
...

ẋn

 =


−a1x1 − . . .− anxn

x1
...

xn−1

+


u
0
...
0

 .

In this particular case, the model is linear, so it can be represented in matrix
form:

ẋ =


−a1 −a2 . . . −an−1 −an

1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0

 x(t) +


1
0
...
0

 u(t).

Let us consider a practical example of this technique:

Example 1.1.3 (Converting Newton’s Second Law to State Space Form). Many
robotic systems, such as robotic arms and wheeled robots, involve dynamics
that can be described by Newton’s second law. Understanding how to convert
these higher-order dynamics into state space form is crucial for controlling and
analyzing numerous robotics systems.

Newton’s second law describes the acceleration response of a mass m result-
ing from a force F:

F = ms̈,

where s represents the one-dimensional positional displacement of the mass.
Newton’s second law, in this form, is a classic example of a double integrator
system6.

6 In control theory, a double integrator
describes a system in which the output
(here, the position s) is obtained by
integrating the input (acceleration)
twice.

To convert this second-order differential equation into state space form, we
first define the state vector:

x :=

[
s
ṡ

]
.

16 modeling robot dynamics

Then, we represent the dynamics in state space form:

ẋ =

[
0 1
0 0

]
x +

[
0
1
m

]
u,

where u represents the applied force F. By defining the state vector x and ex-
pressing the original second-order differential equation in this manner, we have
effectively transformed it into a set of first-order differential equations.

1.2 Kinematics and Dynamics

Understanding a robot’s physical motion is essential for enabling its autonomous
operation. For instance, it is crucial to determine how an autonomous vehicle’s
actions, such as adjusting throttle and steering, affect its state and interaction
with the environment. Similarly, it is important to understand how a robot ma-
nipulator’s movements impact its ability to manipulate objects. A crucial aspect
of this understanding involves the concepts of kinematics and dynamics, which
govern the robot’s physical motion and the constraints it must adhere to.

Definition 1.2.1 (Kinematics). Kinematics is the study of the motion of physical
systems, concerned with describing positions, velocities, and accelerations over
time, without reference to the forces or torques that produce the motion.

A robot’s kinematics outline limitations on its motion that are determined by
its physical state or geometry. These constraints arise from the physical struc-
ture of the system, such as joint limits, actuator placement, linkage geometry,
and the ways in which different components are mechanically connected. They
determine how the system can move, independent of any external forces. For
example, consider a wheeled robot. Static friction restricts the wheels from slid-
ing laterally, meaning they cannot move in the direction parallel to the rotation
axis. This kinematic constraint significantly limits the robot’s ability to navigate
and affects its overall maneuverability. By understanding these constraints, one
can better grasp the feasible movements of the robot within its environment,
which in turn informs how it can effectively interact with the world around it.

Definition 1.2.2 (Dynamics). Dynamics is the study of the motion of physical
systems as determined by the forces and torques acting upon them. It seeks to
relate a system’s motion to the underlying physical causes of that motion, such
as gravity, friction, or applied inputs.

In the context of robotic or mechanical systems, dynamics are typically gov-
erned by Newton’s Second Law, which states that the acceleration of a body
is proportional to the net force acting on it. For example, the dynamics of an
autonomous vehicle are described by the relationship between its acceleration
and the external forces acting on it, including tire-road interaction, gravitational
effects on slopes, and aerodynamic drag.

principles of robot autonomy 17

From the definitions above, kinematics describe constraints that arise from
the robot’s physical state or geometry, whereas dynamics explain how forces
or inputs influence the robot’s motion. In this section, we first introduce the
concept of generalized coordinates for defining the physical configuration of a
robot and discuss how the robot’s kinematics and dynamics can be expressed in
terms of these coordinates. Then, we will demonstrate how to use the system’s
kinematics and dynamics to define a state space model for the robot’s physical
motion. In the following chapters, we will explore how these models are ap-
plied to develop robust and high-performing algorithms for motion planning
and control.

1.2.1 Generalized Coordinates

A robot’s physical state, also referred to as its configuration, provides a complete
specification of the position of every point on the robot at a given instant 7. A 7 T. Lozano Perez. “Spatial planning:

a configuration space approach”. In:
Autonomous Robot Vehicles. 1990

configuration can be represented using a set of variables known as generalized
coordinates, denoted by q(t) ∈ Rng . Generalized coordinates form a set of pa-
rameters that uniquely describe the robot’s configuration relative to a reference
frame. Depending on the system, they may include joint angles, Cartesian po-
sitions, orientations, or other parameters defining the robot’s physical arrange-
ment8.

8 The terms “configuration” and “gen-
eralized coordinates” are often used
interchangeably. However, while the
configuration refers to the robot’s phys-
ical arrangement in space, generalized
coordinates are a specific mathematical
representation of that arrangement.
Multiple choices of generalized co-
ordinates may represent the same
configuration.

Importantly, the configuration—i.e., the generalized coordinates—typically
constitutes only a part of the full system state x. As discussed in previous sec-
tions, in a state-space model, the state is a complete set of variables sufficient to
determine the system’s future evolution, given an external input. This usually
includes both the generalized coordinates q and their time derivatives, called
generalized velocities, denoted as q̇. In some systems, the state may also include
additional internal variables such as actuator dynamics, sensor states, or envi-
ronmental parameters.

Example 1.2.1 (Rolling Wheel). The configuration of a wheel rolling on a plane,
as illustrated in Figure 1.1, can be represented by three parameters: the contact
point position coordinates (x, y) and the heading angle θ relative to a fixed ref-
erence frame. This set of parameters, q = [x, y, θ]⊤, constitutes just one possible
choice of generalized coordinates to define the wheel’s configuration. Alterna-
tively, the configuration could also be represented using the heading angle θ

along with a polar coordinate representation of the contact point position.

1.2.2 Kinematic Constraints

Once a specific set of generalized coordinates, q, is chosen to represent a robot’s
configuration, we can identify the relevant kinematic constraints for the robot.
These kinematic constraints establish relationships between the generalized
coordinates and the generalized velocities, thereby describing the limitations

18 modeling robot dynamics

Figure 1.1: Generalized co-
ordinates for a wheel rolling
without slipping on a plane.

on the robot’s motion. We refer the reader to Siciliano et al. [63] for a compre-
hensive treatment of robotic kinematics and the formulation of the associated
constraint equations.

Definition 1.2.3 (Kinematic Constraints). Kinematic constraints are a set of con-
straints imposed on the generalized coordinates, q, and generalized velocities, q̇.
We express kinematic constraints mathematically as:

ãi(q, q̇) = 0, i = 1, . . . , k < ng, (1.5)

where k is the number of constraints and ng is the number of generalized coor-
dinates.

In many robotics applications, kinematic constraints are linear with respect
to the generalized velocities. These are known as Pfaffian constraints, and can be
mathematically expressed as:

a⊤i (q)q̇ = 0, i = 1, . . . , k < ng, (1.6)

where ai(q) ∈ Rng . Pfaffian constraints can also be compactly represented in
matrix form as:

A⊤(q)q̇ = 0, (1.7)

where A(q) ∈ Rng×k.

Figure 1.2: Generalized coordi-
nates for a simple pendulum.

Example 1.2.2 (Pendulum). Figure 1.2 shows a simple pendulum with a point
mass and a rigid, massless, rod that rotates about a fixed pivot point. We can
choose to represent the configuration of the pendulum by the Cartesian coordi-
nate position of the mass, assuming the pivot point is the reference frame origin.
The generalized coordinate vector for this choice is q = [x, y]⊤, and the gener-
alized velocity vector is q̇ = [ẋ, ẏ]⊤. The fact that the rod connecting the pivot
point to the mass is rigid introduces a restriction on the motion of this system,
which we represent by the kinematic constraint:

ã1(q, q̇) = x2 + y2 − L2 = 0, (1.8)

where L is the length of the rod. While this constraint is not in Pfaffian form, we
can equivalently express it as a Pfaffian constraint by noting that:

ã1(q, q̇) = 0 =⇒ ∂ã1(q, q̇)
∂t

= 0.

principles of robot autonomy 19

For the pendulum kinematic constraint in Equation (1.8), we have:

∂ã1(q, q̇)
∂t

= 2xẋ + 2yẏ,

and therefore we can write the constraint in the Pfaffian form of Equation (1.6)
with:

a⊤i (q) =
[
2x 2y

]
. (1.9)

The Pfaffian constraint in Equation (1.9) implies that Equation (1.8) holds as
long as the pendulum starts in a state q(0) satisfying ã1(q(0)) = 0.

An alternative choice of generalized coordinates to represent the pendulum’s
configuration is to consider the angle θ between the vertical and the pendulum’s
rod orientation, q = [θ]. This choice fully specifies the configuration without re-
quiring us to define any kinematic constraints, making it a more natural choice
for this system. Note that since x = L sin θ and y = −L cos θ the kinematic
constraint in Equation (1.8) is trivially satisfied for all θ.

Example 1.2.3 (Rolling Wheel). Consider the wheel illustrated in Figure 1.1,
which we can represent with the generalized coordinates q = [x, y, θ]⊤. For
this system, we can assume that the friction at the contact point between the
wheel and the surface induces a no-slip condition. This no-slip condition is a
constraint on the motion of the wheel that restricts the velocity component of
the wheel in the lateral direction to always be zero. Since the unit vector ev =

[cos θ, sin θ]⊤ describes the heading of the wheel, the lateral direction is given
by the perpendicular unit vector ev,⊥ = [sin θ, − cos θ]⊤. We can compute the
lateral velocity from the dot product of the lateral direction unit vector and the
velocity vector, v = [ẋ, ẏ]⊤, which gives the no-slip kinematic constraint:

a1(q, q̇) = ẋ sin θ − ẏ cos θ = 0. (1.10)

This constraint is linear in the generalized velocities, (ẋ, ẏ), and therefore is a
Pfaffian constraint.

1.2.3 Holonomic and Nonholonomic Constraints

Kinematic constraints often fall into two categories: holonomic or nonholonomic,
depending on how they restrict the motion of the system. Holonomic con-
straints can be expressed solely as functions of the generalized coordinates,
without involving generalized velocities. In contrast, nonholonomic constraints
involve the generalized velocities and cannot be expressed solely in terms of the
generalized coordinates.

Definition 1.2.4 (Holonomic Constraints). Kinematic constraints that can be
expressed in the form:

ãi(q) = 0, i = 1, . . . , k < ng, (1.11)

are called holonomic.

20 modeling robot dynamics

In robotics applications, holonomic constraints generally arise due to me-
chanical interconnections, such as rigid links and joints of a robotic arm. We
refer to a system that is only subject to holonomic constraints as a holonomic sys-
tem. These constraints are a unique subclass of kinematic constraints that restrict
the accessible configurations of the system. Specifically, for a system with n
generalized coordinates under k holonomic constraints, the dimension of the
space of accessible configurations is n− k. Holonomic constraints can always be
equivalently expressed as Pfaffian constraints of the form Equation (1.6). This is
because:

ãi(q) = 0 =⇒ ∂ãi(q)
∂t

= 0,

and by differentiating the expression:

∂ãi(q)
∂t

=
∂ãi(q)

∂q
q̇ = a⊤i (q)q̇, (1.12)

as we demonstrated in Example 1.2.2. However, it is important to note that not
all Pfaffian constraints are holonomic. For a Pfaffian constraint to be holonomic,
it must be integrable to the form in Equation (1.11). Specifically, there must exist
a scalar function ãi(q) such that:

a⊤i (q)q̇ =
∂ãi(q)

∂q
q̇ = 0. (1.13)

This implies that the Pfaffian constraint, when integrated, yields a constraint
solely dependent on the generalized coordinates q, without any explicit depen-
dence on their time derivatives q̇.

Example 1.2.4 (Pendulum). Consider the pendulum from Example 1.2.2. The
kinematic constraint in Equation (1.8) restricts the pendulum mass to lie on
a circle of radius L, which is a subset of all possible generalized coordinates.
This constraint is holonomic since we can express it as a function of only the
generalized coordinates.

Example 1.2.5 (Rolling Wheel). Consider the wheel from Example 1.2.3, where
the kinematic constraint in Equation (1.10) restricts the direction of motion. In
contrast to the pendulum, this constraint does not limit the wheel’s ability to
reach any configuration of generalized coordinates, namely the position and
heading. Mathematically, we cannot integrate the constraint in Equation (1.10)
to yield a constraint of the form ãi(q) = 0, and thus this constraint is not holo-
nomic.

While holonomic constraints restrict the system’s accessible configurations,
kinematic constraints can also limit the motion between configurations. We refer
to these constraints as nonholonomic constraints. A system that is subject to at
least one nonholonomic constraint is referred to as a nonholonomic system.

Definition 1.2.5 (Nonholonomic Constraints). Constraints that can be described
in Pfaffian form, ai(q)⊤q̇ = 0, but cannot be integrated to the form ãi(q) = 0 are
called nonholonomic.

principles of robot autonomy 21

That is, the Pfaffian expressions cannot be written as the total time derivative
of any scalar function that depends only on the generalized coordinates. In
other words, there exists no scalar function ãi(q) such that d

dt ãi(q) = ai(q)⊤q̇.
Geometrically, nonholonomic constraints restrict the instantaneous generalized
velocities to lie in the null space of A(q)⊤, where A(q) is the matrix whose rows
are the vectors ai(q)⊤ corresponding to each nonholonomic constraint.

Example 1.2.6 (Rolling Wheel). Consider the wheel example from Exam-
ple 1.2.3, which has a nonholonomic constraint:

a1(q)⊤q̇ =
[
sin θ − cos θ 0

]
q̇ = 0.

The null space of a1(q)⊤ in this case is spanned by the vectors [cos θ, sin θ, 0]
and [0, 0, 1], which suggests that all motion must be made up of a linear combi-
nation of these vectors. Intuitively, we expect this because [cos θ, sin θ, 0] is the
rolling direction and [0, 0, 1] is the axis the wheel rotates about.

In summary, holonomic constraints restrict a system’s motion by confining its
configurations to lower-dimensional manifolds—specifically, level sets defined
by scalar equations of the form ãi(q) = 0. For a system with n generalized co-
ordinates and k independent holonomic constraints, the configuration space is
effectively reduced to a manifold of dimension n − k. This reduction reflects a
true loss of accessibility in the configuration space: the system can only evolve
along a restricted subset of configurations determined by the initial conditions
and the constraint equations. In contrast, nonholonomic constraints act directly
on the system’s instantaneous velocities, typically expressed in Pfaffian form
as A(q)⊤q̇ = 0, where A(q)⊤ is a full-rank matrix of dimension k × n. These
constraints restrict the allowed directions of motion at each configuration by
confining q̇ to lie in an (n− k)-dimensional subspace. However, since nonholo-
nomic constraints are not integrable, they do not reduce the dimensionality of
the configuration space itself. That is, although motion is constrained at each
instant, the system may still be able to reach any configuration in the configura-
tion space through admissible trajectories that respect the velocity constraints.
Thus, while holonomic constraints reduce the number of independent config-
uration variables and confine the system to a lower-dimensional subset of the
configuration space, nonholonomic constraints preserve full accessibility of the
configuration space but restrict how that space can be traversed.

1.2.4 Kinematic Models

Once we have chosen an appropriate set of generalized coordinates q and have
identified the relevant kinematic constraints, we can convert the kinematic con-
straints into a state space model of the form in Equation (1.1), which we refer to
as a kinematic model.

Definition 1.2.6 (Kinematic Model). Given a generalized coordinate vector q ∈
Rng , and k Pfaffian constraints9, A⊤(q)q̇ = 0, a kinematic model is a state space

9 These Pfaffian constraints can come
from a combination of holonomic and
non-holonomic constraints.

22 modeling robot dynamics

model of the form:
q̇ = G(q)u, (1.14)

where u ∈ Rp is the input and where the column space of G(q) ∈ Rng×ng−k

spans the null space of A⊤(q).

Each input in u corresponds to one degree of freedom of the system, and
for any initial condition q(0) and sequence of inputs u(t) the solutions to the
kinematic model are guaranteed to satisfy the Pfaffian constraints. We can prove
that the trajectories of the kinematic model will satisfy the Pfaffian constraints
by writing the model in the equivalent form:

q̇ = G(q)u =
n−k

∑
i=1

gi(q)ui,

where gi ∈ Rng is the i-th column of G and ui is the i-th input. In this form, we
can more easily see that each input acts on the generalized velocity q̇ through
a particular mode that is defined by the vector gi. Since we have specified in
Theorem 1.2.6 that the column space of G spans the null space of A⊤(q), we
know that by definition:

A⊤(q)gi(q)ui = 0,

for any input ui ∈ R and for all coordinates q. Therefore, by definition each
component of the input vector can only influence the generalized velocity in
a way that satisfies the Pfaffian constraints. Another way to see this mathe-
matically is by substituting the kinematic model into the Pfaffian constraint
equation:

A⊤(q)q̇ = A⊤(q)G(q)u,

= A⊤(q)
(n−k

∑
i=1

gi(q)ui
)
,

=
n−k

∑
i=1

A⊤(q)gi(q)ui,

= 0.

Example 1.2.7 (Rolling Wheel). Consider the rolling wheel example from Exam-
ple 1.2.3, which has a single nonholonomic constraint:

a1(q)⊤q̇ =
[
sin θ − cos θ 0

]
q̇ = 0,

where q = [x, y, θ]⊤. The null space of a1(q)⊤ is spanned by the vectors [cos θ, sin θ, 0]⊤

and [0, 0, 1]⊤ and therefore the kinematic model is given by:ẋ
ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [u1

u2

]
. (1.15)

In this case, the inputs u1 and u2 have an intuitive physical meaning: u1 is the
speed at which the wheel is moving, and u2 is the wheel’s angular rotation rate.

principles of robot autonomy 23

1.2.5 Dynamics Models

Kinematic models describe the geometric constraints that limit a robot’s motion—
for example, the fact that a robotic arm can only rotate about its joints. However,
kinematics alone does not explain how motion is generated or resisted. For that,
we turn to dynamics, which describe how forces and torques influence motion
by producing accelerations.

Newton’s second law of motion is the foundation of robot dynamics, relating
the net force acting on a body to its acceleration. Applied to a single point mass,
the law takes the form:

F(q, q̇) = mq̈, (1.16)

where m is the mass of the particle, q = [x, y, z]⊤ is its position vector, and F is
the total force acting on the particle.

Example 1.2.8 (Mass-Spring-Damper System). A fundamental example in the
study of dynamics is the one-dimensional mass-spring-damper system. The
system consists of a mass m attached to a spring and a damper, constrained to
move along a line. The total force acting on the mass is typically composed of
three terms:

1. an external input force Fexternal,

2. a spring force −kx that resists displacement from the equilibrium position,
and

3. a damping force −cẋ that resists velocity.

The net force on the mass is:

F = Fexternal − kx− cẋ,

where k > 0 and c > 0 are the spring and damping coefficients, respectively,
and x is the displacement from equilibrium. Substituting this expression into
Newton’s second law yields the following second-order differential equation:

mẍ + cẋ + kx = Fexternal.

This equation models oscillatory motion with damping, and it arises in many
robotics applications—for example, when analyzing joint compliance, actuator
dynamics, or contact interactions.

While the mass-spring-damper system illustrates the dynamics of a single
particle in one dimension, real-world robotic systems are often more complex.
To capture their behavior, we extend Newton’s second law to systems of inter-
connected particles, typically modeled in robotics as rigid bodies. A rigid body
is an idealized object in which the relative positions of all constituent particles
remain fixed over time, regardless of external forces. This assumption implies
that the body does not deform and allows us to reduce a complex system of

24 modeling robot dynamics

interacting particles to a simpler model governed by the motion of a finite set
of parameters (e.g., position and orientation of a frame fixed to the body). As
a result, rigid body dynamics provide a powerful and tractable framework for
analyzing and simulating robotic systems10.

10 Interesting examples in robotics
where the rigid body assumption may
not hold include soft robots, robots
with compliant end-effectors, or robots
with lightweight flexible structures.

The motion of a rigid body in three-dimensional space can be described in
terms of its translational and rotational dynamics. Translational dynamics gov-
ern the motion of the body’s center of mass and are described by Newton’s
second law, as expressed in Equation (1.16), where the position variable refers
specifically to the center of mass. In three-dimensional space, a rigid body has
three translational degrees of freedom, corresponding to movement along each
of the Cartesian axes. Rotational dynamics, on the other hand, describe how
the body’s orientation evolves over time. A rigid body also has three degrees of
freedom associated with its orientation in three-dimensional space, correspond-
ing to rotation about each of its principal axes. Unlike translation, orientation
cannot be represented by a single vector, and several parameterizations are
commonly used. Notable examples include rotation matrices, which provide
a full and unambiguous representation at the cost of redundancy; Euler angles,
which use a sequence of three rotations to represent orientation, and quaternions,
which offer a compact and singularity-free alternative well-suited for numerical
applications.

The rotational dynamics11 of a rigid body are governed by the time evolution
11 We refer the reader to Shuster [59]
for an in-depth treatment of rotational
dynamics and attitude representations.

of its angular momentum. Specifically, they are described by:

M = Ḣ, (1.17)

where M denotes the total external moment (or torque) acting on the body,
and H is the angular momentum, typically computed about the center of mass.
This relationship is commonly referred to as Euler’s equation for rotational dy-
namics and captures how applied torques influence changes in the body’s rota-
tional motion.

An alternative to the Newton-Euler method—defined by Equations (1.16)-
(1.17)—for deriving the equations of motion for a rigid body is the Lagrange
Method. This approach is closely tied to the notion of generalized coordinates,
generalized velocities, and kinematic constraints, and takes an energy-based
approach. In the Lagrange method, the dynamics of a rigid body are derived
from a scalar quantity called the Lagrangian, defined as the difference between
the kinetic and potential energies:

L(q, q̇) = T(q, q̇)−V(q), (1.18)

where T(q, q̇) and V(q) denote the kinetic and potential energies of the sys-
tem, respectively. The evolution of the system is governed by Lagrange’s equa-
tions 12,13, which incorporate both external influences and kinematic constraints. 12 B. Siciliano et al. Robotics: Modelling,

Planning and Control. Springer Pub-
lishing Company, Incorporated, 2008.
Chap. 7

13 K. M. Lynch and K. C. Park. Modern
Robotics: Mechanics, Planning, and
Control. Cambridge University Press,
2017. Chap. 8

In the absence of constraints, the equations of motion are given by:

d
dt

(∂L
∂q̇j

)
− ∂L

∂qj
= Qj, j = 1, . . . , ng, (1.19)

principles of robot autonomy 25

where Qj ∈ R is a non-conservative generalized force associated with the gener-
alized coordinate qj

14, and ng corresponds to the system’s degrees of freedom.
14 Generalized forces are projections
of physical forces and torques into the
generalized coordinate space. Forces
not derived from a potential—such as
friction—are termed non-conservative.
In contrast, forces like gravity are
conservative.

Equations (1.19) describe how the generalized forces acting on the system relate
to its position, velocity, and acceleration, providing a systematic way to derive
the system’s dynamic model from its kinetic and potential energies.

In the presence of Pfaffian constraints15, Lagrange’s equations take the form:

15 While Lagrange’s method can ac-
commodate general constraints, we
focus here on Pfaffian constraints for
simplicity.

d
dt

(∂L
∂q̇j

)
− ∂L

∂qj
= Qj +

k

∑
i=1

λiaij(q), j = 1, . . . , ng,

a⊤i (q)q̇ = 0, i = 1, . . . , k,

(1.20)

where aij is the j-th component of the i-th Pfaffian constraint vector ai(q)
and λi ∈ R is a Lagrange multiplier. The first ng equations describe the dy-
namics of the generalized coordinates under the influence of both external
and constraint forces, while the remaining k equations represent the kinematic
constraints themselves. The complete system thus comprises ng + k equations
in ng + k unknowns (the generalized coordinates and the Lagrange multipliers),
and is commonly referred to as the standard non-holonomic form. If the system
is holonomic and the generalized coordinates are chosen to be independent,
the constraints are implicitly satisfied, and Lagrange’s equations reduce to the
simpler, unconstrained form introduced in Equation (1.19).

Example 1.2.9 (Pendulum). Consider again the pendulum depicted in Fig-
ure 1.2. To model its dynamics, we analyze how gravity drives the motion of the
mass. Specifically, we will demonstrate four distinct approaches for deriving the
equations of motion—using both Cartesian and polar coordinates, and applying
both the Newton-Euler and Lagrange methods. This comparison will highlight
how the choice of generalized coordinates can influence the complexity of the
derivation.

We begin by using Newton’s second law to derive the dynamics of the pen-
dulum, focusing on the two forces acting on the mass: gravity and the force
from the rod. We assume that the rod’s force acts purely along its axis. Since the
pendulum’s length is fixed, this force must counteract the component of gravity
along the rod and generate the required centripetal acceleration. The axial force
exerted by the rod is given by:

Fr = mg cos θ +
mv2

L
,

where m is the mass of the pendulum, g is gravitational acceleration, L is the
length of the rod, and v is the speed of the mass. The gravitational force is:

Fg = mg,

acting along the negative y-direction. To compute the net force in Cartesian
coordinates, we project both the rod’s force and the gravitational force onto

26 modeling robot dynamics

the x- and y-axes:

Fx = −mv2

L
sin θ −mg sin θ cos θ,

Fy =
mv2

L
cos θ −mg sin2 θ.

Applying Newton’s second law as defined in Equation (1.16) yields the equa-
tions of motion:

ẍ = −v2

L
sin θ − g sin θ cos θ,

ÿ =
v2

L
cos θ − g sin2 θ.

To express these equations purely in terms of Cartesian coordinates, we substi-
tute x = L sin θ and y = −L cos θ, leading to:

ẍ =
1
L2 (gxy− xv2),

ÿ = − 1
L2 (gx2 + yv2),

(1.21)

with v2 = ẋ2 + ẏ2. This method requires careful force analysis, as the kine-
matic constraint (fixed-length rod) is handled implicitly through the projected
components of the rod’s force.

As a second approach to deriving the equations of motion using Cartesian
coordinates, we now apply the Lagrange method, which yields a slightly sim-
pler formulation. We begin by defining the kinetic and potential energies:

T =
1
2

m(ẋ2 + ẏ2), V = mgy,

and observe that there are no external non-conservative generalized forces16. As
16 Gravity is a conservative force, so no
generalized non-conservative forces
appear.

discussed in Example 1.2.2, we recall the system’s single Pfaffian constraint:

xẋ + yẏ = 0.

Thus, using Lagrange’s equations introduced in Equation (1.20), we obtain:

mẍ = λx,

mÿ + mg = λy,

xẋ + yẏ = 0.

(1.22)

We can solve for the Lagrange multiplier λ by differentiating the constraint with
respect to time:

d
dt
(xẋ + yẏ) = ẋ2 + ẏ2 + xẍ + yÿ = 0,

and by substituting the expressions for ẍ and ÿ from the first two Lagrange’s
equations in (1.22) to obtain:

ẋ2 + ẏ2 +
1
m

x2λ +
1
m

y2λ− gy = 0.

principles of robot autonomy 27

Solving for λ yields:

λ =
m
L2 (gy− v2),

where we used L2 = x2 + y2 and v2 = ẋ2 + ẏ2. Finally, substituting the expres-
sion for λ back into the equations of motion and simplifying, we find:

ẍ =
1
L2 (gxy− xv2),

ÿ = − 1
L2 (gx2 + yv2),

(1.23)

which matches the result previously obtained using Newton’s method in Equa-
tion (1.21).

After applying both the Newton-Euler and Lagrange methods in Cartesian
coordinates, we now replicate the derivation in polar coordinates. To apply
Euler’s equation for rotational dynamics as given in Equation (1.17), we adopt a
coordinate frame fixed at the pivot point. The gravitational force acting on the
mass generates a moment about the pivot:

M = −mgL sin θ,

while the angular momentum of the system about the same point is:

H = mL2θ̇,

where mL2 is the moment of inertia17 about the pivot. Substituting into Euler’s
17 In Euler’s equation, the moment of
inertia plays a role analogous to mass in
Newton’s second law.

equation yields the system dynamics:

θ̈ = − g
L

sin θ, (1.24)

which are considerably more compact than the corresponding equations derived
in Cartesian coordinates.

The Lagrange method also becomes significantly simpler when using the
polar coordinate θ, as there is no need to handle Pfaffian constraints explicitly.
In this formulation, the kinetic and potential energies of the system are:

T =
1
2

mL2θ̇2, V = −mgL cos θ.

Applying Equation (1.20), and noting the absence of non-conservative general-
ized forces or constraints, we obtain the following equation of motion:

θ̈ = − g
L

sin θ, (1.25)

which, as expected, matches the result derived using Euler’s equation in Equa-
tion (1.24).

1.3 Wheeled Robot Motion Models

Robots are developed in diverse forms, sizes, and configurations, each featur-
ing distinct mobility solutions tailored to specific applications. Among these,

28 modeling robot dynamics

wheeled robots are particularly common because of their excellent mobility and
simple design. In this section, we demonstrate how the concepts from the pre-
ceding sections can be applied to two classic and widely used motion models
for simple wheeled robots: the unicycle model and the differential drive model.

1.3.1 Unicycle Model

Figure 1.3: Generalized coordi-
nates for a unicycle.

The unicycle model is one of the simplest kinematic models used for model-
ing robot motion. This model leverages the kinematics of the rolling wheel
discussed in Example 1.2.3, essentially assuming the robot is constrained only
by a no-slip constraint from a single wheel. Figure 1.3 illustrates a simplified
diagram of the generalized coordinates for the unicycle model.

The kinematic model is identical to the one presented in Equation (1.15),
namely: ẋ

ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [v
ω

]
, (1.26)

where v represents the forward speed and ω denotes the rotational rate.
While the unicycle model may be a simplified representation of the robot’s

true kinematics, it remains valuable in many contexts where detailed dynamics
are unnecessary. Its main advantage lies in its simplicity, which often enables
more computationally efficient algorithms. In practice, such lower-fidelity mod-
els are often used in the early stages of a system’s design or decision-making
process, and are later refined or supplemented with more accurate models when
higher precision is required.

1.3.2 Differential Drive Model

Figure 1.4: Generalized coor-
dinates for a differential drive
robot.

The differential drive model is a variation on the unicycle model from the pre-
vious section, with two wheels fixed on a shared rear axle and a passive front
wheel that induces no additional kinematic constraints. This model uses same
generalized coordinates as the unicycle model, q = [x, y, θ]⊤, but also re-
quires the definition of certain geometric parameters: the width of the rear axle,
denoted by L, and the radius of the wheels, denoted by r, as illustrated in Fig-
ure 1.4.

The differential drive model assumes the wheels roll without slipping, mak-
ing the derivation of its kinematic constraints similar to that of a single rolling
wheel, as discussed in Example 1.2.3. The heading vector of each wheel is given
by ev = [cos θ, sin θ]⊤, and the lateral direction is ev,⊥ = [sin θ, − cos θ]⊤. Using
the lateral direction vector, we define the no-slip kinematic constraints for the
wheels as:

ṗ⊤l ev,⊥ = 0, ṗ⊤r ev,⊥ = 0,

where ṗl and ṗr are the velocity vectors of the left and right wheels, respec-
tively. Next, we express the wheel velocity vectors ṗl and ṗr as functions of the

principles of robot autonomy 29

generalized coordinates and velocities by leveraging the robot’s geometry. The
positions of the left and right wheel centers, denoted as pl and pr, respectively,
can be computed from the generalized coordinates by:

pl =

[
x− L

2 sin θ

y + L
2 cos θ

]
, pr =

[
x + L

2 sin θ

y− L
2 cos θ

]
.

Taking the time derivative of these positions yields the velocity vectors:

ṗl =

[
ẋ− θ̇ L

2 cos θ

ẏ− θ̇ L
2 sin θ

]
, ṗr =

[
ẋ + θ̇ L

2 cos θ

ẏ + θ̇ L
2 sin θ

]
.

After some algebraic manipulation, we find that the no-slip kinematic con-
straints for each wheel are equivalent:

ṗ⊤l ev,⊥ = ṗ⊤r ev,⊥ = ẋ sin θ − ẏ cos θ = 0,

indicating that the no-slip constraint for both wheels is redundant, and thus
the constraint matches the single wheel constraint from Example 1.2.3. This is
intuitive because the wheels are rigidly connected; hence, if one wheel cannot
move laterally, neither can the other. The kinematic model for the differential
drive model is also identical to the single wheel model in Equation (1.26), but
the inputs can now be expressed in a more realistic form relative to the actual
geometry of the robot.

In particular, instead of using the forward speed v and body rotation rate ω

as inputs, as in Equation (1.26), the differential drive model uses the rotation
rates of the left and right wheels, ωl and ωr. We can derive a relationship be-
tween these sets of inputs by considering the geometry of the robot and the
no-slip wheel assumption. First, denote the position p = [x, y]⊤ in terms
of the wheel center positions by p = 1

2 (pl + pr), thus the velocity vector
is ṗ = 1

2 (ṗl + ṗr). By the no-slip wheel assumption, the velocity v can be ex-
pressed as v = e⊤v ṗ, leading to:

v = e⊤v ṗ,

=
1
2

e⊤v (ṗl + ṗr),

=
1
2
(vl + vr),

=
r
2
(ωl + ωr),

where r is the radius of the wheel and vl and vr are the speeds of the left and
right wheels, respectively. Additionally, the no-slip condition on each wheel is
given by vl = e⊤v ṗl and vr = e⊤v ṗr, expanded as:

ẋ cos θ + ẏ sin θ − θ̇
L
2
= vl ,

ẋ cos θ + ẏ sin θ + θ̇
L
2
= vr.

30 modeling robot dynamics

Since ẋ cos θ + ẏ sin θ = v, we simplify these expressions to:

L
2

θ̇ = vr − v,

L
2

θ̇ = v− vl .

Combining these gives:

Lθ̇ = vr − vl ,

= r(ωr −ωl),

establishing the relationship between the generalized velocity θ̇ and the wheel
rotational speeds.

In summary, the mapping between the inputs can be defined as:

v =
r
2
(ωl + ωr), ω =

r
L
(ωr −ωl).

which allows us to define the differential drive model:ẋ
ẏ
θ̇

 =

 r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L − r

L

 [ωr

ωl

]
. (1.27)

Despite the slight increase in complexity over the unicycle model, this model
leverages the geometry of the robot to make the inputs more intuitive. This en-
hancement makes the differential drive model more suitable for certain motion
planning and control tasks, as the robot’s actuation typically originates from
motors attached to the wheels’ axles.

More generally, a kinematic state-space model should be interpreted only as a
subsystem of a more comprehensive dynamical model. In particular, kinematic
models typically assume direct control over certain motion variables—such as
velocity or angular rate—without accounting for how these quantities are gen-
erated or constrained by the physical system. For more realistic modeling, it is
often necessary to extend the kinematic model to include additional integrators
in front of the control inputs.

Example 1.3.1 (Dynamic extension of the unicycle model). The unicycle model
introduced in Equation (1.26) assumes direct control over the forward veloc-
ity v and angular velocity ω, with the state defined by the variables (x, y, θ). To
reflect the fact that velocity v is itself the result of integrating an acceleration
input a, the model can be extended by treating v as an additional state, yielding
the augmented state (x, y, θ, v) and input (ω, a). The dynamics become:

ẋ
ẏ
θ̇

v̇

 =


v cos θ

v sin θ

ω

a

 . (1.28)

This dynamic extension accounts for acceleration as a control input and enables
the modeling of more realistic scenarios involving, e.g., actuation limits.

principles of robot autonomy 31

1.3.3 Bicycle/Simple Car Model

The bicycle model is a simplified kinematic model commonly used to approxi-
mate the motion of vehicles with two front-steered wheels and two rear-driven
wheels, such as cars or mobile robots with similar geometry. The model cap-
tures key steering dynamics while assuming no slip at the contact points of the
wheels. It is called a “bicycle” model because the two front wheels and two rear
wheels are collapsed into a single front and rear wheel aligned on a common
axis, forming a virtual two-wheeled vehicle. Compared to the unicycle and dif-
ferential drive models introduced earlier, the bicycle model enforces more real-
istic kinematic constraints on how the system can turn. In particular, it captures
the fact that the vehicle must steer to follow curved paths, and cannot rotate in
place. As such, it provides a better approximation for many wheeled systems
while still remaining relatively simple.

Figure 1.5 shows the simplified geometry of the bicycle model. This model
can be derived by enforcing nonholonomic constraints on the rolling direction
of each wheel and assuming ideal no-slip contact, following the discussion in
previous sections. Figure 1.6 illustrates how the same kinematic model can be
interpreted in the context of a four-wheeled vehicle. The key idea is that both
front wheels steer with a common angle ϕ, and the vehicle moves forward with
velocity v, subject to the no-slip constraints. These assumptions lead to the
following differential equations characterizing the car model:

Figure 1.5: The bicycle model
approximates the motion of a
four-wheeled vehicle by col-
lapsing each axle into a single
wheel, aligned with the ve-
hicle’s centerline. The state
consists of the position, (x, y),
of the rear axle center and the
heading angle, θ. The control
inputs are the forward velocity,
v, and the steering angle, ϕ.

Figure 1.6: The same bicycle
model applied to a car-like
vehicle. The control and state
definitions are identical to Fig-
ure 1.5, but the visualization
makes explicit the mapping
between the simplified model
and a four-wheeled car.

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ =
v
L

tan ϕ,

(1.29)

where (x, y) is the position of the rear axle center, θ is the heading angle, v is
the forward speed, ϕ is the steering angle, and L is the length of the wheelbase
(the distance between the front and rear axles). Therefore, we define the state as
x = [x, y, θ]⊤ and the control input as u = [v, ϕ]⊤.

1.4 Simulating Robot Dynamics

In Section 1.1, we introduced the concept of a state space model to mathematically
describe the evolution of a robot’s state over time. In Section 1.2 we demon-
strated how a robot’s kinematics and dynamics are used to derive a state space
model that represents its physical motion. In this section, we present several
computational techniques for simulating the changes in a robot’s state over time.

The state space model in Equation (1.1) is a general system of ordinary differ-
ential equations, which in most cases cannot be solved analytically. Numerical
simulation provides a practical approach to obtaining approximate solutions,
allowing us to better understand a robot’s dynamics and to test and validate
algorithms for robot autonomy. Typically, when we refer to simulating a system,

32 modeling robot dynamics

we mean approximately solving an initial value problem (IVP) for a system of
differential equations, as defined in Equation (1.1):

ẋ = h(x(t), t), x(t0) = x0,

where h(x(t), t) = f (x(t), u(t)), and the input u(t) may either be explicitly
defined as a known function of time (e.g., a predefined control sequence), or
computed at each time step based on the current state.

The objective of this initial value problem is to find the trajectory x(t), start-
ing from x(t0), that satisfies the differential equation18. By the Fundamental

18 If h is Lipschitz continuous in x(t)
and continuous in t, the trajectory x(t)
exists and is unique.

Theorem of Calculus19, the solution at time t can be written as:

19 This expresses the inverse rela-
tionship between differentiation and
integration: integrating the deriva-
tive ẋ = h(x(t), t) over time recovers the
original function x(t).

x(t) = x(t0) +
∫ t

t0

h(x(τ), τ)dτ.

In general, evaluating this integral analytically for arbitrary functions h(x(t), t)
is intractable. Therefore, we typically resort to numerical integration methods
that involve a discretization in time:

x(t) = x(t0) +
N−1

∑
k=0

∫ tk+1

tk

h(x(τ), τ)dτ, (1.30)

where t0 < t1 < · · · < tN = t define a time grid, and each interval has
width ∆tk = tk+1 − tk. This decomposition breaks the continuous integration
problem into a sum of smaller integrals over short intervals. Within each in-
terval [tk, tk+1], we can then approximate the integral using various numerical
quadrature rules—such as the Euler method, the Midpoint method, or higher-
order Runge-Kutta schemes—which trade off computational cost and accuracy.
In this section, we provide a concise introduction to some of the most widely
used methods.

Example 1.4.1 (Simple IVP). To illustrate the different numerical integration
methods, we will consider the initial value problem defined below and pre-
sented in Algorithm 1 as an example:

ẋ(t) = x(t) sin2(t), x(0) = 1.

Our goal is to approximate the trajectory x(t) over the interval [0, 10] using
various integration methods.

Concretely, we will explore different techniques to approximate the following
analytical solution:

x(t) = x0 exp
(

t− t0 − sin(t− t0) cos(t + t0)

2

)
,

which, for our specific initial conditions x0 = 1 and t0 = 0, simplifies to:

x(t) = exp
(

t− sin(t) cos(t)
2

)
.

principles of robot autonomy 33

Simple IVP (Running Example)

import numpy as np

Define the derivative function h(x, t)

def h(x, t):

return x * np.sin(t) ** 2

Define initial conditions and final time

x0 = 1.0 # Initial state x(t0)

t0 = 0.0 # Initial time t0

tf = 10.0 # Final time tf

∆t = 0.5 # Discretization step

t = np.arange(t0, tf + ∆t, ∆t) # Array of timestamps

Compute analytical solution

x_true = x0*np.exp(((t-t0) - np.sin(t-t0)*np.cos(t+t0))/2)

def integrate(h, x0, t, method):

x = np.zeros((t.size, x0.size))

x[0] = x0

for i in range(t.size - 1):

∆t = t[i + 1] - t[i]

x[i + 1] = method(h, x[i], t[i], ∆t)
return x

def method(h, x, t, ∆t):
Implment here numerical integreation method

Test a specific numerical method

x_method = integrate(h, x0, t, method)

Algorithm 1: Definition of an illustrative initial value problem. The code for this
example is available in the repository github.com/StanfordASL/pora-exercises

in the notebook ch01/simulation.ipynb. In the following sections, we will ex-
plore different numerical integration methods and implement them in a custom
method function.

1.4.1 Euler method

One of the simplest techniques for approximating the integral within each time
interval of the discretized problem, as shown in Equation 1.30, is the Euler
method20. This method approximates the integral over a short interval [tk, tk+1]

20 Named after the Swiss mathematician
Leonhard Euler and often referred to as
the forward Euler method.

34 modeling robot dynamics

by evaluating the integrand at the beginning of the interval.
Given that the trajectory x(t) satisfies:

x(tk+1) = x(tk) +
∫ tk+1

tk

h(x(τ), τ)dτ,

the Euler method approximates this integral by assuming h(x(τ), τ) is constant
within the interval, yielding:

x(tk+1) ≈ x(tk) + ∆t · h(x(tk), tk),

where ∆t = tk+1 − tk is the time step.
This approximation corresponds to a first-order Taylor series expansion:

x(t + ∆t) ≈ x(t) + ∆t ẋ(t),

= x(t) + ∆t · h(x(t), t),
(1.31)

which treats the rate of change ẋ(t) as constant across the interval.
Alternatively, the Euler method can be interpreted as a finite difference ap-

proximation of the time derivative:

ẋ(t) ≈ x(t + ∆t)− x(t)
∆t

.

While computationally inexpensive, the Euler method has limited accuracy due
to its reliance on information from the beginning of each interval. The local
truncation error21 is of order O(∆t2), and errors can accumulate significantly

21 That is, the error introduced in a
single time step.

over long trajectories unless small time steps are used.
As a concrete illustration, consider the running example introduced in Exam-

ple 1.4.1. A simple implementation of Euler’s method is presented in Algorithm
2.

Euler Method

def euler(h, x, t, ∆t):
return x + ∆t * h(x, t)

x_euler = integrate(h, x0, t, euler)

Algorithm 2: Python implementation of Euler’s method.

1.4.2 Midpoint method

The Midpoint method is a refinement of the Euler method that improves ac-
curacy by evaluating the derivative at the midpoint of the time interval, rather
than at its beginning. Recall that Euler’s method approximates the next state
using the derivative ẋ evaluated at time t:

x(t + ∆t) ≈ x(t) + ∆t · h(x(t), t).

principles of robot autonomy 35

In contrast, the Midpoint method approximates the integral by using the value
of the derivative at t + ∆t

2 :

x(t + ∆t) ≈ x(t) + ∆t · h
(

x
(

t +
∆t
2

)
, t +

∆t
2

)
. (1.32)

While this yields a more accurate estimate, it is not yet explicit, since the value
x(t + ∆t

2) is not known in advance.
To resolve this, we approximate the midpoint using a single Euler step of size

∆t
2 :

x
(

t +
∆t
2

)
≈ x(t) +

∆t
2
· h(x(t), t). (1.33)

Substituting this estimate into Equation (1.32), we arrive at the explicit form of
the Midpoint method:

x(t + ∆t) ≈ x(t) + ∆t · h
(

x(t) +
∆t
2
· h(x(t), t), t +

∆t
2

)
.

The Midpoint method improves the local truncation error with respect to the
Euler method from O(∆t2) to O(∆t3), providing significantly better accu-
racy for small step sizes. The improvement comes at the cost of computing
the derivative twice per step—once at the start of the interval and once at its
midpoint.

As an illustration, a simple implementation for the running example intro-
duced in Example 1.4.1 is presented in Algorithm 3.

Midpoint Method

def midpoint(h, x, t, ∆t):
t_mid = t + ∆t / 2

x_mid = x + (∆t / 2) * h(x, t)

return x + ∆t * h(x_mid, t_mid)

x_midpoint = integrate(h, x0, t, midpoint)

Algorithm 3: Python implementation of the Midpoint method.

1.4.3 Runge-Kutta-4 method

Both the Euler and Midpoint methods approximate the change in x over a time
step interval by evaluating the derivative ẋ at one or two specific points within
the interval. The Runge-Kutta family of methods generalizes this idea by us-
ing multiple evaluations of the derivative to achieve higher accuracy. One of
the most widely used methods in this family is the fourth-order Runge-Kutta
method22, which computes four derivative estimates over the interval [t, t + ∆t]:

22 Often abbreviated as RK4.

36 modeling robot dynamics

x(t + ∆t) ≈ x(t) +
∆t
6
(k1 + 2k2 + 2k3 + k4),

where:

k1 = h(x(t), t),

k2 = h(x(t) +
∆t
2

k1, t +
∆t
2
),

k3 = h(x(t) +
∆t
2

k2, t +
∆t
2
),

k4 = h(x(t) + ∆tk3, t + ∆t).

RK4 improves the local truncation error to O(∆t5), offering significantly
better accuracy than the Euler or Midpoint methods. This comes at the cost of
evaluating h(x, t) four times per step, but the method remains computationally
efficient and stable for many practical applications.

Using the running example from Example 1.4.1, an implementation of RK4 is
shown in Algorithm 4.

RK4 Method

def rk4(h, x, t, ∆t):
k1 = h(x, t)

k2 = h(x + (∆t / 2) * k1, t + ∆t / 2)

k3 = h(x + (∆t / 2) * k2, t + ∆t / 2)

k4 = h(x + ∆t * k3, t + ∆t)
return x + (∆t / 6) * (k1 + 2 * k2 + 2 * k3 + k4)

x_rk4 = integrate(h, x0, t, rk4)

Algorithm 4: Python implementation of the RK4 method.

To compare the performance of these methods, we can visualize their outputs
against the analytical solution:

0 2 4 6 8 10
t

0

50

100

x
(t

)

Analytical Solution

Euler Method

Midpoint Method

RK4 Method

Figure 1.7: Visual comparison
of various numerical integration
methods and their approxima-
tions compared to the analytical
solution for the initial value
problem introduced in Exam-
ple 1.4.1, with ∆t = 0.5.

It is important to highlight that advanced simulation techniques extend far
beyond these numerical integration methods, allowing for the high-fidelity
simulation of robotic systems, including visualization in pixel space. These

principles of robot autonomy 37

techniques can incorporate detailed physical modeling, sensor data fusion, and
learning-based approaches to create realistic and accurate simulations23. As we

23 One notable example is the use of
Neural Radiance Fields (NeRFs) for
generating photorealistic scenes.

will discuss in later chapters on perception, these advancements are crucial for
tasks such as robot training, planning under uncertainty, and evaluating the
autonomy stack in novel and previously unseen scenarios.

1.5 Summary

In this chapter, we introduced the fundamental principles underlying the mod-
eling and simulation of robotic systems. We began by introducing state space
models, which provide a mathematical framework to describe the evolution of a
robot’s state over time. Next, we discussed a robot’s kinematics and dynamics,
which characterize its motion and the constraints acting on it. This included a
discussion of generalized coordinates and kinematic constraints—both holo-
nomic and nonholonomic—along with the formulation of kinematic models
using Pfaffian constraints. Throughout this chapter, we examined practical ex-
amples such as the rolling wheel, the pendulum, and wheeled robots like the
unicycle and differential drive models. Finally, we introduced numerical inte-
gration techniques for simulating robot dynamics over time. We presented the
Euler, Midpoint, and Runge-Kutta methods, highlighting their trade-offs and
applications through concrete code examples.

To learn more. For readers interested in a deeper and more rigorous treatment
of the concepts presented in this chapter, Siciliano and Khatib [60] and Siciliano
et al. [62] offer comprehensive and widely adopted references. These texts cover
the mathematical foundations of robot kinematics, dynamics, and control in
greater depth, and provide additional examples, derivations, and exercises that
complement and extend the material introduced here.

1.6 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

Problem 1: Numerical Integration Methods

In Example 1.4.1 we introduced a simple IVP and in Figure 1.7 we showed the
differences between the Euler, midpoint, and fourth-order Runge-Kutta methods
for solving it. In this exercise we will explore the use of a more advanced nu-
merical integration scheme provided by the SciPy Python library called odeint.

38 modeling robot dynamics

Open the notebook ch01/exercises/simulation.ipynb and practice by imple-
menting the dynamics models for a dampled pendulum and a bicycle, and then
simulating them using odeint.

Problem 2: Nonholonomic Wheeled Robot Dynamics

The goal of this exercise is to familiarize yourself with some Python fundamen-
tals that will be used throughout the book, such as Numpy and inheritance, as
well as techniques for controlling nonholonomic wheeled robots. This exercise
represents the start of an incremental journey to build your own robot auton-
omy stack.

Consider a simple robot with two wheels whose state is defined by the posi-
tion of the center of the axle and the heading angle, shown in Figure 1.8. This
robot’s motion can be described by the simplest nonholonomic wheeled robot
model, the unicycle model.

Figure 1.8: Generalized coordi-
nates for a robot with unicycle
kinematics.

The kinematic model we will use reflects the rolling without side-slip con-
straint, and is given below in Equation (1.34).

ẋ(t) = v(t) cos(θ(t)),

ẏ(t) = v(t) sin(θ(t)),

θ̇(t) = ω(t).

(1.34)

In this model, the robot state is x = [x, y, θ]⊤, where [x, y]⊤ is the Cartesian
location of the robot center and θ is its heading with respect to the x-axis. The
robot control inputs are u = [v, ω]⊤, where v is the velocity along the main axis
of the robot and ω is the angular velocity, subject to the control constraints:

|v(t)| ≤ 0.75 m/s, and |ω(t)| ≤ 1.0 rad/s.

In this problem, we will demonstrate the use of class inheritance in Python
classes and using Numpy for vectorized operations. The notebook associated
with this problem is ch01/exercises/nonholonomic_wheeled_robot_dynamics.ipynb.

We will be using a Dynamics base class for two different dynamics models:
the wheeled robot dynamics model in this exercise and a double integrator
model in the next exercise. The base class contains two unimplemented func-
tions: feed_forward and rollout. The feed_forward function will propagate
the dynamics a single time step with disturbances, and the rollout function
will apply the feed_forward function multiple times to retrieve a trajectory of
states over multiple time steps. Because the feed-forward dynamics are subject
to disturbances, the same control sequence will result in different trajectories.
We will observe this by executing multiple rollouts of the dynamics using the
same control sequence from the same initial state.

In the ch01/exercises/nonholonomic_wheeled_robot_dynamics.ipynb

notebook, fill in the RobotDynamics class, in function feed_forward using
discrete-time Euler integration, with the kinematic equations described in Equa-
tion (1.34). Then in the same class, fill in function rollout with two for-loops,

principles of robot autonomy 39

calling the feed_forward function. Run the cells that rollout the robot’s dynam-
ics and plot the control and state trajectories (this code has been written for
you).

Problem 3: Double Integrator Dynamics

In this exercise, we consider the double integrator dynamics model:

ẋ(t) = vx(t),

ẏ(t) = vy(t),

v̇x(t) = ax(t),

v̇y(t) = ay(t).

(1.35)

In this model, the robot state is x = [x, y, vx, vy]⊤ and the robot control inputs
are u = [ax, ay]⊤.

Notice that in the previous problem, we used a for-loop to rollout several
trajectories of the robot’s dynamics. In this problem, we will use the same base
dynamics class for a DoubleIntegratorDynamics class, and use vectorization to
reduce the number of for-loops needed to perform multiple rollouts. The note-
book associated with this problem is ch01/exercises/double_integrator_dynamics.ipynb.

i. To reduce the number of for-loops needed to perform multiple rollouts, we
will vectorize the feed-forward dynamics equations applied in the func-
tion feed_forward. Write down the discrete time vectorized equations
for a single dynamics step for multiple rollouts and fill in the function
feed_forward in the DoubleIntegratorDynamics class. Use notation Xt to
denote the stacked state vectors from each rollout at timestep t, Ā as the
constructed matrix in the notebook code A_stack, and B̄ as the constructed
matrix in the notebook code B_stack.

ii. Fill in the code in function rollout in the DoubleIntegratorDynamics class
using the feed_forward function you just wrote. Note that you should only
need one for-loop!

40 modeling robot dynamics

References

[42] T. Lozano Perez. “Spatial planning: a configuration space approach”. In:
Autonomous Robot Vehicles. 1990.

[44] K. M. Lynch and K. C. Park. Modern Robotics: Mechanics, Planning, and
Control. Cambridge University Press, 2017. Chap. 8.

[59] M. D. Shuster. “Survey of attitude representations”. In: Journal of the Astro-
nautical Sciences 41.4 (1993), pp. 439–517.

[60] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer-Verlag,
2007.

[61] B. Siciliano et al. Robotics: Modelling, Planning and Control. Springer Pub-
lishing Company, Incorporated, 2008. Chap. 7.

[62] B. Siciliano et al. Robotics: Modelling, Planning and Control. Springer Pub-
lishing Company, Incorporated, 2008.

[63] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. Springer
Publishing Company, Incorporated, 2008. Chap. 2.

2
Open-Loop Control & Trajectory Optimization

In Chapter 1, we introduced the state space model as a mathematical formula-
tion for representing a robot’s dynamics. These models, typically expressed as
systems of differential equations, provide a foundational framework that de-
scribes how the state of a robot evolves over time in response to control inputs.
In particular, we saw how a state space model can be derived from the robot’s
kinematics and dynamics, providing a compact yet expressive description of its
physical motion. In this chapter, we turn to a fundamental question: given a state
space model of the robot, how can we determine the control inputs that will drive it to
execute a desired behavior?

As we will see throughout Chapters 2- 5, robots must transform high-level
goals into precise physical actions. This process is often described hierarchically,
spanning decision-making, motion planning, trajectory optimization, and control (Fig-
ure 2.1). Each layer plays a distinct role, yet they remain deeply interconnected.

At the higher level of this hierarchy, decision-making governs what tasks the
robot should perform to fulfill its objectives. It involves reasoning over goals,
resources, and constraints, often under uncertainty. In a self-driving car, for
example, this may correspond to deciding when to overtake, yield, or reroute.
Because it involves strategic considerations rather than immediate actuation,
decision-making typically unfolds on the order of seconds to minutes. Ulti-
mately, decision-making defines the high-level objectives that guide subsequent
layers of the hierarchy.

Once a high-level decision has been made, motion planning determines how
to realize it in the robot’s physical environment. This is typically expressed in
terms of the robot’s configuration space and involves finding a collision-free
path that respects geometric and kinematic constraints. For instance, motion
planning may compute a path for a mobile robot to navigate a cluttered ware-
house without collisions. The timescale of motion planning is often on the order
of hundreds of milliseconds to seconds.

Building on this path, trajectory optimization refines it into a time-parameterized
trajectory that is dynamically feasible and optimized for performance criteria.
This entails solving continuous optimization problems that incorporate dynam-
ics, actuator limits, and objectives such as energy efficiency, comfort, or safety

42 open-loop control & trajectory optimization

Figure 2.1: A hierarchical view
of the relationship between
decision-making, motion plan-
ning, trajectory optimization,
and control.

margins. The result is a trajectory specifying both the robot’s states and the con-
trol inputs needed to realize them over time, ensuring compatibility with the
robot’s actuation capabilities and dynamic constraints. Trajectory optimization
typically operates on shorter timescales, from tens to hundreds of milliseconds.

Finally, low-level control ensures that the robot faithfully executes the desired
trajectory in the physical world, by converting the trajectory into actuation com-
mands. Controllers must operate at high frequency, applying feedback to correct
deviations caused by disturbances, modeling errors, or sensor noise. Whether
adjusting wheel torques, joint forces, or thrust vectors, control is what closes the
loop between higher-level plans and physical reality.

Together, these layers form the backbone of an autonomous system: decision-
making provides strategic guidance, motion planning translates that guidance
into feasible paths, trajectory optimization refines those paths into feasible and
optimal trajectories, and control ensures that the robot can follow those trajecto-
ries in the real world. In practice, the boundaries between these layers are often
blurred. Trajectory optimization, for instance, may be tightly integrated with
planning or even embedded within control loops, while high-level decisions
may be informed by the lower-level processes. For the purposes of this book,
we will adopt the hierarchical perspective outlined above, while acknowledging
that real-world systems frequently combine or intertwine these processes.

In this chapter, we focus on trajectory optimization as a fundamental tool for
computing trajectories that are both feasible and optimal. While control and
motion planning will be revisited in Chapter 3 and Chapters 4- 5, respectively,
our emphasis in this chapter is on the formulation and solution of the trajectory
optimization problem. We begin in Section 2.1 by introducing the trajectory
optimization problem and casting it as a continuous optimization problem.
Building on this foundation, Sections 2.2 and 2.3 present two major classes
of solution strategies—indirect methods, which derive optimality conditions

principles of robot autonomy 43

for the continuous problem using tools from the calculus of variations, and
direct methods, which discretize and numerically solve the problem as a finite-
dimensional nonlinear program. Finally, in Section 2.4, we explore specialized
techniques tailored to certain problem structures, known as differentially flat
systems.

2.1 The Optimal Control Problem

Optimal control theory aims to determine control inputs that drive a dynamical
system to satisfy its physical constraints while optimizing a performance crite-
rion. At a high level, formulating an optimal control problem requires three key
components:

• A mathematical model of the system, typically expressed in state space form.

• A description of the physical constraints the system must satisfy.

• A specification of the performance criterion to be optimized.

Mathematical Model As discussed extensively in Chapter 1, the purpose of a
mathematical model is to describe how the system’s state evolves over time
in response to control inputs. Using the notation from Chapter 1, the system
dynamics can be expressed as a set of ordinary differential equations:

ẋ(t) = f (x(t), u(t)) , (2.1)

where x(t) ∈ Rn is the state of the system at time t, u(t) ∈ Rm is the control in-
put, and f : Rn ×Rm → Rn defines the state evolvution over time. Throughout
this book, we will often refer to x(t) and u(t) as the state and control sequences,
respectively, or equivalently as the state and control trajectories.

Physical Constraints Once we define the system dynamics, the next step is to
specify the physical constraints that the system must satisfy. These constraints
can take several forms, including:

• Initial conditions, which specify the state at the initial time t0 as x(t0) = x0.

• Final conditions, which specify the state at the final time t f as x(t f) = x f or
x(t f) ∈ X f , where X f denotes a set of allowable terminal states.

• State constraints, which require that the state remains within an allowable set
X for all times t ∈ [t0, t f], that is, x(t) ∈ X .

• Control constraints, which enforce that the control input remains within an
allowable set U for all times t ∈ [t0, t f], that is, u(t) ∈ U .

Depending on whether the constraints are satisfied or not, we can define the
concept of admissibility for a control history and state trajectory.

44 open-loop control & trajectory optimization

Definition 2.1.1 (Admissible State and Control Sequences). A state trajectory
x(t) and a control sequence u(t) are admissible if they satisfy the state and
control constraints at all times, that is:

x(t) ∈ X and u(t) ∈ U , ∀t ∈ [t0, t f],

respectively.

Admissibility is a key concept in optimal control, as it restricts the set of
realizable trajectories. In practice, this allows numerical methods to focus ex-
clusively on admissible state and control sequences, rather than considering all
possible solutions.

Performance Criterion The final component of an optimal control problem is
the performance criterion to be optimized. An optimal control is defined as
one that minimizes (or maximizes) this performance criterion. In some cases,
the performance criterion may be implicitly defined by the problem statement
(e.g., minimizing the time to reach a goal state), whereas in other cases, it must
be explicitly designed (e.g., driving a car in a way that is comfortable for the
passengers).

Throughout this book, we will focus on performance criteria that can be
expressed as a cost functional1 of the form: 1 A functional maps functions to real

numbers; intuitively, we might say
that a functional is a “function over
functions". Here, the cost functional
maps a state trajectory and control
sequence to a real number representing
the overall cost.

J(x(t), u(t), t) = h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t) dt, (2.2)

where h : Rn ×R → R is the terminal cost and g : Rn ×Rm ×R → R is the
running cost. The terminal cost h is evaluated at the final time t f and typically
represents a cost associated with the state of the system at that time, such as a
penalty for being far from a desired goal state. The running cost g is integrated
over the time interval [t0, t f] and represents the instantaneous cost incurred
by the system at each time step, for example, the cost of energy consumption,
or any other cost associated with the system’s operation. Depending on the
problem, the final time t f my be finite and fixed, finite and free, or infinite2. 2 In the case of an infinite final time, the

terminal cost h is typically ignored and
set to zero.

2.1.1 Problem Formulation

As a result, an optimal control problem can be formulated as follows:

principles of robot autonomy 45

Determine an admissible control sequence u∗(t) such that the system dy-
namics

ẋ(t) = f (x(t), u(t), t)

generate a corresponding admissible state trajectory x∗(t) that minimizes
the performance criterion:

J(x(t), u(t), t) = h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t) dt,

where u∗(t) and x∗(t) are referred to as the optimal control sequence and
optimal state trajectory, respectively.

This problem can be formally posed as the following optimization problem:

minimize
u(t)

J(x(t), u(t), t)

subject to ẋ(t) = f (x(t), u(t), t)

x(t0) = x0, x(t f) = x f

u(t) ∈ U , x(t) ∈ X , t0 < t < t f .

(2.3)

This general formulation serves as the starting point for the optimal control
methods developed in the remainder of this book. There are also several impor-
tant attributes related to the solution of this problem that are worth highlight-
ing:

1. Existence: A solution to an optimal control problem is not guaranteed to exist;
there may be no control history that is both admissible and optimal.

2. Uniqueness: Even when a solution exists, it may not be unique. Multiple ad-
missible control inputs can yield the same performance. While this can pose
challenges for numerical algorithms, it also provides flexibility in selecting
among equally good solutions depending on the application.

3. Optimality: The objective of optimal control is to find a control sequence
that outperforms all other admissible candidates. Thus, optimal control is
interested in global optimality, as opposed to local optimality.

Example 2.1.1 (Autonomous Racing Optimal Control). Consider an autonomous
racing scenario in which the goal is to complete a lap of a known course in the
shortest possible time. We can formulate this as a finite-horizon optimal control
problem, where the objective is to minimize the final time t f required to reach
a designated goal position (xgoal, ygoal), subject to the constraint that the vehicle
must remain on the track at all times. Let X denote the set of admissible states
that correspond to positions on the course.

Suppose the vehicle is modeled using the simple kinematic car model from Equa-
tion (1.29), with state x = [x, y, θ]⊤ representing position and heading, and

46 open-loop control & trajectory optimization

control inputs u = [v, ϕ]⊤ representing forward speed and steering angle,
respectively. The resulting optimal control problem is:

minimize
v(t), ϕ(t)

t f

s.t. ẋ = v cos θ, ẏ = v sin θ, θ̇ =
v
L

tan ϕ,

x ∈ Xcourse, u ∈ U ,

x(t0) = x0, (x(t f), y(t f)) = (xgoal, ygoal).

In this formulation, the cost depends only on the final time and not directly
on the state or control at intermediate points. As a result, the time-optimal
solution (x(t), u(t)) will lie on the boundaries of the admissible control and
state sets. In practice, this means the vehicle will operate at full throttle and
steer at the physical limits to cut the lap time, a strategy that achieves optimality
mathematically—but may not make for a smooth or comfortable ride.

Throughout this book, we will see that the solution to the optimal control
problem can take different forms, depending on whether and how it incorpo-
rates feedback from the current state of the system. At the most fundamental
level, we distinguish between open-loop and closed-loop control. While closed-
loop control will be the focus of Chapter 3, this chapter addresses open-loop
control.

Open-Loop Control If the optimal control is computed purely as a function of
time for a given initial state,

u∗(t) = ℓ(x(t0), t), (2.4)

it is said to be in open-loop form. In the context of trajectory optimization, re-
stricting the focus to open-loop strategies is natural, as they balance compu-
tational efficiency—computing open-loop sequences is faster than comput-
ing closed-loop policies—with effectivness, since robustness can be endowed
through closed-loop tracking or by re-optimizing the trajectory in a receding-
horizon fashion, as in Model Predictive Control3. 3 Discussed further in Chapter 3.

Having introduced the optimal control problem, we now turn to methods for
computing optimal open-loop solutions. Fundamentally, Problem (2.3) is an
infinite-dimensional optimization problem, where the optimization variables
are functions of time. In practice, solution methods must rely on discretiza-
tion stretegies, thereby approximating the infinite-dimensional problem with a
finite-dimensional one. Different discretization approaches give rise to distinct
families of methods.

Broadly speaking, two main classes of methods exist: indirect methods and
direct methods. Indirect methods follow an “optimize-then-discretize” paradigm:
they first derive necessary conditions for optimality—typically in the form of
boundary-value problems involving adjoint variables—and then apply nu-
merical techniques to solve these conditions. In contrast, direct methods take a

principles of robot autonomy 47

“discretize-then-optimize” approach: the state and control sequences are pa-
rameterized using finite-dimensional representations, and the resulting finite-
dimensional optimization problem is solved numerically.

Beyond these two general classes, some systems admit further structural
simplifications. In particular, differentially flat systems allow trajectories to be
described in terms of a small set of variables that fully capture the system’s
evolution4. This property enables efficient trajectory generation and optimiza- 4 These variables are commonly known

as flat outputs.tion, making these systems especially relevant in mobile robotics and aerospace
applications.

The remainder of this chapter examines these three classes of methods in de-
tail: indirect methods in Section 2.2, direct methods in Section 2.3, and trajectory
optimization for differentially flat systems in Section 2.4.

2.2 Indirect Methods

Indirect methods provide a principled framework for solving optimal control
problems by drawing on ideas from calculus of variations (CoV)5. For a com- 5 Calculus of variations extends

the principles of classical calculus
from functions to functionals. The
central idea is to study how small
perturbations—called variations—of a
candidate function influence the value
of the functional. By analyzing the
first- and higher-order effects of these
variations, one can derive necessary
conditions for optimality.

prehensive treatment of the calculus of variations and its applications in optimal
control theory, we refer the reader to Kirk [31]. At their core, indirect methods
rely on the derivation of necessary optimality conditions (NOCs) that any solu-
tion must satisfy and then leverage numerical techniques to compute solutions
consistent with these conditions. In this way, the NOCs serve as the bridge be-
tween the continuous-time formulation of an optimal control problem and its
numerical resolution.

Before turning to the derivation of such conditions for infinite-dimensional
optimization problems, let us first review key concepts from finite-dimensional
optimization, which will serve as a foundation for the discussion ahead.

2.2.1 NOCs for Unconstrained Nonlinear Optimization Problems

Consider the following finite-dimensional optimization problem:

min
x∈Rn

f (x), (2.5)

where f : Rn → R is assumed continuously differentiable, i.e., f ∈ C1. We wish
to identify the NOCs that any minimizer—local or global—must satisfy.

The key intuition is that at a local minimizer, no infinitesimal perturbation
of the decision variable should decrease the objective. Formally, this requires
analyzing how f changes under small variations around a candidate minimizer
x∗.

First-order necessary condition. Let x∗ ∈ Rn be a local minimizer. If f ∈ C1, we
can use gradients and Taylor series expansions to characterize the behavior of f
near x∗. For a small perturbation ∆x, the cost variation is, up to first order:

f (x∗ + ∆x)− f (x∗) ≈ ∇ f (x∗)⊤∆x.

48 open-loop control & trajectory optimization

If x∗ is a local minimizer, then for sufficiently small ∆x, the first-order term
must be non-negative6: 6 This is because, if we were to decrease

the cost by perturbing x∗ by ∆x, then x∗

would not be a local minimizer.
∇ f (x∗)⊤∆x =

n

∑
i=1

∂ f (x∗)
∂xi

∆xi ≥ 0.

In particular, by taking ∆x to be positive and negative multiples of the coordi-
nate unit vectors (i.e., vectors having all components equal to zero except for
one component equal to one), we obtain simultaneously:

∂ f (x∗)
∂xi

≥ 0 and
∂ f (x∗)

∂xi
≤ 0, i = 1, . . . , n,

which forces
∂ f (x∗)

∂xi
= 0, i = 1, . . . , n,

or, more compactly:

∇ f (x∗) = 0.

Thus, any local minimizer x∗ must be a stationary point of f .

Second-order necessary condition. Assuming f ∈ C2, consider again the Taylor
expansion of f around a local minimizer x∗, this time up to second order:

f (x∗ + ∆x)− f (x∗) ≈ ∇ f (x∗)⊤∆x +
1
2

∆x⊤∇2 f (x∗)∆x.

For x∗ to be a local minimizer, the second-order variation must be nonnegative
for all sufficiently small ∆x, that is:

∇ f (x∗)⊤∆x +
1
2

∆x⊤∇2 f (x∗)∆x ≥ 0.

Using the first-order condition ∇ f (x∗) = 0, the linear term vanishes, leaving:

∆x⊤∇2 f (x∗)∆x ≥ 0.

Thus, the Hessian ∇2 f (x∗) must be positive semidefinite at any local minimizer.

Theorem 2.2.1 (Necessary Conditions for Unconstrained Local Minimizers). Let
x∗ be a local minimizer of f : Rn → R. If f ∈ C1 in an open set containing x∗, then

∇ f (x∗) = 0 (first-order NOC). (2.6)

If, in addition, f ∈ C2, then

∇2 f (x∗) ⪰ 0 (second-order NOC). (2.7)

principles of robot autonomy 49

2.2.2 NOCs for Constrained Nonlinear Optimization Problems

Having introduced the NOCs for unconstrained problems, this section extends
the discussion to optimization problems subject to constraints. The definition
of optimality conditions in the constrained setting requires the introduction of
auxiliary variables, known as Lagrange multipliers. These variables are associ-
ated with the constraints and facilitate the characterization of optimal solutions
while providing insights into the sensitivity of the optimal cost with respect to
perturbations in the constraints. In this section, we limit our discussion on the
theory of Lagrange multipliers to the case of equality constrained optimization.
For a comprehensive treatment of optimality conditions in finite-dimensional
optimization, the reader is referred to Bertsekas [5].

Consider the following constrained optimization problem:

min
x∈Rn

f (x)

s.t. hi(x) = 0, i = 1, . . . , m,
(2.8)

where f : Rn → R and hi : Rn → R are continuously differentiable.
For compactness, define the constraint function h : Rn → Rm as

h(x) = (h1(x), . . . , hm(x))⊤, (2.9)

so that the constraints can be written simply as h(x) = 0.
The Lagrange multiplier theorem for equality-constrained optimization states

that, if x∗ is a local minimizer, then there exist scalars λ∗1 , . . . , λ∗m, called Lagrange
multipliers, such that:

∇ f (x∗) +
m

∑
i=1

λ∗i ∇hi(x∗) = 0. (2.10)

To interpret this condition, observe that the cost gradient ∇ f (x∗) must be or-
thogonal to the subspace of first-order feasible variations:

V(x∗) := {∆x | ∇hi(x∗)⊤∆x = 0, i = 1, . . . , m}.

This subspace consists of all variations ∆x that preserve feasibility to first order
7. Thus, condition (2.10) ensures that the first-order cost variation ∇ f (x∗)⊤∆x = 7 That is, variations for which x =

x∗ + ∆x satisfies h(x) = 0 to first order.0 for all ∆x ∈ V(x∗). This statement is analogous to the ∇ f (x∗) = 0 condition of
unconstrained optimization.

Formally, the necessary conditions for equality constrained optimality are
summarized as follows:

Theorem 2.2.2 (Lagrange Multiplier Theorem — Necessary Conditions for
Equality Constrained Local Minimizers). Let x∗ be a local minimizer of f : Rn → R

subject to the equality constraints hi(x) = 0, i = 1, . . . , m, and assume the constraint
gradients ∇h1(x∗), . . . ,∇hm(x∗) are linearly independent. Then there exist a unique
vector [λ∗1 , . . . , λ∗m]

⊤, called the Lagrange multiplier vector, such that:

∇ f (x∗) +
m

∑
i=1

λ∗i ∇hi(x∗) = 0. (2.11)

50 open-loop control & trajectory optimization

It is often convenient to express these conditions using the Lagrangian function
L : Rn+m → R defined as:

L(x, λ) := f (x) +
m

∑
i=1

λihi(x). (2.12)

The first-order NOCs for a local minimum x∗ then take the compact form:

∇xL(x∗, λ∗) = 0,

∇λL(x∗, λ∗) = 0,
(2.13)

where ∇xL and ∇λL denote the gradients with respect to x and λ, respectively,
and where the system in (2.13) consists of n+m equations in n+m unknowns—
namely, the n components of x∗ and the m components of λ∗.

In practice, optimality conditions serve as a powerful tool to filter candidate
solutions for global or local minima and often form the foundation of numer-
ical optimization algorithms. For instance, in the unconstrained case of Prob-
lem (2.5), one might (i) find all stationary points by solving ∇ f (x) = 0, and
(ii) apply the second-order test by checking ∇2 f (x) ⪰ 0 at each candidate.
This same philosophy extends naturally to infinite-dimensional optimal control
problems, where any candidate solution must satisfy the corresponding NOCs.
However, as we move to infinite-dimensional problems, the nature of the NOCs
changes significantly: rather than yielding algebraic equations as in the finite-
dimensional case, the NOCs for optimal control take the form of differential
equations.

2.2.3 Pontryagin’s Minimum Principle

Extending the concept of necessary optimality conditions to infinite-dimensional
problems leads to Pontryagin’s Minimum Principle (PMP), a cornerstone of
optimal control theory. Specifically, the PMP generalizes the finite-dimensional
NOCs to the infinite-dimensional setting.

Consider the problem of finding an admissible control u∗(t) ∈ U that drives
the system:

ẋ(t) = f (x(t), u(t), t), (2.14)

along a trajectory that minimizes the cost functional

J(x(t), u(t), t) = h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t) dt.

To derive the NOCs, we define the Hamiltonian, the analog of the Lagrangian
in finite-dimensional optimization:

H(x(t), u(t), p(t), t) := g(x(t), u(t), t) + p(t)⊤ f (x(t), u(t), t), (2.15)

where p(t) ∈ Rn is the costate8 vector. 8 The term costate highlights that there
is one costate associated with each
state variable, analogous to Lagrange
multipliers in finite-dimensional opti-
mization.

Similarly to the finite-dimensional case, where necessary conditions for op-
timality are derived by considering the cost increment ∆ f = f (x + ∆x)− f (x)

principles of robot autonomy 51

in response to a perturbation ∆x, here we analyze the increment ∆J under varia-
tions around a candidate function.

Theorem 2.2.3 (Pontryagin’s Minimum Principle; for a comprehensive treat-
ment, we refer the reader to Chapter 5 in Kirk [31]). Let u∗(t) be an optimal con-
trol with associated state trajectory x(t) for the system in (2.14) over [t0, t f]. Then there
exists a costate vector p∗(t) such that, for all t ∈ [t0, t f], the following conditions hold:

ẋ∗(t) =
∂H
∂p

(x∗(t), u∗(t), p∗(t), t),

ṗ∗(t) = −∂H
∂x

(x∗(t), u∗(t), p∗(t), t),

u∗(t) = arg min
u∈U

H(x∗(t), u, p∗(t), t),

(2.16)

along with the boundary conditions:[
∂h
∂x

(
x∗(t f), t f

)
− p∗(t f)

]⊤
δx f

+

[
H(x∗(t f), u∗(t f), p∗(t f), t f) +

∂h
∂t

(
x∗(t f), t f

)]
δt f = 0,

(2.17)

where δx f and δt f denote the variations of the final state and time, respectively 9. 9 As we will discuss in the remainder
of this section, the boundary conditions
in Equation (2.17) depend on whether
the final state and time are fixed (i.e.,
δx f = 0 or δt f = 0) or free (i.e., δx f or
δt f are arbitrary).

Equations (2.16) constitute the necessary conditions for optimality. They
form a system of 2n first-order differential equations—n for the state and n for
the costate—together with m algebraic equations defining the control input.
Solving these equations produces 2n constants of integration. Half of these
constants are determined by the initial conditions x∗(t0) = x0. The remaining
n (or n + 1, if the final time is free) are specified by the boundary conditions
in Equation (2.17). This results in a two-point boundary value problem, which
may be solved analytically in special cases, or numerically using methods such
as shooting or collocation10. 10 J. Hertling. “Numerical Methods for

Two-Point Boundary Value Problems
(Herbert B. Keller)”. In: SIAM Review
12.2 (1970), pp. 313–315

In practice, once the initial state is fixed, the boundary conditions are ob-
tained by substituting the appropriate assumptions into Equation (2.17). Com-
mon cases include:

Fixed Final Time and Fixed Final State. If both t f and x(t f) are fixed, then δt f = 0
and δx f = 0, leaving the sole boundary condition:

x∗(t f) = x f .

Fixed Final Time and Free Final State. If t f is fixed but x(t f) is free, then δt f = 0
while δx f is arbitrary. Hence, the boundary condition is:

∂h
∂x

(
x∗(t f), t f

)
− p∗(t f).

52 open-loop control & trajectory optimization

Free Final Time and Fixed Final State. If x(t f) is fixed but t f is free, then δx f = 0
while δt f is arbitrary. Thus, the boundary condition is:

H(x∗(t f), u∗(t f), p∗(t f), t f) +
∂h
∂t

(x∗(t f), t f) = 0.

Free Final Time and Free Final State. If both x(t f) and t f are free, then δx f and
δt f are arbitrary, and both coefficients in Equation (2.17) must be set to zero.
That is:

∂h
∂x

(x∗(t f), t f)− p∗(t f) = 0, (n equations)

H(x∗(t f), u∗(t f), p∗(t f), t f) +
∂h
∂t

(x∗(t f), t f) = 0, (1 equation).

While these four cases cover many problems of practical interest, more general
boundary conditions can be found in Kirk [31].

2.2.4 Solving a Two-Point Boundary Value Problem

Finding solutions that satisfy the necessary optimality conditions in Equa-
tion (2.16) is a nontrivial task, as these must simultaneously satisfy a system
of 2n differential equations together with boundary conditions imposed at both
t0 and t f . This type of problem, where conditions are specified at two distinct
points in time, is known as a two-point boundary value problem (TPBVP).

Over the years, a number of numerical procedures have been developed for
solving TPBVPs. Two broad classes of approaches are commonly used:

• Shooting methods, which reformulate the TPBVP as an initial value problem
by guessing the unknown boundary conditions (e.g., the initial costate), sim-
ulating the system forward, and then iteratively adjusting the guess until the
terminal boundary conditions are satisfied. Although conceptually straight-
forward, shooting methods may suffer from numerical instability, especially
for long time horizons.

• Collocation methods, whereby the solution is approximated by a parametric
function with unknown parameters at a set of discrete points (called colloca-
tion points). These methods turn the TPBVP into a large system of nonlinear
algebraic equations that can be solved using computational techniques. Col-
location methods are robust and widely used in practice because they avoid
the instability issues of shooting methods.

Modern scientific computing environments provide high-level implementations
of these ideas. For example, the scikits.bvp_solver package in Python or
the function bvp4c in MATLAB implement numerical algorithms for solving
TPBVPs with relatively little effort from the user.

Most solvers assume that the system of necessary conditions in Equation (2.16),
along with its boundary conditions, can be expressed in the standard form:

ż = g(z, t), l(z(t0), z(t f)) = 0, (2.18)

principles of robot autonomy 53

where z(t) collects the unknown functions (such as states and costates), g en-
codes their dynamics, and l encodes the two-point boundary constraints.

To illustrate how TPBVPs can be solved in practice, consider the toy dynam-
ics:

ż(t) =

[
ż1(t)
ż2(t)

]
=

[
z2(t)
− z1(t)

]
,

with boundary conditions z1(t0) = 0 and z1(t f) = −2. The boundary conditions
can equivalently be expressed in standard form as:

l(z(t0), z(t f)) =

[
z1(t0)

z1(t f) + 2

]
= 0.

In Python, the system dynamics g(z, t) and boundary conditions l(z(t0), z(t f))

can be passed directly to solve_bvp as shown in Algorithm 5.
Many optimal control problems can, in fact, be cast into the standard TPBVP

form in Equation (2.18) and solved directly with off-the-shelf BVP solvers such
as solve_bvp, sometimes after simple reformulations. Common cases include
problems with conditions at special points, such as free-end problems, switch-
ing points, interface points, or discontinuities. Example 2.2.1 illustrates these
ideas in the context of a free-final-time problem.

Example 2.2.1 (Free Final Time Optimal Control Problem; see Example 6.1 in
How [23]). Consider the double integrator system

ẍ = u,

where x ∈ R is the state and u ∈ R is the control input. The control objective is
to find a trajectory that minimizes the cost:

J(x, u) =
1
2

αt2
f +

∫ t f

0

1
2

βu2(t)dt,

and satisfies the boundary conditions:

x(0) = 10, ẋ(0) = 0, x(t f) = 0, ẋ(t f) = 0.

This is a free final time problem with fixed boundary conditions on the state.
The cost penalizes both the duration of the maneuver (through the αt2

f term)

and the control effort (through the integral of u2), with the trade-off governed
by the weights α and β.

We can equivalently express the double integrator dynamics as a first-order
system of differential equations by setting x1 = x and x2 = ẋ:

ẋ1 = x2, ẋ2 = u,

so that the state vector is x = [x1, x2]
⊤ and the boundary conditions become:

x1(0) = 10, x2(0) = 0, x1(t f) = 0, x2(t f) = 0.

54 open-loop control & trajectory optimization

Solving a TPBVP with solve_bvp

from scipy.integrate import solve_bvp

import numpy as np

Dynamics: ż = g(z, t)
def g(t, z):

return np.vstack((z[1], -z[0]))

Boundary conditions: l(z(t0), z(t f)) = 0
def l(z0, zf):

return np.array([z0[0], zf[0] + 2])

Time mesh and initial guess for z(t)
t_mesh = np.linspace(0, 4, 5)

z_guess = np.zeros((2, t_mesh.size))

Solve TPBVP

sol = solve_bvp(g, l, t_mesh, z_guess)

z_sol = sol.sol(np.linspace(0, 4, 100))

Algorithm 5: Example usage of solve_bvp for a TPBVP in stan-
dard form. The code for this example is available in the repository
github.com/StanfordASL/pora-exercises in the notebook ch02/tpbvp.ipynb.

The Hamiltonian is given by:

H =
1
2

βu2 + p1x2 + p2u,

where p1 and p2 are the costate variables. Next, we construct the NOCs from
Equation (2.16) by taking the partial derivatives of H with respect to p, x, and u:

ẋ∗1 = x∗2 ,

ẋ∗2 = u∗,

ṗ∗1 = 0,

ṗ∗2 = −p∗1 ,

0 = βu∗ + p∗2 .

Thus, from the last condition, the optimal control satisfies

u∗ = − 1
β

p∗2 .

Since this is a free-final-time problem with fixed terminal state, the boundary

principles of robot autonomy 55

conditions for the NOCs are given by:

x∗1(0) = 10,

x∗2(0) = 0,

x∗1(t f) = 0,

x∗2(t f) = 0,
1
2

βu∗(t f)
2 + p∗1(t f)x∗2(t f) + p∗2(t f)u∗(t f) + αt f = 0.

However, the necessary conditions obtained above do not immediately match
the “standard” form required by numerical TPBVP solvers in Equation (2.18),
which assumes fixed final time. To cast the problem into standard form, one
can apply the time-scaling strategy. First, the time horizon is rescaled to the fixed
interval [0, 1] by using the scaled time variable τ = t/t f . Next, the derivatives
must be adjusted according to the new time variable. By the chain rule, differ-

entiation with respect to τ introduces a scaling factor, i.e., ∂
∂τ

:= ∂
∂t

∂(τt f)

∂τ = ∂
∂t t f .

Finally, the final time t f is replaced by an auxiliary state variable r with trivial
dynamics ṙ = 0. This results in a TPBVP with fixed final time (i.e., equal to 1)
and an additional state variable r that encodes the original final time t f .

For this example, the time-scaled cost becomes:

J(x, u, r) =
1
2

αr2 +
∫ 1

0

1
2

βru2(τ)dτ,

with corresponding Hamiltonian:

H =
1
2

βru2 + p1rx2 + p2ru.

As a result, the necessary conditions for optimality become:

ẋ∗1 = r∗x∗2 ,

ẋ∗2 = r∗u∗,

ṗ∗1 = 0,

ṗ∗2 = −r∗p∗1 ,

ṙ∗ = 0,

0 = βr∗u∗ + r∗p∗2 ,

with boundary conditions:

x∗1(0) = 10,

x∗2(0) = 0,

x∗1(1) = 0,

x∗2(1) = 0,

αr∗ +
1
2

βr∗u∗(1)2 + r∗p∗1(1)x∗2(1) + r∗p∗2(1)u
∗(1) = 0.

After this reformulation, the problem adheres to the standard form and can
be solved numerically.

56 open-loop control & trajectory optimization

For a systematic treatment of how nonstandard boundary value problems
can be reformulated into standard form suitable for general-purpose solvers,
see Ascher and Russell [3]. For a practical implementation of TPBVP solvers for
free-final time optimal control problems, we refer the reader to the notebook
ch02/free_final_time_optimal_control.ipynb in the repository
github.com/StanfordASL/pora-exercises.

2.3 Direct Methods

So far, we introduced indirect methods, which involve deriving the necessary
optimality conditions of the continuous-time optimal control problem and then
discretizing them to numerically solve the resulting two-point boundary value
problem. While indirect methods provide deep theoretical insights, they can be
challenging to apply in practice due to the difficulty of solving boundary value
problems, particularly for complex nonlinear dynamics or large-scale systems.

Direct methods take the opposite approach. Rather than deriving the opti-
mality conditions analytically, the problem is discretized first. This reduces the
continuous-time optimal control problem to a finite-dimensional nonlinear op-
timization problem, which can then be solved using general-purpose numerical
optimization algorithms.

The process of converting the continuous-time optimal control problem into a
discretized form amenable to numerical optimization is known as transcription.
While there exist many different transcription methods, a simple and widely
used approach is the forward Euler discretization. This method selects a discretiza-
tion 0 = t0 < t1 < . . . < tN = t f of the time interval [0, t f] and approximates
the state and control sequences assuming a zero-order hold on both the states
and control inputs, meaning that both the state and the control input are con-
stant over each time interval [ti, ti+1). The system dynamics are then integrated
forward using Euler integration:

xi+1 ≈ xi + hi f (xi, ui), hi = ti+1 − ti. (2.19)

Direct methods are typically grouped into two main families:

• State and control parameterization methods (also known as direct collocation meth-
ods): here, both the control inputs and the state trajectories are discretized,
and the dynamics are introduced explicitly as algebraic constraints linking
the state and control variables at each discretization point (e.g., trapezoidal
and Hermite-Simpson collocation, Gauss-Lobatto methods, etc.).

• Control parameterization methods (also known as direct shooting methods): in this
approach, only the control inputs are discretized, and the state trajectories are
obtained by numerically integrating the system dynamics forward in time.
As a result, the optimization variables are solely the discretized controls,
while the states are implicitly defined by the integration of the dynamics
(e.g., using single or multiple shooting techniques).

principles of robot autonomy 57

In what follows, we illustrate the fundamental concepts of both families of
methods through a concrete example.

Example 2.3.1 (Zermelo’s Problem - Continuous-time problem). Consider the
problem of steering a boat from a point (0, 0) to a point (M, ℓ) in a river with
a current. The boat can be controlled by adjusting its direction and its speed is
constant. The dynamics of the boat are described by the following differential
equations:

ẋ(t) = v cos(u(t)) + flow(y(t)), t ∈ [0, t f],

ẏ(t) = v sin(u(t)), t ∈ [0, t f],

where (x(t), y(t)) is the position of the boat with x defining the coordinate
along the river and y the coordinate across the river, u(t) is the control input
(the direction of the boat), and v is the constant speed of the boat. For simplic-
ity, assume that the river flow is described by an arbitrary function acting in the
x-direction, with its intensity depending on the position y(t), i.e., flow(y(t)).

The objective is to minimize the control effort over time, which can be formu-
lated as an optimal control problem:

minimize
u(t)

∫ t f

0
u(t)2 dt,

subject to ẋ(t) = v cos(u(t)) + flow(y(t)), t ∈ [0, t f],

ẏ(t) = v sin(u(t)), t ∈ [0, t f],

(x(0), y(0)) = (0, 0),(
x(t f), y(t f)

)
= (M, ℓ),

|u(t)| ≤ umax, t ∈ [0, t f].

2.3.1 Direct Collocation Methods

Consider the Problem introduced in Example 2.3.1. Applying a state and con-
trol parametrization (i.e., collocation) method leads to the following finite-
dimensional nonlinear program, equivalently described in Algorithm 6:

minimize
(x,y,u)

N−1

∑
i=0

hiu2
i ,

subject to xi+1 = xi + hi (v cos(ui) + flow(yi)) , i = 0, . . . , N − 1,

yi+1 = yi + hiv sin(ui), i = 0, . . . , N − 1,

(x0, y0) = (0, 0),

(xN , yN) = (M, ℓ),

|ui| ≤ umax, i = 0, . . . , N − 1.

In this formulation, both the state and control trajectories are discretized and
treated as decision variables. The system dynamics are not enforced through
numerical integration, but rather as algebraic equality constraints linking con-
secutive discretization points.

58 open-loop control & trajectory optimization

2.3.2 Direct Shooting Methods

Many of the concepts introduced for state and control parametrization carry
over to control parametrization methods, with a key distinction in how the
dynamics are handled. In control parametrization (shooting) methods, the op-
timization variables consist only of the control inputs at each discretization
point. The state trajectory is not explicitly optimized but is instead computed
recursively by forward simulation of the system dynamics. In other words, a
candidate sequence of controls uniquely determines the corresponding states,
which are then used to evaluate the cost and any state constraints.

Concretely, let us revisit Zermelo’s problem from Example 2.3.1, this time
using a shooting method transcription. In this formulation, the control inputs
{ui}N−1

i=0 are treated as the optimization variables, while the states {(xi, yi)}N−1
i=0

are computed recursively from the dynamics.
The resulting finite-dimensional optimization problem is:

minimize
u

N−1

∑
i=0

hiu2
i ,

subject to (xN , yN) = (M, ℓ),

|ui| ≤ umax, i = 0, . . . , N − 1,

where, recursively,

xi+1 = xi + hi (v cos(ui) + flow(yi)) , i = 0, . . . , N − 1,

yi+1 = yi + hiv sin(ui), i = 1, . . . , N − 1.

Here, the dynamics are no longer constraints in the optimization problem, but
rather equations that implicitly determine the state evolution given a candi-
date control sequence. Algorithm 7 provides a Python implementation of this
shooting method approach to Zermelo’s problem.

Both approaches come with their own advantages and limitations. Control
parameterization methods generally result in smaller optimization problems,
making the method computationally attractive. The dynamics are enforced
exactly through integration (up to the accuracy of the chosen numerical in-
tegrator), which is especially useful when the dynamics are complex or only
accessible via a black-box simulator. However, state constraints may be difficult
to enforce, as the states are not explicit optimization variables but rather implic-
itly defined through the integration of the dynamics. This can lead to numerical
instability or infeasibility when state constraints are critical. Moreover, errors
from numerical integration may accumulate, potentially reducing the accuracy
of the solution.

On the other hand, state and control parametrization methods treat both
states and controls as optimization variables. This allows state constraints to be
imposed directly, improving numerical stability and robustness, often leading
to better-conditioned optimization problems when constraints play a central
role. However, the resulting optimization problem generally grows significantly

principles of robot autonomy 59

in size, since all states and controls at every discretization point are treated as
decision variables. This higher dimensionality increases computational cost and
can make the solver more sensitive to initial guesses.

In practice, both methods are widely used, and the choice between them
often depends on the problem structure, the availability of simulators or system
models, and the importance of accurately handling state constraints.

2.4 Differentially Flat Systems

Computing open-loop control sequences by directly solving optimal control
problems can often be computationally intensive. In many applications, it is
useful to trade off strict optimality11 for computational tractability by seeking 11 That is, the theoretical best per-

formance according to a given cost
functional.

“good” trajectories that are simpler to compute, even if slightly sub-optimal.
For a special class of systems known as differentially flat systems, generating

such feasible trajectories is considerably simpler. A system is differentially flat
if there exists a set of outputs, called flat outputs, such that all system states
and inputs can be expressed as algebraic functions of these outputs and a fi-
nite number of their derivatives. This property allows trajectory generation
to be performed in the space of the flat outputs, eliminating the need to solve
differential equations as part of the optimization process and greatly reducing
computational complexity.

Differentially flat models arise in several common robotics applications, in-
cluding simple car models, quadrotors, and many other wheeled or aerial ve-
hicles. Their relative simplicity and expressiveness make them particularly
attractive for trajectory planning and open-loop control synthesis.

Example 2.4.1 (Differentially Flat Autonomous Vehicle Control). Recall the mo-
tion planning task from Example 2.1.1 where the objective was to compute an
open-loop control sequence to drive a vehicle through a course to a goal posi-
tion in minimum time. If we relax the requirement of optimality and instead
aim simply to find a feasible trajectory that follows the course, we can exploit
the differential flatness of the kinematic car model. Specifically, consider the
kinematic car model from Equation (1.29):

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ =
v
L

tan ϕ,

where (x, y) is the vehicle position, θ is the heading, v is the speed, ϕ is the
steering angle, and L is the wheelbase.

This system is differentially flat with flat outputs (x(t), y(t)). Therefore, it is
sufficient to specify any differentiable trajectory for x(t) and y(t) that respects
the course constraints. From these trajectories, the remaining state and control
variables—which are the quntities needed for practical implementation—can be

60 open-loop control & trajectory optimization

computed analytically. The heading is obtained from the velocity direction as

θ = tan−1
(

ẏ
ẋ

)
.

and the speed along the trajectory can be computed using either component of
the velocity:

v =
ẋ

cos θ
, or v =

ẏ
sin θ

.

Finally, the steering angle is determined from the heading dynamics:

ϕ = tan−1
(

Lθ̇

v

)
.

In this way, a feasible trajectory for the vehicle can be generated entirely by
specifying smooth flat output trajectories, from which all states and, impor-
tantly, the control inputs can be derived directly.

We formalize this concept through the notion of differential flatness.

Definition 2.4.1 (Differential Flatness; for a comprehensive treatment, we refer
the reader to Murray [49]). A nonlinear system with state x ∈ Rn and control
u ∈ Rm:

ẋ(t) = f (x(t), u(t)), (2.20)

is differentially flat if there exists a function α such that

z = α(x, u, u̇, . . . , u(a)), (2.21)

where u(i) denotes the i-th time derivative of u, and such that the system tra-
jectories can be expressed as functions of the flat output z ∈ Rm and a finite
number of its derivatives:

x = β(z, ż, . . . , z(b))

u = γ(z, ż, . . . , z(c)).
(2.22)

In other words, a system is said to be differentially flat if there exists a set
of outputs z (with the same dimension as the input vector u) that completely
determine both the states and the inputs, without requiring integration of the
system dynamics. For trajectory optimization, this property is particularly ad-
vantageous: since the evolution of a flat system is fully characterized by its flat
outputs, trajectories can be computed directly in the output space and then
mapped to the corresponding inputs, thereby avoiding expensive integration of
the dynamics.

In the following sections, we explore explore different techniques to exploit
differential flatness for open-loop trajectory design, including how to param-
eterize trajectories in the flat output space, handle initial and terminal state
constraints, and enforce control constraints.

principles of robot autonomy 61

2.4.1 Trajectory Parameterization

Our primary limitation when planning a trajectory in the flat output space
is that it must be differentiable. A common approach is to parameterize each
component of the flat output z using N smooth basis functions:

zj(t) =
N

∑
i=1

α
[j]
i ψi(t), (2.23)

where zj is the j-th element of z, α
[j]
i ∈ R are parameters that define the trajec-

tory, and ψi(t) are smooth basis functions.
Polynomial basis functions are a natural choice, e.g., ψ1(t) = 1, ψ2(t) = t,

ψ3(t) = t2, etc. A key advantage of this parameterization is that zj(t) is linear in

the variables α
[j]
i , which facilitates translating constraints on z and its derivatives

directly into constraints on the coefficients α
[j]
i .

2.4.2 Equality Constraints

A key component of any open-loop motion planning problem is the enforce-
ment of boundary conditions. Typically, this means ensuring that the system
begins at a prescribed initial state x(0) = x0 and often that it reaches a desired
terminal state, x(t f) = x f , at some final time t f . When planning in the flat out-
put space, these state conditions must be expressed as constraints on the flat
output z(t) and its derivatives. Recalling the mapping in Equation (2.22), this
leads to

x0 = β(z(0), ż(0), . . . , z(q)(0)),

x f = β(z(t f), ż(t f), . . . , z(q)(t f)).
(2.24)

In practice, this means that boundary conditions on zj(0), żj(0), . . . , z(q)j (0)

and zj(t f), żj(t f), . . . , z(q)j (t f) must be enforced. When using a smooth basis
function parameterization of the form in Equation (2.23), these conditions trans-
late directly into algebraic constraints on the coefficients α

[j]
i . By differentiating

Equation (2.23) q times, we obtain

żj(t) =
N

∑
i=1

α
[j]
i ψ̇i(t),

...

z(q)j (t) =
N

∑
i=1

α
[j]
i ψ

(q)
i (t).

(2.25)

which allows us to express the boundary conditions as a system of linear equa-

62 open-loop control & trajectory optimization

tions: 

ψ1(0) ψ2(0) . . . ψN(0)
ψ̇1(0) ψ̇2(0) . . . ψ̇N(0)

...
...

...

ψ
(q)
1 (0) ψ

(q)
2 (0) . . . ψ

(q)
N (0)

ψ1(t f) ψ2(t f) . . . ψN(t f)

ψ̇1(t f) ψ̇2(t f) . . . ψ̇N(t f)
...

...
...

ψ
(q)
1 (t f) ψ

(q)
2 (t f) . . . ψ

(q)
N (t f)




α
[j]
1

α
[j]
2
...

α
[j]
N

 =



zj(0)
żj(0)

...

z(q)j (0)

zj(T)
żj(t f)

...

z(q)j (t f)


. (2.26)

Assuming the matrix formed by the basis functions has a sufficient number of
columns and that it is full column rank, we can solve for (possibly non-unique)
α
[j]
i that solve the trajectory generation problem.

More generally, any equality constraint on the flat outputs or their deriva-
tives—beyond just initial and terminal states—can be written in this linear form.
For instance, waypoints can be added as additional equality constraints. How-
ever, if too many constraints are imposed, the system may become overdeter-
mined, leaving no feasible solution. In such cases, one must increase the rich-
ness of the basis functions (e.g., higher-order polynomials or additional func-
tions), which improves flexibility but also increases computational complexity.

2.4.3 Inequality Constraints via Time Scaling

Having addressed equality constraints in Section 2.4.2, we now turn to inequal-
ity constraints. These commonly arise in motion planning and control to enforce
actuator limits or safety bounds on the state. For example, the simple car model
from Example 2.4.1 may have a speed constraint of the form:

|v(t)| ≤ vmax.

A useful tenchnique for handling such constraints in the flat-output space
is time scaling. The idea is to first plan a trajectory that satisfies the equality
constraints (e.g., by solving Equation (2.26)), and then adjust its temporal evo-
lution—speeding up or slowing down along the path—to enforce the inequality
constraints.

Formally, let x(t) be a trajectory satisfying the equality constraints. We can
separate the geometric path12 from its timing by introducing a path parameter 12 The geometric path of a trajectory is

the sequence of states x of the trajectory,
but not associated with a particular
time

s(t):
x(t) = x(s(t)),

with s(0) = s0, s(t f) = s f , and ṡ(t) > 013. The geometric path x(s) captures the 13 The condition ṡ(t) > 0 ensures
invertibility, so each t corresponds to a
unique s.

sequence of states, while the choice of s(t) determines how quickly the system
traverses that path. Varying s(t) is referred to as time scaling.

Example 2.4.2 (Time Scaling for a Simple System). Consider a scalar system
with state x ∈ R and a straight-line path connecting an initial and terminal

principles of robot autonomy 63

state, x0 and x f :
x(s) = x0 + s(x f − x0), s ∈ [0, 1].

Choosing a cubic polynomial for s(t),

s(t) =
3

T2 t2 − 2
T3 t3, t ∈ [0, T],

which satisfies s(0) = 0, s(T) = 1, and ṡ(t) > 0, yields the temporal trajectory

x(t) = x0 +

(
3

T2 t2 − 2
T3 t3

)
(x f − x0).

Here, T controls the duration of the trajectory. If we impose a velocity bound,

|ẋ| ≤ ẋmax,

then

ẋ = 6
(

t
T2 −

t2

T3

)
(x f − x0),

ẍ = 6
(

1
T2 −

2t
T3

)
(x f − x0),

with the maximum velocity attained at t = T
2 . We can then convert this into a

constraint on T to ensure the inequality constraint is satisfied:

T ≥
3(x f − x0)

2ẋmax
.

Example 2.4.2 illustrates the key idea: inequality constraints can often be
transformed into conditions on the timing law s(t), without altering the geomet-
ric path itself.

For general state-space systems, time scaling is often more complex. Given a
feasible trajectory (x(t), u(t)) of the system dynamics in Equation (2.20), we can
rewrite it as a geometric path (x(s), u(s)) using a path parameter s(t):

dx(s)
ds

ds(t)
dt

= f (x(s), u(s)). (2.27)

For time scaling, we replace s(t) with a new path parameter s̃(t) over a possibly
different interval t ∈ [0, t̃ f], with s̃(0) = s0 and s̃(t̃ f) = s f

14. The new scaling 14 The geometric path is still defined on
the interval [s0, s f], which must remain
the same for any new time scaling law.

must still satisfy the dynamics:

dx(s̃)
ds̃

ds̃(t)
dt

= f (x(s̃), u(s̃)). (2.28)

Since the geometric path is fixed—as it was previously defined—the terms dx(s̃)
ds̃

and x(s̃) are also fixed. Therefore, time scaling with a new path parameter
s̃(t), is only admissible if an appropriate ũ(s̃) can be found. Fortunately, for
many systems—including those commonly studied in motion planning—this is
possible with the right choice of s̃(t).

64 open-loop control & trajectory optimization

Example 2.4.3 (Time Scaling for the Simple Car Model). Consider again the
simple car model from Equation (1.29):

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ =
v
L

tan ϕ,

and suppose we have identified a candidate trajectory xc(t) with control uc(t)
by leveraging the differential flatness of the model through Equation (2.26) and
mapping the flat outputs zc(t) into the state and control space.

For this model, a natural choice for the path parameter s is the arc-length,
defined as:

s(t) =
∫ t

0
v(τ)dτ.

such that ṡ(t) = v(t) > 0. With this choice, the geometric path xc(s) is defined
over s ∈ [0, Lpath], where Lpath is the total length of the path. Rewriting the
dynamics in terms of an arbitrary time scaling s̃(t) gives

dxc(s̃)
ds̃

˙̃s = v(s̃) cos θc(s̃),

dyc(s̃)
ds̃

˙̃s = v(s̃) sin θc(s̃),

dθc(s̃)
ds̃

˙̃s =
v(s̃)

L
tan ϕ(s̃),

which must hold for any admissible time scaling s̃(t)15. 15 The trivial choice s̃(t) = s(t) repro-
duces the original candidate trajectory
with control inputs uc(t).

By adopting the arc-length parameterization, we have ˙̃s = v(s̃), so these
equations reduce to

dxc(s̃)
ds̃

= cos θc(s̃),

dyc(s̃)
ds̃

= sin θc(s̃),

dθc(s̃)
ds̃

=
1
L

tan ϕ(s̃).

The first two equations are automatically satisfied for any choice of s̃ ∈ [s0, s f],
since the original candidate trajectory satisfies the dynamics. On the other
hand, the third equation is satisfied provided we reuse the same steering in-
put, ϕ(s̃) = ϕc(s̃). Therefore, the dynamics remain consistent for any choice of
time scaling s̃(t): the geometric path is preserved, while the temporal evolution
along that path is left free. This observation is powerful as we may freely adjust
the speed input v(t), subject only to ˙̃s(t) > 0, without altering the geometry of
the trajectory. In practice, this allows us to easily enforce inequality constraints
on the speed |v(t)| ≤ vmax.

Example 2.4.3 shows a relatively straightforward application of time scaling
to a model derived from kinematic constraints. This idea extends naturally to a

principles of robot autonomy 65

wide class of kinematic models of the form

ẋ(t) = G(x(t))u(t). (2.29)

Applying the chain rule, we obtain

dx(s)
ds

ṡ = G(x(s(t)))u(t),

which can be rewritten as

dx(s)
ds

= G(x(s))ug(s), (2.30)

where ug(s) =
u(t)
ṡ(t) is the geometric control16. Equation (2.30) shows that the geo- 16 Since s(t) must be strictly increasing,

we require ṡ(t) > 0.metric path x(s) is fully determined by the geometric control ug(s), independent
of the time parametrization. Therefore, once the geometric control and geomet-
ric path are defined, we can temporally scale the trajectory x(t) using the path
parameter s(t) without changing the geometric path. The corresponding control
inputs are recovered via u(t) = ṡ(t)ug(s).

In summary, for models of the form (2.29), we can perform time scaling by:

1. Selecting a path parameter s (e.g., arc-length), computing s(t) for the original
trajectory x(t), and determining the interval [s0, s f].

2. Re-parameterizing the control u(t) in terms of s.

3. Computing the geometric control ug(s) = u(s(t))/ṡ(t) for s ∈ [s0, s f].

4. Defining a new path parameter function s̃(t) over the interval [0, t̃ f] with
˙̃s(t) > 0, s̃(0) = s0, and s̃(t̃ f) = s f .

5. Computing the new control inputs as ũ(t) = ug(s̃(t)) ˙̃s(t) for all t ∈ [0, t̃ f].

Example 2.4.4 (Time Scaling for the Unicycle Model). Consider the kinematic
unicycle model:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(2.31)

where (x, y) denote the position, θ the heading, v the forward velocity, and
ω the rotation rate. We define the state as x = [x, y, θ]⊤ and the control as
u = [v, ω]⊤.

A natural path parameter for this system is again the arc-length,

s(t) =
∫ t

0
v(τ)dτ,

such that ṡ(t) = v(t) > 0. If the trajectory is defined over t ∈ [0, T] with total
length Lpath, then s(0) = 0 and s(T) = Lpath. The corresponding geometric

66 open-loop control & trajectory optimization

controls are

vg(s) =
v(s)
ṡ(t)

= 1,

ωg(s) =
ω(s)
ṡ(t)

=
ω(s)
v(s)

,

where the fact that vg(s) = 1 follows directly from ṡ(t) = v(s(t)). Introducing a
new timing law s̃(t) generates a new velocity profile ṽ(s̃) = ˙̃s(t) along the path,
which can use to solve for the new ω̃ inputs by:

ω̃(s̃) = ωg(s̃) ˙̃s(t) =
ω(s̃)
v(s̃)

ṽ(s̃).

In practice, it is often simpler to directly prescribe a velocity profile ṽ(s̃) along
the path and compute the corresponding angular velocity ω̃(s̃) = ω(s̃)

v(s̃) ṽ(s̃).
Finally, to determine the new controls as functions of time, we note that:

τ(s) =
∫ s

0

1
ṽ(s′)

ds′,

defines a function τ(s) that maps each point s ∈ [0, Lpath] to a new time.

Example 2.4.5 (Planar Quadrotor Control). Considers the control of a planar
quadrotor system. The quadrotor is modeled with six state variables: horizontal
position x, vertical position y, orientation angle ϕ, and their respective velocities.
The control inputs are the thrusts T1 and T2 from the two rotors. The objective is
to minimize the energy consumption, represented by the integral of the squared
thrusts over time:

min
∫ t f

0
T1(t)2 + T2(t)2dt

The system dynamics are given by the following differential equations:

ẋ
v̇x

ẏ
v̇y

ϕ̇

ω̇


=



vx

− (T1+T2)
m sin ϕ

vy
(T1+T2)

m cos ϕ− g
ω

(T2−T1)ℓ
Izz


where m is the mass, g is the gravitational acceleration, ℓ is the distance from
the center of mass to each rotor, and Izz is the moment of inertia about the z-
axis.

This system is differentially flat, with flat outputs (x, y). For a practical im-
plementation of differential flatness for trajectory generation applied to this sys-
tem, refer to the notebook ch02/differentially_flat_planar_quadrotor.ipynb

in the repository github.com/StanfordASL/pora-exercises.

principles of robot autonomy 67

2.5 Summary

In this chapter, we explored how trajectory optimization provides a fundamen-
tal framework for computing open-loop motions and establishing a foundation
for autonomous decision-making in robotic systems.

We began by formalizing the optimal control problem—a mathematical for-
malization for the task of driving a system’s state evolution through admissible
control inputs while optimizing a performance criterion. This formulation in-
volves three key components: the system’s mathematical model, the physical
constraints, and the performance criteria.

We then introduced two major families of methods for solving optimal con-
trol problems and compute optimal open-loop control sequences: direct meth-
ods and indirect methods. Indirect methods adopt an “optimize-then-discretize”
approach, deriving analytical necessary conditions for optimality and solving
the resulting two-point boundary value problem numerically. In contrast, direct
methods follow a “discretize-then-optimize” strategy, transcribing the contin-
uous problem into a finite-dimensional nonlinear program that can be solved
with standard optimization solvers.

Lastly, we discussed differentially flat systems, a special class of systems
for which trajectory generation is significantly simplified. For these systems,
planning can be performed in a lower-dimensional “flat output" space using
techniques like polynomial parameterization. We showed how initial, terminal,
and waypoint constraints can be translated into linear algebraic equations, and
how inequality constraints on state and control can be managed through time
scaling.

To learn more. For comprehensive treatments of optimal control, we point the
reader to several excellent references, including Murray [49], Kirk [31], Rao [54],
and Kelly [30]. Kirk [31] offers a foundational perspective on indirect methods,
including detailed derivations of the calculus of variations and Pontryagin’s
Minimum Principle. For a thorough exploration of direct methods and modern
optimization-based approaches, Rao [54] and Kelly [30] provide in-depth cov-
erage of transcription techniques, such as collocation and shooting, and their
formulation as nonlinear programming problems. Finally, Murray [49] gives an
extensive overview of differential flatness, illustrating how this property can be
exploited for efficient trajectory generation.

2.6 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

68 open-loop control & trajectory optimization

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: Extremal Curves

[This exercise is inspired by Kirk [31], Chapter 4, Problem 4.9]
Given the functional

J(x) =
∫ 1

0

(
1
2

ẋ(t)2 + 5x(t)ẋ(t) + x(t)2 + 5x(t)
)

dt,

find an extremal curve x∗ : [0, 1]→ R that satisfies x∗(0) = 1 and x∗(1) = 3.

Problem 2: Minimum Control Effort

Consider the dynamics
ẋ(t) = −2x(t) + u(t)

with the initial constraint x(0) = 2, terminal constraint x(1) = 0, and cost
functional

J(u) =
∫ 1

0
u(t)2 dt.

Write down the Hamiltonian and use the necessary optimality conditions to
derive an optimal control u∗(t) and corresponding state trajectory x∗(t).

Problem 3: Zermelo’s Ship

Zermelo’s ship must travel through a region of strong currents. The position of
the ship is denoted by (x(t), y(t)) ∈ R2. The ship travels at a constant speed
v > 0, yet its heading θ(t) can be controlled. The current moves in the positive
x-direction with speed w(y(t)). The equations of motion for the ship are

ẋ(t) = v cos θ(t) + w(y(t))

ẏ(t) = v sin θ(t)
.

We want to control the heading θ(t) such that the ship travels from a given
initial position (x(t0), y(t0)) = (x0, y0) to the origin (0, 0) in minimum time.

1. Suppose w(y(t)) = v
h y(t), where h > 0 is a known constant. Show that an

optimal control law θ∗(t) must satisfy a linear tangent law of the form

tan θ∗(t) = α− v
h

t

for some constant α ∈ R.

2. Suppose w(y(t)) ≡ β for some constant β > 0. Derive an expression for the
optimal transfer time t∗1 − t0.

principles of robot autonomy 69

Problem 4: Singular Arc for Dubins’ Car

The kinematics of Dubins’ car are described by

ẋ = v cos θ

ẏ = v sin θ

θ̇ = u

,

where (x, y) ∈ R2 is the car’s position, θ ∈ R is the car’s heading, v > 0 is the
car’s constant known speed, and u is the controlled turn rate. The turn rate is
bounded, i.e., u ∈ [−ω̄, ω̄], where ω̄ > 0 is a known constant.

The car starts at (x, y) = (0, 0) with a heading of θ = 0 at t = 0. We want the
car to drive to (x, y) = (0, c) in the least amount of time possible, where c > 0 is
a given constant.

1. Use Pontryagin’s maximum principle to express the optimal control input
u∗(t) as a function of the optimal co-state p∗(t) := (p∗x(t), p∗y(t), p∗θ (t)) ∈ R3.

Hint: You should discover that the maximum condition for u∗(t) is not infor-
mative whenever p∗θ (t) ≡ p̄θ for a particular fixed value p̄θ ∈ R. When such
a lack of information persists over a non-trivial time interval, i.e., any time
interval [t1, t2] with t2 > t1 ≥ 0, this is known as a singular arc. To compute
u∗(t) in this case, use the fact that p∗θ (t) ≡ p̄θ is constant in time along this
singular arc.

2. Use boundary conditions to argue why p∗(t) might end in a singular arc.
Suppose we know p∗(t) begins on a non-singular arc, then switches once
to and ends on a singular arc. For this particular case, argue why u∗(0) =

ω̄ and describe the optimal state trajectory (x∗(t), y∗(t), θ∗(t)) and control
trajectory u∗(t) in words without explicitly deriving them.

Problem 5: Single Shooting for a Unicycle

Consider the kinematic model of a unicycle

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = ω

,

where (x, y) is the planar position of the vehicle, θ is its heading angle, v is its
forward velocity, and ω is its angular velocity. Overall, the state and control
input for this system are x := (x, y, θ) ∈ R3 and u := (v, ω) ∈ R2, respectively.
We have overloaded x to denote both horizontal position x ∈ R and the full
state vector x ∈ R3.

70 open-loop control & trajectory optimization

Our task is to drive the vehicle from the starting configuration x(0) =

(0, 0, π/2) to the target configuration x(T) = (5, 5, π/2) in minimum time
with as little control effort as possible. To this end, we consider the objective

J(x, u) =
∫ T

0

(
α + v(t)2 + ω(t)2

)
dt,

where α > 0 is a chosen constant weighting factor and T is the free final time.

1. Derive the Hamiltonian and necessary optimality conditions, specifically

(a) the ODE for the state and co-state,

(b) the optimal control as a function of the state and co-state, and

(c) the boundary conditions, including the additional condition for free final
time T.

Hint: Since the control set is unbounded, use the weak maximum condition.
In practice, you might use a boundary value problem (BVP) solver from

an existing computing library (e.g., scipy.integrate.solve_bvp), but in this
problem we will use a bit of nonlinear optimization theory and JAX to write our
own!

2. In the file ch02/exercises/unicycle_optimal_control.ipynb, complete the
implementations of dynamics, hamiltonian, optimal_control, and noc_ode.
Use α = 0.25.

In the single shooting method, we need to initialize estimates of the initial
co-state p(0) and final time T. We then integrate the state and co-state dynamics
forward in time from t = 0 to t = T, at which point we check whether the
terminal boundary conditions are satisfied.

3. Use the ODE integration from noc_trajectories to complete boundary_residual,
which should compute a measure of how far off each of your terminal
boundary conditions is from satisfaction, given guesses for the initial co-state
p(0) and final time T.

4. Finally, in newton_step and single_shooting, implement the Newton-
Raphson root-finding method for boundary_residual. Now, if you provide
an appropriate guess for the initial costate and final time, you can solve the
problem in unicycle_optimal_control.ipynb and see a plot of the optimal
solution. You may find that whether or not your BVP solver converges to a
solution is highly dependent on the quality of your initial guess—indeed, ini-
tialization is a major challenge when applying indirect methods for optimal
control!

Hint: For finding roots of a function f : Rn → Rn, each iteration of the
Newton-Raphson method entails improving a current best guess x(k) at itera-
tion k using the update rule:

x(k+1) = x(k) − ∂ f
∂x

(x(k))−1 f (x(k)).

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_bvp.html

principles of robot autonomy 71

References

[3] U. M. Ascher and R. D. Russell. “Reformulation of boundary value prob-
lems into “standard” form”. In: SIAM Review 23.2 (1981), pp. 238–254.

[5] D. Bertsekas. Nonlinear Programming. Athena Scientific, 2016.

[22] J. Hertling. “Numerical Methods for Two-Point Boundary Value Problems
(Herbert B. Keller)”. In: SIAM Review 12.2 (1970), pp. 313–315.

[23] Jonathan P. How. Lecture Notes for Principles of Optimal Control. 2008.

[30] M. Kelly. “An Introduction to Trajectory Optimization: How to Do Your
Own Direct Collocation”. In: SIAM Review 59.4 (2017), pp. 849–904.

[31] D. E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,
2004.

[49] R. M. Murray. Optimization-Based Control. California Institute of Technol-
ogy, 2009.

[54] A. Rao. “A Survey of Numerical Methods for Optimal Control”. In: Ad-
vances in the Astronautical Sciences 135 (2010).

72 open-loop control & trajectory optimization

Collocation Formulation of Zermelo’s Problem

Decision variables: (xi, yi, ui), i = 0, . . . , N
get_x = lambda z: z[:N + 1]

get_y = lambda z: z[N + 1:-N]

get_u = lambda z: z[-N:]

get_z = lambda x, y, u: np.concatenate([x, y, u])

Cost: ∑N−1
i=0 hiu2

i
cost = lambda z: np.sum(h * np.square(get_u(z)))

def constraints(z):

x, y, u = get_x(z), get_y(z), get_u(z)

constraints = []

for i in range(N):

xi+1 = xi + hi (v cos(ui) + flow(yi))

constraints.append(x[i+1] - x[i] - h*(v*np.cos(u[i])

+ flow(y[i])))

yi+1 = yi + hiv sin(ui)

constraints.append(y[i+1] - y[i] - h*v*np.sin(u[i]))

Boundary conditions: (x0, y0) = (0, 0), (xN , yN) = (M, ℓ)
constraints.extend([x[0], y[0], x[N] - M, y[N] - l])

return np.array(constraints)

State bounds

x_lower = np.zeros(N + 1)

x_upper = M * np.ones(N + 1)

y_lower = np.zeros(N + 1)

y_upper = l * np.ones(N + 1)

Control bounds: u_i ≤ umax;

u_lower = -u_max * np.ones(N) # control constraint

u_upper = u_max * np.ones(N) # control constraint

bounds = Bounds(

get_z(x_lower, y_lower, u_lower),

get_z(x_upper, y_upper, u_upper))

Solve the NLP

result = minimize(cost, z0, bounds=bounds,

constraints={'type': 'eq', 'fun': constraints})

Algorithm 6: Direct collocation approach to Zermelo’s problem using for-
ward Euler discretization. The code for this example is available in the
repository github.com/StanfordASL/pora-exercises in the notebook
ch02/zermelos_problem.ipynb.

principles of robot autonomy 73

Shooting Formulation for Zermelo’s Problem

Decision variables: (ui), i = 0, . . . , N − 1; Cost: ∑N−1
i=0 hiu2

i
cost = lambda u: np.sum(h * np.square(u))

States computed recursively from x0 = 0, y0 = 0
dynamics = lambda x, y, u: (

x + h * (v * np.cos(u) + flow(y)),

y + h * np.sin(u)

)

def inequality_constraints(u):

x, y = 0, 0 # initial condition (x(0), y(0)) = (0, 0)

constraints = []

for ui in u:

x, y = dynamics(x, y, ui)

(xi, yi) >= (0, 0) (box constraint with below)

constraints.extend([x, y])

(xi, yi) <= [M, ℓ]
constraints.extend([M - x, l - y])

(xN , yN) >= [M, ℓ] (enforcing equality with the above)

constraints.extend([x - M, y - l])

return constraints

bounds = Bounds(-u_max * np.ones(N),

u_max * np.ones(N)) # |ui| ≤ umax

Solve NLP

result = minimize(cost, u0, bounds=bounds,

constraints={'type': 'ineq',

'fun': inequality_constraints})

Algorithm 7: Direct shooting approach to Zermelo’s problem using for-
ward Euler discretization. The code for this example is available in the
repository github.com/StanfordASL/pora-exercises in the notebook
ch02/zermelos_problem.ipynb.

3
Closed-Loop Control & Trajectory Tracking

In Chapter 2, we introduced the concepts of open-loop and closed-loop control
laws, and then explored techniques for designing open-loop control laws based
on optimal control and differential flatness. Open-loop control laws are useful
for determining nominal control inputs that accomplish different objectives,
such as “move from point A to point B as quickly as possible”, and are compu-
tationally less challenging that computing closed-loop control laws. However,
open-loop control laws only leverage the initial state of the system and are
therefore susceptible to unexpected or unmodeled disturbances. In contrast,
closed-loop control laws are significantly more robust since they leverage real-
time observations to compute the control input. We mathematically define a
closed-loop control law1 as a function of time and the current state. 1 Closed-loop control laws are also

sometimes referred to as feedback
controllers or control policies.Definition 3.0.1 (Closed-loop Control Law). A closed-loop control law is a

function that maps time and the current state2 of the system to a control input: 2 If the full system state is not directly
measurable, we can define closed-
loop control laws based on the current
measured system outputs.

u(t) = π(x(t), t). (3.1)

As an example, consider a wheeled robot trying to move from point to point.
An open-loop control law could have poor performance in reaching the de-
sired goal if the initial state is not perfectly known, if the dynamics model does
not perfectly describe the robot’s motion, or if external disturbances affect the
system. Alternatively, a closed-loop control law will continuously attempt to
correct for these errors by accounting for new information.

In this chapter, we introduce a few common approaches for designing closed-
loop control laws. First, we introduce approaches for closed-loop feedback
control for linear dynamical systems, including the linear quadratic regulator (LQR),
a well-known approach for closed-loop optimal control, and proportional-integral-
derivative (PID) control, a classical control technique that is widely used across
many domains of automation. Next, we discuss methods for nonlinear closed-
loop control, including how techniques for linear systems can be applied to
nonlinear systems through the process of linearization. Finally, we discuss how
closed-loop controllers can be paired with open-loop controllers for trajectory
tracking, which is a common robotics motion planning problem.

76 closed-loop control & trajectory tracking

3.1 Linear Closed-loop Control

Consider the case where the system dynamics are linear:

ẋ(t) = Ax(t) + Bu(t), (3.2)

where A ∈ Rn×n and B ∈ Rn×m are time-invariant matrices. A fundamental
closed-loop control task is to design a control law of the form in Equation (3.1)
that will force the state, x, to converge to the origin from some arbitrary initial
state. We can accomplish3 this by defining a linear feedback controller of the form: 3 The linear system must be controllable

or stabilizable in order to guarantee that
convergence to the origin is achievable.
A system can be determined to be con-
trollable or stabilizable by a combined
analysis of the system matrices A and
B. Roughly speaking, a system is not
controllable or stabilizable if the control
matrix, B, doesn’t give the control, u,
the authority to manipulate all unstable
modes of the dynamics matrix, A.

u(t) = Kx(t), (3.3)

where K ∈ Rm×n is a time-invariant gain matrix. The closed-loop dynamics
under the linear feedback controller are:

ẋ(t) = (A + BK)x(t),

and therefore our objective is to choose the gain matrix K such that the matrix
A + BK is stable4. 4 A matrix is called stable or exponentially

stable if all of its eigenvalues have a
negative real component.

We can also use the linear feedback controller to force the system to converge
to some constant setpoint, (ud, xd), that is an equilibrium point5 for the system.

5 An equilibrium point for a linear
system is a point that satisfies 0 =
Axd + Bud.

In this case, we can define a linear system for the error dynamics:

δẋ(t) = Aδx(t) + Bδu(t), (3.4)

where δx = x − xd and δu = u − ud. We then compute a controller gain ma-
trix, K, to make the error dynamics converge to zero, and the resulting linear
feedback controller is:

u(t) = ud + Kδx(t). (3.5)

3.1.1 The Linear Quadratic Regulator (LQR)

Previously, we discussed how we can use a linear feedback controller of the
form in Equation (3.3) to drive a linear system to converge to the origin. The
linear quadratic regulator (LQR) is an optimal control technique and special case
of the linear feedback control law that tries to drive the system to converge
to the origin in an optimal way6. The finite-horizon LQR controller solves the 6 Stabilizing the system about a particu-

lar state is referred to as regulation.closed-loop finite-horizon optimal control problem:

min
u

x(T)⊤Fx(T) +
∫ T

0
x(t)⊤Qx(t) + u(t)⊤Ru(t)dt

s.t. ẋ(t) = Ax(t) + Bu(t),
(3.6)

where T is a fixed final time, and the matrices F ∈ Rn×n, Q ∈ Rn×n, and
R ∈ Rm×m define the cost function7. We also require that F and Q are symmet- 7 The name linear quadratic regulator

comes from the linear dynamics and the
quadratic cost function.

ric, positive semi-definite matrices and that R is a symmetric, positive definite
matrix8.

8 In practice, it is common for the
matrices F, Q, and R to simply be di-
agonal matrices with positive diagonal
elements.

principles of robot autonomy 77

The optimal solution to the finite-horizon LQR problem9 is a linear feedback

9 Note that we can also apply these
LQR results to the case where the linear
dynamical system is time varying with
system matrix A(t) and control matrix
B(t).

control law with a time-variant gain matrix:

u(t) = K∗(t)x(t),

where we compute K∗(t) by:

K∗(t) = −R−1B⊤P(t),

where P(t) is a symmetric, positive definite matrix that solves the continuous
time Riccati differential equation:

Ṗ(t) = −A⊤P(t)− P(t)A + P(t)BR−1B⊤P(t)−Q,

with the terminal condition P(T) = F.
Similarly, the infinite-horizon LQR controller solves the closed-loop optimal

control problem:

min
u

∫ ∞

0
x(t)⊤Qx(t) + u(t)⊤Ru(t)dt

s.t. ẋ(t) = Ax(t) + Bu(t),
(3.7)

and the optimal feedback gain matrix, K∗, is time-invariant and is computed by:

K∗ = −R−1B⊤P,

where P is the time-invariant, symmetric, positive definite matrix that solves the
continuous time alebraic Riccati equation10: 10 There are many open-source software

tools that solve the continuous time
Riccati differential equation and the
algebraic Riccati equation.

0 = A⊤P + PA− PBR−1B⊤P + Q.

We can also formulate both the finite and infinite horizon LQR problems in
discrete time and solve them using discrete versions of the Riccati equations.

3.1.2 Proportional Integral Derivative (PID) Control

Proportional integral derivative (PID) control is a classical control technique that
is still widely used in various industries today. The core theory for PID control
centers around the control of linear systems with a single input and a single
output11. The control law takes the general form: 11 There are more advanced techniques

for applying PID control to nonlinear
system and systems with multiple
inputs and outputs.u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de(t)
dt

, (3.8)

where e(t) = r(t)− y(t) is the error between a target reference signal, r(t), and
the system output, y(t). The values kp, ki, and kd are proportional, integral, and
derivative gains, respectively. We can see the relationship between the structure
of the PID controller and the names we give to the gains: the proportional gain
makes the control law proportional to the error, the integral gain scales the
integral of the error, and the derivative gain scales the derivative of the error.

78 closed-loop control & trajectory tracking

Double Integrator Infinite-horizon LQR

import numpy as np

from scipy.linalg import solve_continuous_are

System dynamics matrices for simple double integrator ẍ = u

A = np.array([[0, 1], [0, 0]])

B = np.array([[0], [1]])

Define cost function matrices

Q = np.array([[1, 0], [0, 1]])

R = np.array([[1]])

Solve the continuous algebraic Riccati equation

P = solve_continuous_are(A, B, Q, R)

Compute optimal feedback gain matrix

K = -np.linalg.inv(R) @ B.T @ P

Verify eigenvalues are negative (closed-loop system is stable)

eig_val, eig_vec = np.linalg.eig(A + B @ K)

print(eig_val)

Algorithm 8: Compute the optimal infinite-horizon LQR controller for a simple
double integrator with dynamics ẍ = u in Python. The code for this example
is available in the repository github.com/StanfordASL/pora-exercises in the
notebook ch03/lqr.ipynb.

We can also see the structure of the controller in the block diagram shown in
Figure 3.1. PID control is common in industry due to its simplicity, minimal
computational needs, and tunability12. One disadvantage of PID control is that 12 Tuning PID controllers for desired

performance is not a simple task, but
some general approaches have been
developed, such as the Ziegler-Nichols
method.

it doesn’t directly leverage a model of the system and is therefore not the best
approach to exploit the dynamics for optimal performance.

Example 3.1.1 (PD Control of a Double-integrator System). Consider a double-
integrator system with dynamics:

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t).

where x = [x1, x2]
⊤, which has two eigenvalues at the origin. Suppose we want

to design a controller to drive the state x1 to the origin, x1 = 0. By using a PD
controller of the form:

u(t) = kpe(t) + kd
de(t)

dt
,

principles of robot autonomy 79

+ ki
∫ t

0 e(τ)dτ

kpe(t)

kd
de(t)

dt

+ System Dynamics
e(t) u(t) y(t)

−

r(t)

Figure 3.1: Block diagram for
a PID controller in a feedback
loop.

where e(t) = x1(t), the closed-loop dynamics of the system are:

ẋ(t) =

[
0 1
kp kd

]
x(t),

where we have used that ė = ẋ1 = x2. We can now choose the gains kp and kd to
make the eigenvalues of the closed-loop dynamics matrix stable. The eigenval-
ues for the closed-loop system are:

λ =
kd
2
± 1

2

√
k2

d − 4kp,

so we should at least choose kp and kd to make the real part of the eigenvalues
negative, which will ensure stability13. We could also consider tuning these val- 13 Note that a proportional controller

alone, with kd = 0, will not make
the system stable since at best the
eigenvalues would be purely complex,
and thus the system response would be
a non-dampened oscillation.

ues based on how much oscillation and overshoot is allowable, and how robust
the controller should be to external disturbances. For example, in theory we
could choose the magnitude of the gain kp to be really large to drive fast conver-
gence to the origin, but in practice this could amplify any noise and could make
the controller behave poorly.

There are also many other important and useful tools from classical control
theory beyond PID control. Classical control techniques typically perform their
analysis in the frequency domain14 rather than in the time domain, and will 14 Frequency domain analysis uses the

Laplace transform to model the linear
system dynamics rather than a state
space model. Controller design and
stability analysis of linear systems can
be simpler in the frequency domain
because the time-domain ordinary
differential equations simply become
algebraic polynomial models, which are
referred to as transfer functions.

leverage tools such as Bode plots and the Nyquist stability criterion.

3.2 Nonlinear Closed-loop Control

There are numerous approaches for designing closed-loop controllers for non-
linear dynamical systems. One general approach is to linearize the system’s
dynamics and then apply linear control techniques. Other approaches include
nonlinear optimization-based approaches, Lyapunov theory-based methods, and
geometric control.

80 closed-loop control & trajectory tracking

3.2.1 Linear Control of Nonlinear Dynamical Systems

We can apply linear control techniques, such as the linear quadratic regulator,
to systems with nonlinear dynamics through a process called linearization. Lin-
earization is a technique that computes a linear approximation of a nonlinear
function at a particular point via a first-order Taylor series expansion. Given a
nonlinear dynamic system state space model of the form:

ẋ = f (x, u),

we linearize this system about the point15 (x̄, ū) by computing the first order 15 It is common to choose the lineariza-
tion point to be an equilibrium point
of the nonlinear system, such that
f (x̄, ū) = 0. We can then use the re-
sulting linear system to stabilize the
nonlinear system about that equilib-
rium point.

Taylor expansion:

f (x, u) ≈ f (x̄, ū) +
∂ f
∂x

(x̄, ū)︸ ︷︷ ︸
A

δx(t) +
∂ f
∂u

(x̄, ū)︸ ︷︷ ︸
B

δu(t),

where δx = x− x̄ and δu = u− ū and the matrices A and B are the Jacobian ma-
trices that are defined as the partial derivative of the dynamics with respect to
the state and control vectors, evaluated at the linearization point. We therefore
have the linear system:

δẋ = Aδx + Bδu,

which, as a local approximation of the nonlinear dynamics, we can use to de-
sign a control law to compute the term δu. The final closed-loop control law for
the original nonlinear system is:

u(t) = ū + δu(t),

which is a combination of the feedforward control, ū, from the linearization
point and the feedback term, δu(t). This approach can work well in practice
as long as the controller can keep the system close enough to the linearization
point that the linear approximation is good16. If there is enough divergence, 16 In practice, it might be useful to

combine a linearization-based controller
for equilibrium maintenance with a
startup controller that can initially
get the system “close enough” to the
setpoint.

the linear controller could fail and cause the system to become unstable. Gain
scheduling is an extension of this concept, where linear controllers are designed
based on a set of states and the specific controller gains are modified depending
on the region the system is currently operating in.

Figure 3.2: An inverted pendu-
lum with a point mass, m, on a
rigid rod of length l. The mo-
tion is described by the angle
θ and u is the control torque
about the axis of rotation.

Example 3.2.1 (Inverted pendulum). Consider the inverted pendulum depicted
in Figure 3.2. Its dynamics are described by:

ml2θ̈ = mgl sin(θ) + u,

where m is the mass, l is the length of the rod, g is the acceleration due to grav-
ity, θ is the angle of rotation, and u is the control torque about the axis of ro-
tation. We can express this model in state space form with state x :=

[
θ, θ̇
]⊤

as:

ẋ = f (x, u) =

[
θ̇

g
l sin(θ) + 1

ml2 u

]
.

principles of robot autonomy 81

The upright stationary position, xe = [0, 0]⊤, is an equilibrium point for this
system with equilibrium control input ue = 0. We can linearize the inverted
pendulum dynamics about this equilibrium point to get the linear model:

ẋ =

[
0 1
g
l 0

]
x +

[
0
1

ml2

]
u,

which has an eigenvalue with a positive real part and is therefore unstable, as
expected.

We could design a PD controller based on this linear model of the form:

u(t) = kpθ(t) + kd θ̇,

which would give the closed-loop dynamics:

ẋ =

[
0 1

g
l +

1
ml2 kp

1
ml2 kd

]
x.

Similarly to the double integrator PD controller from Example 3.1.1, we can
choose the controller gains kp and kd, to ensure the closed-loop dynamics are
stable. Of course PD control is just one option, we could also compute an LQR
controller based on the linear model.

3.2.2 Nonlinear Control Methods

Linear control methods are practical and useful in some contexts, but for con-
trolling nonlinear systems they are not necessarily the highest-performing con-
trollers and it can be challenging to obtain stability guarantees. There are sev-
eral classes of nonlinear control methods that do not require linearization and
can improve on the performance and stability of linear controllers, including
optimization-based methods, Lyapunov theory-based methods, and geometric
control.

Optimization-based approaches can follow a similar optimal control for-
mulation to the open-loop control methods from the previous chapter, except
the goal is to directly solve for an optimal closed-loop control law, u(t) =

π∗(x(t), t). Techniques for solving closed-loop optimal control problems are
typically based on either the Hamilton-Jacobi-Bellman equation or dynamic
programming. Another optimization-based approach for closed-loop control
is model predictive control (MPC)17, which is an approach that repeatedly solves 17 Also referred to as receding horizon

control.open-loop finite-horizon optimal control problems at each time step, each time
accounting for new information. MPC approaches strike a balance between
performance and computational tractability: having better closed-loop perfor-
mance than open-loop methods but less computational burden than closed-loop
optimal control methods like dynamic programming.

Lyapunov-theory based controllers18 use the concept of Lyapunov functions 18 J.-J. E. Slotine and W. Li. Applied
Nonlinear Control. Pearson, 1991to prove stability, even for nonlinear systems. Lyapunov functions are scalar

82 closed-loop control & trajectory tracking

Inverted Pendulum Dynamics Linearization

import jax

import jax.numpy as jnp

def inverted_pendulum_dynamics(x, u, g=9.81, m=1, l=1):

"""

Evaluate the inverted pendulum dynamics.

"""

θ, dθ_dt = x

dx_dt = jnp.array([dθ_dt, (g/l)*jnp.sin(θ) + (1/m*l**2)*u])

return dx_dt

Linearize around the stationary upright position with zero

control (i.e. the pendulum is perfectly balanced)

f_jac = jax.jacobian(inverted_pendulum_dynamics, argnums=(0, 1))

x = jnp.array([0., 0.])

u = 0.

A, B = f_jac(x, u) # Evaluate Jacobian at equilibrium point

Algorithm 9: Linearizing the inverted pendulum dynamics from Example 3.2.1
in Python using the JAX library. The code for this example is available in
the repository github.com/StanfordASL/pora-exercises in the notebook
ch03/jax_linearization.ipynb.

functions that can be thought of as “energy” functions19. If we can show that a 19 Lyapunov functions must be positive
definite.Lyapunov function is decreasing along the “flow” of the dynamical system for

a region around an equilibrium point, then we can guarantee that the equilib-
rium point is at least locally stable in that region. In the context of closed-loop
control, we use the notion of a control-Lyapunov function (CLF), which is essen-
tially a Lyapunov function that can be shown to be decreasing along the flow of
a dynamical system for at least some control input to the system. If a CLF exists
for a nonlinear system, we can derive a closed-loop controller from the CLF by
choosing the control input that minimizes the gradient of the CLF.

3.3 Trajectory Tracking Control

Robotic closed-loop control problems are often broken down into a combina-
tion of two sequential steps. First, we use an open-loop method to generate a
desirable trajectory, for example using optimal control or differential flatness
methods, and then the second step is to track that trajectory using real-time
observations in a closed-loop fashion. This approach, referred to as trajectory
tracking control, is popular because it can take advantage of the computational

principles of robot autonomy 83

tractability of the open-loop trajectory generation methods while also gaining
the performance and robustness advantages of closed-loop control.

Definition 3.3.1 (Trajectory Tracking Control Law). We express the general
trajectory tracking controller20 in the form: 20 As with Equation (3.1), we can also

define this control law as a function
of the measured system outputs if
the full system state, x, is not directly
measurable.

u(t) = ud(t) + π(x(t), xd(t), t), (3.9)

where xd(t) is the desired trajectory state and ud(t) is the corresponding con-
trol21, and π(x(t), xd(t), t) is a feedback function that attempts to correct for 21 The control ud(t) is also referred to as

the feedforward control term.tracking error.

We have already discussed open-loop methods for generating the desired
trajectory, xd(t), and control, ud(t), in Chapter 2, and we can design the feed-
back component, π(x(t), xd(t), t) using various approaches from Section 3.1 and
Section 3.2. For example, for a nonlinear system, we could design the feedback
term using a linearization-based approach by linearizing at each point of the
desired trajectory.

Example 3.3.1 (Trajectory Tracking via LQR). Consider a linear system:

ẋ = Ax + Bu,

and a desired trajectory (xd(t), ud(t)) defined over the time interval [0, T] com-
puted using an open-loop method. The trajectory tracking error dynamics are:

δẋ = Aδx + Bδu,

where δx = x − xd and δu = u − ud. We can apply the finite-horizon LQR
controller discussed in Section 3.1.1, which would yield a feedback controller of
the form:

δu(t) = K∗(t)δx(t),

and therefore the trajectory tracking controller from Equation (3.9) would take
the form:

u(t) = ud(t) + K∗(t)(x(t)− xd(t)).

3.3.1 Trajectory Tracking for Differentially Flat Systems

One useful fact about differentially flat systems is that they can be feedback lin-
earized to yield a linear dynamical system of the form:

z(q+1) = w, (3.10)

where z(q+1) is the q + 1-th order derivative of the flat outputs, z, and q is the
degree of the flat output space22, and w is a modified “virtual” control input 22 The degree of the flat output space is

the highest order of derivatives of the
flat output that are needed to describe
system dynamics.

term23.

23 J. Levine. Analysis and Control of
Nonlinear Systems: A Flatness-based
Approach. Springer, 2009

Since the system in Equation (3.10) is linear, we can leverage techniques from
linear control theory in Section 3.1 to design a closed-loop feedback controller

84 closed-loop control & trajectory tracking

for computing the virtual control, w, which we can use to track an open-loop
trajectory for the flat outputs. In particular, suppose we compute a reference
flat output trajectory, zd(t), and corresponding virtual input, wd(t), using an
open-loop method. Let the error between the actual flat output and desired flat
output be defined as e(t) = z(t)− zd(t), and consider a closed-loop control law
of the form:

w(t) = wd(t)−
q

∑
j=0

Kje(j)(t),

where e(j) = z(j) − z(j)
d is the j-th order derivative of the error and Kj is a diag-

onal matrix of controller parameters. Applying this control law to the system in
Equation (3.10) will result in the closed-loop dynamics:

z(q+1) = wd −
q

∑
j=0

Kje(j).

Since z(q+1)
d = wd(t) from the reference trajectory, this can be simplified to give

the closed-loop error dynamics:

e(q+1) +
q

∑
j=0

Kje(j) = 0.

We can now apply methods from linear control theory to choose the controller
parameters in Ki that will make the error dynamics converge to zero, which will
drive the system to track the flat output trajectory.

Example 3.3.2 (Extended Unicycle Trajectory Tracking). Consider the dynami-
cally extended unicycle model:

ẋ = v cos θ,

ẏ = v sin θ,

v̇ = a,

θ̇ = ω,

where the two control inputs are the acceleration, a, and the rotation rate, ω.
This system is differentially flat with flat output z = [x, y]⊤ and order q = 1. We
can therefore express the system dynamics as:

z̈ = J(θ, v)u, J(θ, v) =

[
cos(θ) −v sin(θ)
sin(θ) v cos(θ)

]
,

where u = [a, ω]⊤, and define the virtual control inputs:

w := J(θ, v)u,

so that we have a linear system of the form in Equation (3.10). We can then
define a trajectory tracking controller for the feedback linearized system:

w1 = ẍd − kpx(x− xd)− kdx(ẋ− ẋd),

w2 = ÿd − kpy(y− yd)− kdy(ẏ− ẏd),

principles of robot autonomy 85

where (·)d represents a term associated with the desired trajectory, and kpx, kdx, kpy, kdy >

0 are control gains. Next, we can retrieve the control inputs, a(t) and ω(t), by
solving the linear system:

J(θ, v)

[
a
ω

]
=

[
w1

w2

]
,

assuming that the matrix J(θ, v) is full rank.

3.4 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: Inverted Pendulum PD Control

In the notebook ch03/exercises/pid_control.ipynb, implement the PD con-
troller for the inverted pendulum dynamics. Then, play around with different
values of the gains kp and kd and use JAX and NumPy to compute the Jacobian
of the closed-loop dynamics. Verify the eigenvalues of the linearized matrix
are stable. Finally, run the provided code to simulate the nonlinear closed-loop
dynamics.

Problem 2: Extended Unicycle Trajectory Tracking Control

In the notebook ch03/exercises/unicycle_trajectory_tracking.ipynb, imple-
ment a differential flatness-based trajectory tracking controller for the extended
unicycle robot described in Example 3.3.2.

86 closed-loop control & trajectory tracking

References

[38] J. Levine. Analysis and Control of Nonlinear Systems: A Flatness-based Ap-
proach. Springer, 2009.

[67] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Pearson, 1991.

4
Search-Based Motion Planning

In previous chapters, we approached the problem of robotic motion planning
through the lens of control theory and optimal control. These techniques gen-
erate open and closed-loop control laws to accomplish specific tasks such as
trajectory generation, trajectory tracking, and stabilization about a particular
robot state. One common component of these methods is the use of a mathe-
matical model of the robot’s kinematics or dynamics to describe how the robot
transitions from state to state given control inputs.

In this chapter, we explore another class of algorithms1 for motion planning 1 S. M. LaValle. Planning Algorithms.
Cambridge, U.K.: Cambridge Univer-
sity Press, 2006

and trajectory generation that formulates the motion planning problem with
respect to the robot’s configuration space rather than the state space from pre-
vious chapters. This class of algorithms is well suited for higher-level motion
planning tasks, such as motion planning in environments with obstacles. These
approaches were developed in parallel with many of the techniques from previ-
ous chapters, and are still being researched today. Recall the general definition
of the motion planning problem:

Definition 4.0.1 (Motion planning problem). Compute a sequence of actions to
go from an initial condition to a terminal condition while respecting constraints,
and possibly optimizing a cost function.

In the previous chapters, we approached this problem by formulating math-
ematical optimization problems that minimized a cost function subject to con-
straints on the motion including dynamics and kinematics, control limits, and
conditions on the robot’s initial state, or leveraged differential flatness proper-
ties of the robot’s motion model. In these approaches, we parameterized the
robot’s trajectory by its state, x, and the corresponding control inputs, u, which
satisfy a set of differential equations:

ẋ = f (x, u).

In this chapter, we address the motion planning problem with respect to a
configuration space2. The configuration, q, of a robot is derivable from the full dy- 2 We sometimes use the short-hand

notation C-space to represent the
configuration space.

namics state, x, and captures all of the degrees of freedom of the robot. In some
cases, the state and configuration of the robot may be the same, but in other

88 search-based motion planning

Figure 4.1: Motion planning in
a two-dimensional workspace
with obstacles.

cases we can tailor the definition of the configuration to simplify the motion
planning problem. One important example of this is for geometric path plan-
ning, where we can plan paths in the configuration space without considering
the robot’s kinematic and dynamics model.

Example 4.0.1 (L-shaped Robot). Consider the L-shaped robot in Figure 4.1 that
lives in a two-dimensional world with obstacles, and is trying to get from one
point to another. Suppose this robot has a state x =

[
x, y, θ, ẋ, ẏ, θ̇

]⊤, where
x and y describe the robot’s position and θ is its orientation, and consider a
configuration space defined by q = [x, y, θ]⊤ which fully captures the robot’s
degrees of freedom. This motion planning problem involves obstacle avoidance,
and, therefore, it can be easier to plan a sequence of collision-free configura-
tions, q, as we show in the right-side graphic of Figure 4.1, than try to compute
a trajectory for the full state, x. In this case, our use of the configuration space
simplifies the motion planning problem by abstracting away the consideration
of the robot’s full dynamics. Once we define a geometric path in the configura-
tion space, we can use other techniques, including those discussed in previous
chapters, to define lower-level control laws for path tracking.

Note that in this example problem, the C-space is R2 × S1 which is a subset
of R3. This subspace is special because it includes the manifold S1, which char-
acterizes the fact that the rotational degree of freedom, θ, satisfies θ = θ ± 2πk
for all k = 1, 2, This distinction is important because it encodes the robot’s
ability to move from one angle to another in two different ways3. In the con- 3 For example, the robot can turn

left or turn right to get to the same
orientation.

text of this motion planning example problem, suppose the robot in Figure 4.1
has a current heading of θ0 and wants move to have a heading θg subject to the
constraint of avoiding a C-space obstacle, as we show in Figure 4.2. If we don’t
consider the equivalence between the orientations 0 and 2π in the definition of
the configuration space, the robot would not be able to traverse to the desired
heading, since as Figure 4.2 shows, a clockwise rotation leads to a collision. By
understanding that the configuration space is defined with respect to S1, the
robot can achieve the desired heading by simply rotating counter-clockwise.

Within the context of configuration space motion planning, we discuss two
classes of search-based algorithms: grid-based methods and combinatorial planners.

principles of robot autonomy 89

Figure 4.2: Motion planning ex-
ample where the configuration
space is defined by the mani-
fold S1, which is crucial for get-
ting from the initial orientation,
θ0, to the goal orientation, θg.
In particular, rotating clockwise
leads to collision but rotating
counter-clockwise is a feasible
path.

In both of these classes of search-based algorithms, we will look for several
important properties. First, we desire algorithms that are sound in the sense that
they either return a valid solution or no solution at all. Second, we will look for
algorithms that are complete, which means that they terminate in finite time and
return a valid solution if it exists. Finally, search-based algorithms should have
good time complexity and space complexity, which refer to the number of steps
before termination and maximum number of memory locations as a function of
the input problem size, respectively.

4.1 Grid-based Motion Planners

In many robotics problems, the robot’s configuration, q, is a d dimensional
vector and the C-space is a subset of the continuous space Rd. Planning in con-
tinuous spaces is challenging because there are an infinite number of potential
configurations the robot take. Grid-based motion planners simplify this prob-
lem by using a grid to discretize the C-space into a finite number of allowable
configurations. For example, Figure 4.3 shows how we can discretize a simple
C-space in two dimensions into a grid.

Figure 4.3: Discretizing the
continuous configuration space
using a grid.

In grid-based planners, we define undesirable configurations by simply iden-

90 search-based motion planning

tifying some cells of the grid to be forbidden, such as for obstacle collision
avoidance. We also abstract away the kinematics and dynamics of the robot and
assume that the robot has the ability to move freely between adjacent configura-
tions cells. Following the C-space discretization, the resulting motion planning
problem is sometimes referred to as a discrete planning problem because only a
finite number of neighboring configurations are available at each step, and the
total number of possible configurations is finite. The motion planning planning
problem therefore reduces to finding a way to traverse through the configura-
tion cells from the initial configuration to a desired final configuration.

Mathematically, we can represent discrete planning problems using discrete
graphs. We define a graph, denoted by G = (V, E), by a set of vertices4, V, and a 4 We also sometimes refer to the vertices

as nodes.set of edges, E. In the context of grid-based motion planners, each vertex v ∈ V
represents a free cell of the grid, and each edge (v, u) ∈ E corresponds to a
connection between adjacent configuration cells. With the graph representation,
we cast the planning problem as finding a way to traverse through the graph to
reach the desired vertex. Algorithms for solving these problems are referred to
as graph search methods. The advantages of graph search approaches are that they
are simple to use and for some problems can be very fast. The disadvantages
primarily come from the result of the discretization procedure. For example, if
the resolution of the grid is not fine enough the search algorithm may not be
able to find a solution. Additionally, for a fixed resolution grid, the size of the
graph grows exponentially with respect to the dimension of the configuration
space. This computational complexity limits graph search methods to applica-
tions with simple robots with a low-dimensional configuration space.

4.1.1 Label Correcting Algorithms

A graph that represents the discrete planning problem is defined by a finite
number of vertices and edges. Therefore, it should be theoretically possible to
solve a graph search problem in finite time. In order to achieve this in practice,
we must use several simple “accounting” tricks to keep track of how the search
has progressed and avoid redundant exploration. We also often want to find an
optimal path, and therefore we require a mechanism to keep track of the current
best path that the algorithm has found. Label correcting algorithms are a general
set of algorithms that employ these types of accounting techniques to guarantee
satisfactory performance.

We typically define the notion of an optimal path in label correcting algo-
rithms in terms of a cost-of-arrival.

Definition 4.1.1 (Cost-of-Arrival). The cost-of-arrival associated with a vertex
q, denoted C(q), with respect to a starting vertex qI , is the cost associated with
taking the best known route from qI to q along edges of the graph.

We also define the cost for traversing an edge from vertex q to vertex q′ as
C(q, q′)5. To keep track of the nodes that have already been visited and which 5 We can view this as a stage or running

cost as defined in the previous chapters
on optimal control.

principles of robot autonomy 91

still need further exploration, label correcting algorithms define a set of frontier
vertices6. Tracking frontier vertices allows us to make guarantees that the search 6 Frontier vertices are also sometimes

referred to as alivealgorithm will avoid redundant exploration and will terminate in finite time. It
also guarantees that if a path from the initial vertex, qI , to the goal vertex, qG,
exists, the algorithm will find it.

In general, label correcting algorithms take the following steps to find the
best path from an initial vertex, qI , to a desired vertex, qG

7: 7 Note that we refer to graph vertices
using the notation q to connect the
graph abstraction to the fact that
the node represents a physical robot
configuration q.

1. Initialize a set, Q, defining the set of frontier vertices as Q = {qI}. Initial-
ize the cost-of-arrival for the starting vertex as C(qI) = 0 and for all other
vertices, q′, as C(q′) = ∞.

2. Remove a vertex from the set Q and explore each of its connected8 vertices, 8 A vertex, q′, is connected to q if there
is an edge, (q, q′), in the graph.q′. For each connected vertex, q′, determine the candidate cost-of-arrival,

C̃(q′), associated with moving from q to q′ as C̃(q′) = C(q) + C(q, q′). If the
candidate cost-of-arrival, C̃(q′), is lower than the current cost-of-arrival, C(q′),
and it is lower than the current cost-of-arrival, C(qG), then set C(q′) = C̃(q′),
define q as the parent of q′, and add q′ to the frontier vertex set, Q, if q′ is not
qG.

3. Repeat step 2 until the set of frontier vertices, Q, is empty.

We also detail these steps in Algorithm 4.1.

Algorithm 4.1: General Label Correcting
Data: qI , qG, G
Result: path
C(q) = ∞
C(qI) = 0
Q = {qI}
while Q is not empty do

Q.remove(q)
for q′ ∈ {q′ | (q, q′) ∈ E} do

C̃(q′) = C(q) + C(q, q′)
if C̃(q′) < C(q′) and C̃(q′) < C(qG) then

q′.parent = q
C(q′) = C̃(q′)
if q′ ̸= qG and q′ ̸∈ Q then

Q.add(q′)

return path

Essentially, the label correcting algorithm iteratively searches connected
neighbors, q′, from a vertex, q, to see if moving from q to q′ will lead to a lower
overall cost than any previously found paths to q′. This is why we call these al-
gorithms “label correcting”, since they “correct” the cost-of-arrival as they find

92 search-based motion planning

better paths throughout the search process. Eventually, once the algorithm finds
the best path from qI to q, the vertex q will never again be added to the frontier
set, Q, and therefore the algorithm is guaranteed to eventually terminate.

Theorem 4.1.2 (Label Correcting Algorithms). If a feasible path exists from qI to qG,
then the label correcting algorithm will terminate in finite time with C(qG) equal to the
optimal cost of traversal, C∗(qG).

Within the class of label correcting algorithms, individual algorithms primar-
ily differ by how they select the next vertex from the set of frontier nodes, Q. In
fact, we often refer to the frontier node set as a priority queue since the algorithm
might assign priority values to the order in which vertices are selected. Dif-
ferent approaches for prioritizing the searched nodes include depth-first search,
breadth-first search, and best-first search.

Depth-First Search: Depth-first search in a directed graph expands each node
to the deepest level of the graph, until a chosen node has no more successors.
Another way to think about this in terms of the frontier set, Q, is “last in/first
out”, where whenever a new vertex is selected from Q it chooses the vertex that
was most recently added. This approach is sound in the sense that if it returns
a path it is a valid path from the start to the goal. However, it is not complete on
infinite graphs since if it starts in the wrong direction it will not converge.

0

1

2 5

3 4 6

Figure 4.4: Depth-first search

Example 4.1.1 (Depth-first Search). The general principle of depth-first search
is that the successor nodes of previously explored nodes are added at the front
of the queue. Starting at the node S in the graph shown in Figure 4.5, where the
goal is to get to node G, the table below shows the changes to the queue, Q, and
set of visited nodes, V, at each iteration:

Q V
(S) {S}

(A, B) {S, A, B}
(C, D, B) {S, A, B, C, D}
(D, B) {S, A, B, C, D}
(G, B) {S, A, B, C, D, G}
(B) {S, A, B, C, D, G}

The depth-first search algorithm will first find the path (S, A, D, G).
Sstart

A

B

C

D G

Figure 4.5: Example graph
where the goal is to start from
node S and find a path to the
goal node G.

Breadth-First Search: In contrast to depth-first search, breadth-first search ex-
plores all of the unexplored neighboring nodes of the selected node before
searching deeper. In terms of of the frontier set, Q, breadth-first search stores
nodes as a queue where the first node added is the first node selected. This
algorithm is sound in the sense that if it returns a path it is a valid path from
the start to the goal. It is also complete on finite or countably infinite transition
graphs.

0

1 2

3 4 5

Figure 4.6: Breadth-first search

principles of robot autonomy 93

Example 4.1.2 (Breadth-first Search). The general principle of breadth-first
search is that the successor nodes of previously explored nodes are added at
the back of the queue, Q. Given the graph in Figure 4.5, the changes to the
queue, Q, and the set of visited nodes, V, at each iteration following breadth-
first search are:

Q V
(s) {s}
(a, b) {s, a, b}
(b, c, d) {s, a, b, c, d}
(c, d, g) {s, a, b, c, d, g}
(d, g) {s, a, b, c, d, g}
(g) {s, a, b, c, d, g}

This algorithm will first find the path (s, b, g).

Best-First Search: Best-first search9 greedily selects vertices from the frontier set, 9 Best-first search is also commonly
known as Dijkstra’s algorithm.Q, by looking at the current best cost-of-arrival. Mathematically we express this

search priority as:
q = arg min

q∈Q
C(q).

This approach is considered an optimistic approach since it is modeling the as-
sumption that the best action based on current knowledge of the cost-of-arrivals
will always correspond to the best overall plan. In practice, this approach
typically provides a more efficient search procedure relative to depth-first or
breadth-first approaches because it can account for the cost of the path.

4.1.2 A* Algorithm

A* is a label correcting algorithm that modifies the best-first search approach
of Dijkstra’s algorithm. Specifically, in Dijkstra’s algorithm the goal vertex, qG,
is not taken into account by the search procedure. This can potentially lead to
wasted effort in cases where the greedy choice makes no progress towards the
goal. In the A* algorithm, we shift our focus from greedily optimizing for the
cost-of-arrival to searching based on the cost-to-go.

Definition 4.1.3 (Cost-to-Go). The cost-to-go associated with a vertex, q, with
respect to a goal vertex, qG, is the cost associated with taking the best known
route from q to qG along edges of the graph.

We may not always know the cost-to-go in practice, and therefore we use
heuristics to provide approximate cost-to-go values, which we denote by h(q). In
order for the heuristic to be useful, it must be a positive underestimate of the true
cost-to-go. An example of a heuristic, h, for a shortest distance traveled problem
is to simply use the Euclidean distance to the goal.

While Djikstra’s algorithm only prioritizes a vertex, q, based on its cost-of-
arrival, C(q), A* prioritizes based on a total cost, f (q), which we define as the

94 search-based motion planning

cost-of-arrival, C(q), plus an approximate cost-to-go, h(q)10. This provides a 10 In the case that we choose the heuris-
tic to be h(q) = 0 for all q, which is
technically a valid heuristic, then A* is
the same as Djikstra’s algorithm.

better estimate of the total quality of a path than just using the cost-of-arrival
alone. We define the A* algorithm more concretely in Algorithm 4.2.

Algorithm 4.2: A* Algorithm
Data: qI , qG, G
Result: path
C(q) = ∞, f (q) = ∞, ∀q
C(qI) = 0, f (qI) = h(qI)

Q = {qI}
while Q is not empty do

q = arg minq′∈Q f (q′)

if q = qG then
return path

Q.remove(q)
for q′ ∈ {q′ | (q, q′) ∈ E} do

C̃(q′) = C(q) + C(q, q′)
if C̃(q′) < C(q′) then

q′.parent = q
C(q′) = C̃(q′)
f (q′) = C(q′) + h(q′)
if q′ ̸∈ Q then

Q.add(q′)

return failure

A
10

start

B
8

C
5

D
7

E
3

F
6

H
3

G
5

I
1

J

0

6

3

3

2

5

1

8

5

5

1

7

3

2

3

Figure 4.7: Graph for the A*
example in Example 4.1.3. The
numbers in the nodes represent
the heuristic cost-to-go to reach
the goal and the edge numbers
show the edge cost to traverse
between the nodes.

Example 4.1.3 (A* Algorithm). Consider the graph in Figure 4.7, where we show
the heuristic cost-to-go for each node along with the actual costs associated with
each edge, and where the goal is to get from node A to node J. We show the
iterations of A* in Table 4.1, where we highlight the stage costs, the cost-to-go
heuristic, and the total cost considered by the algorithm. The algorithm begins
with the starting node, A, which has a cost-of-arrival of C = 0, and a heuristic
cost-to-go of h = 10, and therefore the total cost is f = 10. Next, we consider the
paths from the edges of A, (A, F) and (A, B). The path (A, F) has a edge cost
of C(A, F) = 3 and node F has a heuristic cost-to-go of h = 6, and therefore
the total cost for node F is f = 9. Similarly, the path (A, B) has an edge cost
C(A, B) = 6, h = 8, and f = 14. Since the total cost is lower for node F, we
proceed by expanding (A, F) into (A, F, G) and (A, F, H), which end up having
a total cost of f = 9 and f = 13, respectively. Next, we expand from node G due
to the lower total cost to get (A, F, G, I), with f = 8, and continue with the next
expansion to consider (A, F, G, I, J), (A, F, G, I, H), and (A, F, G, I, E), with total
costs of 10, 12, and 15. At this point, the algorithm terminates since it has found
a path to the goal node. Interestingly, in some cases, if we were to substitute
the cost-to-go heuristic values for some of the nodes, for example if we changed

principles of robot autonomy 95

Path being considered Stage cost C Cost to go h Total cost f

(A) 0 10 10

(A, B) 6 8 14

(A, F) 3 6 9

(A, F, G) 3+1 5 9

(A, F, H) 3+7 3 13

(A, F, G, I) 3+1+3 2 8

(A, F, G, I, H) 3+1+3+2 3 12

(A, F, G, I, E) 3+1+3+5 3 15

(A, F, G, I, J) 3+1+3+3 0 10

Table 4.1: Table summarizing
the costs for the A* example in
Example 4.1.3.

nodes B and D to have h(B) = 2 and h(D) = 1, it would take more steps for
the algorithm to terminate. This is because these new heuristics are less accurate
representations of the true total best cost-to-go, which highlights the importance
of choosing good heuristics for computational efficiency.

4.2 Combinatorial Motion Planning

In contrast to grid-based planners, combinatorial motion planners find paths
through the continuous configuration space without resorting to discretizations.
Recall that in grid-based planners undesirable cells in the discretized configura-
tion space, such as cells corresponding to collisions, are blocked out and simply
not considered in the resulting path search. In combinatorial planners, we con-
sider the structure of the free portion of the configuration space in a different
way. First, we denote the subset of the configuration space, C, that is free, for

Figure 4.8: Free (white) and
forbidden spaces (grey and red)
of the configuration space for a
simple circular robot in a two-
dimensional world. Note that
the forbidden space accounts
for the physical dimensions of
the robot.

example being collision free, as Cfree and we refer to this set as the free space. For
example, in Figure 4.8 and Figure 4.9 the free space is the areas not shaded with
grey or red. Within the free space, Cfree, combinatorial motion planners compute
structures that we refer to as roadmaps. A roadmap is a graph where each vertex
represents a point in the continuous subset of the configuration space, Cfree, and
each edge represents a path through Cfree that connects a pair of vertices. This
graph structure is similar to that used in grid-based planners with the important
distinction that the vertices can potentially be any configuration q ∈ Cfree, while
in grid-based planners the vertices are defined ahead of time by discretization.

96 search-based motion planning

Figure 4.9: Once the free
(white) and forbidden (grey
and red) configurations have
been identified, we can ignore
the physical dimensions of the
robot. This figure shows an
example of a path planning
problem in C-space with obsta-
cles.

This distinction is important because the flexibility of choosing the vertices does
not result in any loss of information. Once we have defined the roadmap, we
can compute a path from any point, qI ∈ Cfree, to a goal point, qG ∈ Cfree, by
first connecting the initial configuration, qI , and goal configuration, qG, to the
roadmap, and then solving a discrete graph search over the roadmap graph, G.

In general, combinatorial motion planners are complete in the sense that the
algorithm will either find a solution or will correctly report that no solution ex-
ists, and in some cases these planners can even be optimal. However, in practice
they are not always computationally feasible to implement except in problems
with low-dimensional configuration spaces or with simple geometric representa-
tions of the environment. These motion planners also require that the free space
be completely defined in advance, which is not necessarily a realistic require-
ment in practice.

4.2.1 Cell Decomposition

One common approach for deriving the roadmap for combinatorial motion
planning is to use cell decomposition to decompose the configuration space to
define Cfree. Cell decomposition is the process of partitioning the free space,
Cfree, into a finite set of regions called cells. Each cell should be easy to traverse
and should ideally be convex, the decomposition should be easy to compute,
and adjacencies between cells should be straightforward to determine to aid in
building the roadmap.

Example 4.2.1 (2D Cell Decomposition). Consider a two-dimensional configura-
tion space as shown in Figure 4.10. This space is decomposed into cells that are
either lines or trapezoids by a process called vertical cell decomposition. Once

principles of robot autonomy 97

we have defined the cells, we generate the roadmap by placing a vertex in each
cell, such as at the centroid, as well as a vertex on each shared edge between
cells.

If the forbidden space is polygonal, cell decomposition methods work pretty
well and each cell can be made to be convex. There exist several approaches for
performing cell decomposition, but in higher dimensions it becomes increas-
ingly challenging.

Figure 4.10: Example of two-
dimensional cell decomposition
with Cfree colored white. We
define a roadmap as the graph,
G, with vertices shown as black
dots and edges connecting
them. To solve a planning prob-
lem with qstart and qgoal , we
first connect these points to the
roadmap and then the path is
easily defined.

4.2.2 Other Roadmaps

Other approaches to define roadmaps, besides using cell decomposition, in-
clude maximum clearance or minimum distance methods. Maximum clearance
roadmaps simply try to always keep as much distance from obstacles as possi-
ble, for instance by following the centerline of corridors. These roadmaps are
also sometimes referred to as generalized Voronoi diagrams. Minimum distance
roadmaps are generally the exact opposite of maximum clearance roadmaps
in that they tend to graze the corners of the forbidden space. In practice, the
use of minimum distance roadmaps is likely not desirable and therefore these
approaches are less commonly used without additional modifications.

4.3 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

98 search-based motion planning

git clone https://github.com/StanfordASL/pora-exercises.git

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: A* Motion Planning

In this exercise, you will implement the A* grid-based motion planning algo-
rithm for some simple two-dimensional environments. In the file ch04/exercises/a_star.ipynb,
you will implement the key parts of the A* algorithm, run the algorithm on
some randomly generated path planning problems, and then will explore a way
to smooth the resulting discrete paths , which could be useful for practical robot
motion planning tasks.

principles of robot autonomy 99

References

[35] S. M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge Univer-
sity Press, 2006.

5
Sampling-Based Motion Planning

In Chapter 4, we introduced motion planning problems that are formulated
with respect to the robot’s configuration space, or in short the C-space. Within
the context of C-space planning, we also introduced two categories of ap-
proaches known as grid-based methods and combinatorial planning methods.
Grid-based methods discretize the continuous C-space into a grid and then use
graph search methods, such as A*, to compute paths through the grid. Combi-
natorial planners compute a roadmap that consists of a finite set of points in the
C-space, avoiding the use of a rigid grid structure, and then plan with respect
to the roadmap by connecting the initial configuration and desired configura-
tion to the roadmap and performing a graph search to find a path along the
roadmap. Generally speaking, grid-based methods suffer from the rigidity of
the discretization. In contrast, combinatorial planners have much more flexibil-
ity because any configuration, q, can be a part of the roadmap. However, both
types of planners require a complete characterization of the free configuration
space1 in advance.

1 The free configuration space is the set
of all points in the configuration space
that are allowable, such as ones that
don’t result in a collision with obstacles.

In this chapter, we present a class of motion planning algorithms which also
build a roadmap, but do not require a full characterization of the free configura-
tion space in advance. Instead, these algorithms build roadmaps one point at a
time by sampling a point in the configuration space and querying an indepen-
dent module to determine if the sample is admissible2. We refer to this class of

2 In the context of robotics, an admis-
sible configuration in motion planning
problems is often one that is collision-
free, and therefore we often refer to this
module as a collision detection module,
or simply a collision checker.

planners as sampling-based algorithms3. 3 S. M. LaValle. Planning Algorithms.
Cambridge, U.K.: Cambridge Univer-
sity Press, 2006

Sampling-based algorithms are a common choice for practical applications
since they are conceptually simple, flexible, relatively easy to implement, and
can be extended beyond the geometric case to include things like differential
motion constraints. The disadvantages of these approach are typically related
to theoretical guarantees, for example these approaches cannot certify that a
solution does not exist. In this chapter, we focus on two popular sampling-based
methods, probabilistic roadmaps (PRM) and the rapidly-exploring random
trees (RRT) algorithm, and will also briefly mention other methods such as the
fast-marching tree algorithm (FMT*), kinodynamic planning, and deterministic
sampling-based methods.

102 sampling-based motion planning

5.1 Probabilistic Roadmap (PRM)

The probabilistic roadmap (PRM) sampling-based method is conceptually similar
to the combinatorial planners we discussed in Chapter 4 in that it constructs a
topological graph, G, known as a roadmap. This graph includes vertices that rep-
resent robot configurations, q, within the unobstructed portion of the configura-
tion space, Cfree. These vertices are connected by edges that also reside entirely
within Cfree. After constructing the roadmap, we determine a motion plan for
a specific initial configuration, qI , and goal configuration, qG, by first linking
them to the roadmap and subsequently employing a graph-search method such
as A* to navigate a path through the roadmap graph. The primary distinction
between the PRM sampling-based method and combinatorial planners is related
to the method of generating the roadmap.

The fundamental advantage of the PRM approach over combinatorial plan-
ners is that it avoids the need for a complete analysis of the free configuration
space, which is a process that is typically resource-intensive. Instead, the PRM
method involves randomly sampling configurations, q, and utilizing a black-box
module to determine if q belongs to Cfree. Concretely the outline of the general
PRM approach is:

1. Randomly sample n configurations4, qi, from the configuration space, C. 4 We sometimes refer to PRM as a multi-
query method since it samples a batch of
n samples at once.2. Query a black-box module for each sampled configuration, qi, to determine if

qi ∈ Cfree. If qi ̸∈ Cfree, then we remove it from the sample set.

3. Create a graph, G = (V, E), with vertices from the sampled configurations,
qi ∈ Cfree. Define a radius5, r, and create edges for every pair of vertices, 5 Referred to as the connectivity radius.

q and q′, where the norm satisfies ∥q − q′∥ ≤ r and the straight line path
between q and q′ is also in the free configuration space6. 6 We often perform edge validation

by densely sampling the edge and
querying the free space black-box
module at each point.

Figure 5.1 shows an example of a PRM roadmap graph. Note that defining the

Figure 5.1: Example roadmap
graph and path found by the
PRM algorithm. The black dots
represent the randomly sam-
pled vertices of the graph and
the grey lines represent the
edges created between vertices
within a predefined radius,
r, of each other. The initial
configuration, qstart, and goal
configuration, qgoal, are con-
nected through this roadmap
along the pink line, which we
find by using a graph-search
algorithm.

principles of robot autonomy 103

connectivity radius, r, provides us with a simple and efficient way of connecting
the sampled vertices without having a burdensome number of edges. This is
desirable because having too many edges is unnecessary, will make the graph-
search more challenging, and will require more free space module checks. On
the flip side, making the radius too small could mean that we do not make
enough connections.

One of the limitations of the probabilistic roadmap approach is that it often
requires a large number of samples to adequately span the configuration space
and find a satisfactory solution. A large sample size also leads to many queries
of the free configuration space checking module, which can be an expensive
operation in practice. However, in certain robotics applications, it might be
acceptable or even advantageous to use an approach like PRM that thoroughly
covers the space Cfree with a roadmap. For example, in some applications we
may have a need to solve the motion planning problem many times for various
pairs of initial and goal configurations. In these scenarios, we only construct
the PRM roadmap once, and then can reuse it for each problem as long as the
environment remains unchanged.

5.2 Rapidly-exploring Random Trees (RRT)

Applications with static environments and a need for solving multiple planning
problems can benefit from methods like PRM that front-load the work to build
a detailed roadmap across the whole free configuration space. However, there
are also many problems in robotics that are classified as single-query problems,
where we will only compute a single motion plan for a given free configuration
space7. Building a roadmap over the entire free configuration space in single- 7 A common single-query planning

scenario arises in contexts with a
dynamic environment, such as if there
is a moving obstacle.

query contexts typically results in wasted effort. The Rapidly-exploring Random
Trees (RRT) algorithm solves the single-query problem by incrementally sam-
pling and building the roadmap, starting at the initial configuration, until the
goal configuration is reached. The roadmap graph in this case is built as a tree,
which is a special type of graph that has only one path between any two ver-
tices.

In general, the RRT algorithm begins by initializing a tree8, T = (V, E), 8 Due to its special structure, we refer to
the roadmap graph as a tree and denote
it as T rather than G.

with a vertex at the initial configuration, V = {qI}. At each iteration, the RRT
algorithm performs the following steps:

1. Randomly sample a configuration q ∈ C.

2. Find the vertex qnear ∈ V that is closest to the sampled configuration, q.

3. Compute a new configuration, qnew, that lies on the line connecting qnear and
q such that the entire line from qnear to qnew is contained in the free configura-
tion space, Cfree.

4. Add a vertex, qnew, and an edge, (qnear, qnew), to the tree, T.

104 sampling-based motion planning

After each iteration, only a single point is sampled and potentially added to
the tree. Occasionally, we also set the sampled point as the goal configuration,
q = qG, and if the nearest point, qnear, can be connected to qG through the free
configuration space, the search is terminated. Intuitively, this approach works
because of a phenomenon we refer to as the Voronoi bias, which describes the
fact that there is more “empty space” near the nodes on the frontier of the tree.
Therefore, a randomly sampled point is more likely to be drawn in this “empty
space”, causing the frontier to be extended and therefore driving exploration.

Variations on this standard algorithm exist, and in particular there are dif-
ferent ways of connecting a sampled point to the existing tree. One popular
variant that modifies the way a sampled point is connected to the tree is known
as RRT*9. RRT* introduces a notion of optimality into the algorithm and will re- 9 RRT* is pronounced “RRT star”.

turn an optimal solution as the number of samples approaches infinity. Another
variant of RRT is called RRT-Connect, which simultaneously builds a tree from
both the initial configuration and the goal configuration and tries to connect
them.

Figure 5.2: Example exploration
tree by the RRT algorithm. The
black dots represent points
sampled at each iteration of the
algorithm, which are connected
to the nearest vertex that is
currently part of the tree.

5.3 Theoretical Results for PRM and RRT

One of the main challenges of sampling-based motion planning is that it is
unclear how many samples we need to find a solution. However, there are some
theoretical guarantees for PRM and RRT regarding their asymptotic behavior
as the number of samples approaches infinity, n −→ ∞. In particular, PRM
with a constant connectivity radius and RRT are guaranteed10 to eventually

10 These guarantees require an assump-
tion that the configuration space is
bounded.

find a solution if it exists11,12. With an appropriate choice of the connectivity

11 S. M. LaValle. Rapidly-Exploring
Random Trees: A New Tool for Path
Planning. 1998

12 L. E. Kavraki et al. “Probabilistic
roadmaps for path planning in high-
dimensional configuration spaces”.
In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580

radius, we can also show that PRM will find optimal paths as the number of
samples approaches infinity. However, RRT can behave arbitrarily bad with
non-negligible probability13. 13 S. Karaman and E. Frazzoli.

“Sampling-based Algorithms for
Optimal Motion Planning”. In: Int.
Journal of Robotics Research 30.7 (2011),
pp. 846–894

principles of robot autonomy 105

5.4 Fast Marching Tree Algorithm (FMT*)

As we briefly mentioned in Section 5.3, PRM is an asymptotically optimal al-
gorithm, meaning that it can find high-quality paths given a sufficient number
of samples. However, using a high number of samples in PRM requires a high
number of queries of the a black-box free configuration space checking module
that can make the approach computationally expensive in practice. In contrast,
the vanilla RRT algorithm is quick but typically fails to produce optimal paths.

The Fast Marching Tree (FMT*) algorithm14, an advanced sampling-based 14 L. Janson et al. “Fast Marching Tree:
A Fast Marching Sampling-Based
Method for Optimal Motion Planning
in Many Dimensions”. In: Int. Journal
of Robotics Research 34.7 (2015), pp. 883–
921

motion planning technique, combines the benefits of both PRM and RRT style
methods in that it is both rapid and asymptotically optimal. FMT* builds a
tree structured graph in the same way RRT does, therefore maintaining the
efficiency of RRT, but makes connections in a way that allows for asymptotic
optimality. In particular, new connections are made using a technique referred
to as dynamic programming. Dynamic programming is a technique that we can
use to find the optimal path15 with respect to a cost-of-arrival, denoted by C(q), 15 An example of a common metric

we may want to optimize is the Eu-
clidean distance, which would result in
computing a shortest distance path.

which represents the cost to traverse from the initial configuration, qI , to the
configuration q.

In the context of motion planning, dynamic programming leverages Bell-
man’s principle of optimality, which states that the cost-of-arrival of the optimal
paths satisfy the condition:

C∗(q) = min
q′ :∥q′−q∥<r

C(q, q′) + C∗(q′), (5.1)

where q′ are configuration nodes within radius r of node q, C(q, q′) is the cost
to traverse the edge between q and q′, and C∗(q′) is the optimal cost-to-arrive at
q′. This relationship says that the cost-of-arrival at any configuration, q, on the
optimal path is defined by searching over all local neighboring configurations to
find which would result in the best path. FMT* uses this principle each time it
needs to connect a new sample to the tree. However, in practice, using the con-
dition in Equation (5.1) is complicated by the fact that the resulting edge may
result in a violation of the non-free part of the configuration space. FMT* han-
dles this by ignoring obstacles when leveraging the condition in Equation (5.1)
to connect a new sample to the tree, and then if a violation of the non-free part
of the C-space occurs from the resulting connection, it is simply skipped and
the algorithm moves on to a new sample. This application of dynamic program-
ming is referred to as lazy because it only checks for the constraint violation
after the fact, and it turns out that this substantially reduces the total number
of queries to the free-configuration space checker module and only leads to
sub-optimality in rare cases.

5.5 Kinodynamic Planning

The geometric motion planning algorithms we previously introduced assume
that the robot does not have any constraints on its motion and that we only

106 sampling-based motion planning

require the path to be contained within the free configuration space. This as-
sumption makes the planning task easier because we can simply connect two
configurations, q and q′, with a straight line. However, as we discussed in Chap-
ter 1, robots typically have kinematic and dynamic motion constraints, and
for many motion planning problems it is desirable or even necessary to take
those constraints into account. The problem of planning a path through the free
configuration space, Cfree, that satisfies a given set of differential constraints is
referred to as kinodynamic motion planning16. 16 E. Schmerling, L. Janson, and M.

Pavone. “Optimal sampling-based
motion planning under differential
constraints: the driftless case”. In: IEEE
International Conference on Robotics and
Automation. 2015, pp. 2368–2375

Similar to the previous chapters on open and closed-loop control and trajec-
tory optimization, we assume that the robot operates in a state space, X ⊆ Rn,
with control inputs u ∈ U ⊆ Rm, and that the motion constraints are defined by
the differential model:

ẋ = f (x, u), (5.2)

where x is the current robot state and u is the current control input. Note that
the state space, X , is not necessarily the same as the configuration space, C,
but the configuration, q, is derivable from the state, x. As we previously men-
tioned, we generally choose the configuration space to capture the information
about the robot’s state that is necessary for obstacle avoidance, but it may not be
sufficient to completely capture the kinematics and dynamics.

We can extend the general RRT algorithm from Section 5.2 to handle the kin-
odynamic case by modifying how we add new nodes and edges to the tree. In
particular, we start by sampling a random state, x, from the state space, X , and
compute its nearest neighbor, xnear, on the current tree. Instead of connecting
x and xnear with a straight line, which is likely not a kinematically or dynam-
ically feasible trajectory, we sample a random control, u ∈ U , and a random
time, t. Then we propagate the state xnear forward by integrating the differential
equation model in Equation (5.2) with the chosen control, u, for the duration t
to get a new state, xnew. We add the resulting state, xnew, to the tree if the path
from xnear to xnew is within the free configuration space. This is referred to as a
forward-propagation-based approach. Another approach to kinodynamic planning
leverages steering-based algorithms. In these approaches, the planner selects two
points in the state space, x and x′, and then uses a steering subroutine to find a
feasible trajectory to connect the states. Crucially, these approaches only work
well in practice if the steering subroutine is computationally efficient, such as if
the system is differentially flat. Figure 5.3 shows an example of a kinodynamic
sampling-based planning algorithm called Differential FMT*17 that is a varition 17 E. Schmerling, L. Janson, and M.

Pavone. “Optimal sampling-based
motion planning under differential
constraints: the driftless case”. In: IEEE
International Conference on Robotics and
Automation. 2015, pp. 2368–2375

of the FMT* algorithm we introduced in Section 5.4.

5.6 Deterministic Sampling-Based Motion Planning

Probabilistic sampling-based algorithms, such as PRM and RRT, have been quite
successful in practice for robotic motion planning and often have nice theoreti-
cal properties with respect to probabilistic completeness or asymptotic optimal-
ity. These algorithms are probabilistic because they compute a path by connecting

principles of robot autonomy 107

(a) Reeds-Shepp car (b) Double integrator system

Figure 5.3: Results from a
kinodynamic planner called
Differential FMT* (DFMT*).
The figure on the left shows
the results for a Reeds-Shepp
car model, and on the right is a
double integrator model.

independently and identically distributed random points in the configuration
space. This randomization introduces several challenges for practical use, in-
cluding certification for safety-critical applications and the ability to use offline
computation to improve real-time execution. Therefore, we can also explore de-
terministic approaches that can achieve similar or better theoretical guarantees
and practical performance.

An important metric in the context of deterministic sampling-based motion
planning is the l2-dispersion.

Definition 5.6.1 (l2-dispersion). For a finite set of points, S, contained in X ⊂
Rd, its l2-dispersion, D(S), is defined as:

D(S) := sup
x∈X

min
s∈S
∥s− x∥2. (5.3)

Intuitively, the l2-dispersion of S quantifies how well a space is covered by
the set of points in S in terms of the largest Euclidean ball that touches and con-
tains none of the points. For a fixed number of samples, a small l2-dispersion
means that the points are more uniformly distributed since only a small radius
ball can be fit among the points of S without touching or containing any of
them.

In the context of deterministic sampling based motion planning, it is desir-
able to generate a set of samples, S, with low-dispersion. In fact, we can lever-
age low-dispersion sampling sequences that give sets S with l2-dispersion D(S)
on the order of O(n−1/d) where d is the dimension of the space. Additionally,
for d = 2 it is possible for us to create sequences of points, S, that minimize
the l2-dispersion. If the set S of n samples has l2-dispersion that satisfies the
inequality:

D(S) ≤ γn−1/d,

for some γ > 0, and if limn→∞ n1/dr = ∞ for a connection radius, r, then the
arc length of the path returned by the search algorithm can converge to the

108 sampling-based motion planning

optimal path as the number of samples approaches infinity, n −→ ∞, just as for
probabilistic planners18. 18 In fact, the deterministic approach

can even take advantage of even smaller
connection radii than probabilistic
methods.5.7 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: Rapidly-Exploring Random Trees

In this exercise, you will implement the RRT sample-based motion planning al-
gorithm to plan paths in simple 2D environments. In the file ch05/exercises/rrt.ipynb,
you will implement the key parts of the RRT algorithm and define a GeometricRRT

planner that leverages simple straight line connections between nodes.

principles of robot autonomy 109

References

[24] L. Janson et al. “Fast Marching Tree: A Fast Marching Sampling-Based
Method for Optimal Motion Planning in Many Dimensions”. In: Int.
Journal of Robotics Research 34.7 (2015), pp. 883–921.

[28] S. Karaman and E. Frazzoli. “Sampling-based Algorithms for Optimal
Motion Planning”. In: Int. Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[29] L. E. Kavraki et al. “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”. In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580.

[35] S. M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge Univer-
sity Press, 2006.

[36] S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning. 1998.

[58] E. Schmerling, L. Janson, and M. Pavone. “Optimal sampling-based mo-
tion planning under differential constraints: the driftless case”. In: IEEE
International Conference on Robotics and Automation. 2015, pp. 2368–2375.

Part II

Robot Perception

6
Introduction to Robot Sensors

The three main pillars of robotic autonomy are perception, planning, and con-
trol, which correspond to the see, think, and act stages of autonomy. The per-
ception component consists of the numerous challenges associated with a robot
sensing and understanding its environment, and a key element of perception is
the sensors the robot uses to extract meaningful information about the world. In
the next few chapters, we focus on the robot perception problem, and in particu-
lar we introduce common sensors utilized in robotics applications, discuss their
key performance characteristics, and describe strategies for extracting useful
information from the sensor measurements.

Robots operate in diverse environments which often require diverse sets of
sensors for effective perception. For example, a self-driving car may utilize cam-
eras, lidar, and radar for detecting objects in the environment. It also requires
sensors for characterizing the physical state of the vehicle itself, such as inertial
measurement units (IMU), GNSS positioning sensors1, and more2. 1 Global Navigation Satellite System

2 R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

6.1 Sensor Classifications

We use the terms proprioceptive and exteroceptive to distinguish between sensors
that measure the environment and sensors which measure quantities related the
robot itself.

Definition 6.1.1 (Proprioceptive). Proprioceptive sensors measure values in-
ternal to the robot. For example, a proprioceptive sensor might measure motor
speed, wheel load, robot arm joint angles, or battery voltage.

Definition 6.1.2 (Exteroceptive). Exteroceptive sensors acquire information from
the robot’s environment. For example, exteroceptive sensors measure distances
to objects, light intensity, and sound amplitude.

Generally speaking, exteroceptive sensor measurements are more likely to
require interpretation by the robot in order to extract meaningful environmental
features. In addition to characterizing sensors based on what the measure, we
also characterize sensors as passive or active based on how they operate.

114 introduction to robot sensors

Definition 6.1.3 (Passive Sensor). Passive sensors, such as thermometers and
cameras, measure ambient environmental energy entering the sensor.

Definition 6.1.4 (Active Sensor). Active sensors, such as ultrasonic sensors, lidar
and radar, emit energy into the environment and measure the reaction.

Classifying a sensor as active or passive is important because each exhibit
unique characteristics and challenges. For example, passive sensors are heavily
influenced by environmental conditions, such as a camera’s reliance on good
ambient lighting to take quality images.

6.2 Sensor Performance

Different types of sensors exhibit varying performance attributes. While some
sensors maintain exceptional accuracy in controlled laboratory settings, their
performance may suffer in natural real-world environments. Conversely, other
sensors offer narrow, high-precision data across a variety of settings. We quan-
tify and compare sensor performance characteristics by defining metrics related
to design specifications and in situ3 performance. 3 In situ metrics quantify how well a

sensor performs in the real environ-
ment.

6.2.1 Design Specification Metrics

A number of performance characteristics are specifically considered when de-
signing a sensor, and which are also used to quantify its overall nominal perfor-
mance capabilities.

1. Dynamic range quantifies the ratio between the lower and upper limits of the
sensor inputs under normal operation. We usually express this metric in
decibels (dB), and compute it as:

DR = 10 log10(r) [dB],

where r is the ratio between the upper and lower limits. In addition to the
dynamic range ratio, the actual range is also an important sensor metric. For
example, an optical rangefinder has a minimum operating range and gives
spurious data when measurements are taken with the object closer than that
minimum.

2. Resolution is the minimum difference between two values that can be detected
by a sensor. The lower limit of the dynamic range of a sensor is usually equal
to its resolution4. 4 This is not necessarily the case for

digital sensors
3. Linearity characterizes whether or not the sensor’s output depends linearly on

the input.

4. Bandwidth or frequency is used to measure the speed with which a sensor
can provide a stream of readings. We usually express this metric in units of
Hertz (Hz), which is measurements per second. High bandwidth sensors are

principles of robot autonomy 115

desirable so that downstream information can be updated at a high rate. For
example, mobile robots may have to limit their maximum speed based on the
bandwidth of their obstacle detection sensors.

6.2.2 In Situ Performance Metrics

Metrics related to the design specifications can be reasonably quantified in a
laboratory environment and then extrapolated to predict performance during
real-world deployment. However, several important sensor metrics cannot be
adequately characterized in lab settings since they are influenced by complex
interactions between the environment.

1. Sensitivity defines the ratio of change in the output from the sensor to a
change in the input. High sensitivity is often undesirable because any noise
to the input can be amplified, but low sensitivity might degrade the ability to
extract useful information from the sensor’s measurements. Cross-sensitivity
defines the sensitivity to environmental parameters that are unrelated to the
sensor’s target quantity. For example, a flux-gate compass can demonstrate
high sensitivity to magnetic north and is therefore useful for mobile robot
navigation. However, the compass also has high sensitivity to ferrous build-
ing materials, so much so that its cross-sensitivity often makes the sensor
useless in some indoor environments. High cross-sensitivity of a sensor is
generally undesirable, especially when it cannot be modeled.

2. Error of a sensor is defined as the difference between the sensor’s output
measurements and the true values being measured, within some specific
operating context. Given a true value, v, and a measured value, m, the we
define the error as e := m− v.

3. Accuracy is defined as the degree of conformity between the sensor’s mea-
surement and the true value, and is often expressed as a proportion of the
true value, for example we may state that a sensor has 97.5% accuracy. There-
fore, small error corresponds to high accuracy and large error corresponds
to low accuracy. For a measurement, m, and true value, v, we define the ac-
curacy as a := 1− |m− v|/v. Characterizing sensor accuracy is challenging
since obtaining the true value, v, can be difficult or impossible.

4. Precision defines the reproducibility of the sensor results. For example, a sen-
sor has high precision if multiple measurements of the same environmental
quantity are similar. It is important to note that precision is not the same as
accuracy5. 5 A very precise sensor can still be

highly inaccurate

6.2.3 Sensor Errors

When discussing in situ performance metrics such as accuracy and precision,
it is important to be able to reason about the sources of sensor errors. In partic-

116 introduction to robot sensors

ular, it is important to distinguish between two main types of error, systematic
errors and random errors.

1. Systematic errors are caused by factors or processes that can in theory be
modeled because they are deterministic and therefore reproducible and
predictable. Calibration errors are a common source of systematic errors
in sensors.

2. Random errors cannot be predicted using a sophisticated model since they
are stochastic and unpredictable. Hue instability in a color camera, spurious
rangefinding errors, and black level noise in a camera are all examples of
random errors.

To reliably employ a sensor in practice, it is beneficial to characterize its sys-
tematic and random errors to allow for corrections that improve its accuracy
and provide information about its precision. We refer to the process of quanti-
fying sensor errors and identifying their origins as error analysis. This analysis
often entails identifying all sources of systematic errors, modeling random er-
rors6, and assessing the cumulative effect of errors on the sensor’s output. 6 For example, using Gaussian distribu-

tions.However, conducting a comprehensive error analysis can be difficult due
to several factors. A significant challenge arises due to a blurring between sys-
tematic and random errors that is the result of changes to the operating envi-
ronment. For instance, exteroceptive sensors on a mobile robot face varying
measurement conditions as the robot navigates, with the sensor’s performance
potentially influenced by the robot’s own movement. Therefore, an exterocep-
tive sensor’s error profile may be heavily dependent on the particular environ-
ment and even the specific state of the robot7. This could cause errors to seem 7 For example, active ranging sensors

like lidar may fail based on the sensor’s
positioning relative to targets in the
environment, and sonar sensors may
return erroneous range readings due
to specular reflections when aimed at
certain angles against a smooth wall.

random as they occur unpredictably with the robot’s movement, yet appear
more systematic if the robot remains stationary. Therefore, while we can classify
sensor errors as systematic or random in controlled environments, accurately
characterizing these errors becomes substantially more complex in real-world
settings.

6.2.4 Modeling Uncertainty

If we could perfectly model and understand all systematic errors in sensor
measurements we could theoretically correct for them. However, in practice, this
is often not feasible. We therefore characterize uncertainty due to random errors
by using probability distributions.

Given the practical challenge of identifying all sources of random error, we
commonly make assumptions when modeling the error distribution. We com-
monly assume that random errors have a zero-mean, and that the distribution is
symmetric and unimodal8. These assumptions can make mathematical analysis 8 A very common distribution that

fits these properties is the Gaussian
distribution.

easier, but they also have limitations. For example, some assumptions, such as
the unimodality of the distribution, may not hold true in real-world applica-
tions.

principles of robot autonomy 117

Example 6.2.1 (Sensor Uncertainty Assumptions). Consider a sonar sensor,
an active sensor that uses acoustic pulses to measure distance. Suppose the
sonar’s accuracy is high, with random errors mainly stemming from noise from
internal timing circuits. We could reasonably assume this noise is unimodal and
possibly Gaussian. However, in scenarios where the sonar encounters materials
causing coherent reflections, distance over-estimations become likely and could
result in a bias towards positive errors. A comprehensive distribution that also
captures this effect should be bimodal and asymmetric.

6.3 Common Sensors on Mobile Robots

6.3.1 Encoders

Encoders are proprioceptive electro-mechanical sensors that convert mechanical
motion into a series of digital signals that can be interpreted to measure relative
or absolute position measurements9. One common application of encoders in 9 Thanks to their extensive use across

many domains, significant advance-
ments have been made in developing
affordable encoders that provide high
resolution.

robotics is for sensing the rotation angle and speed of wheels or motors. This
is important for being able to design good control laws for wheel speed control
and motor-driven joints.

One common type of encoder is the optical encoder. Optical encoders work by
directing light through slits in a rotating metal or glass disc onto a photodiode,
creating sine or square wave pulses corresponding to the disc’s rotation. We
can then integrate the number of wave peaks to determine how much the disk
has rotated. The encoder’s resolution, expressed in cycles per revolution (CPR),
determines its minimum angular resolution. In terms of bandwidth, it is critical
that the encoder is sufficiently fast to handle the expected shaft rotation rates10. 10 Encoder bandwidth is generally not a

concern in mobile robot applications.Quadrature encoders are also common in robotics applications to additionally
sense the direction of rotation.

As with most proprioceptive sensors, encoders typically operate in a very
predictable and controlled environment and we can account for their system-
atic errors and cross-sensitivities. In practice, we often assume perfect accuracy
of optical encoders since their errors are typically dwarfed by errors in down-
stream components.

6.3.2 Heading Sensors

Heading sensors can be proprioceptive or exteroceptive11 and are used to deter- 11 For example, gyroscopes and in-
clinometers are proprioceptive and
compasses are exteroceptive.

mine the robot’s orientation in space. They can also be used to obtain position
estimates by fusing the orientation and velocity information and integrating
through a process known as dead reckoning.

Compasses: Compasses are exteroceptive sensors that measure the earth’s mag-
netic field to provide an estimate of direction. In mobile robotics, digital com-
passes using the Hall effect are popular and inexpensive, but often suffer from
poor resolution and accuracy. Flux gate compasses have improved resolution

118 introduction to robot sensors

and accuracy, but are more expensive and physically larger. Both compass types
are vulnerable to vibrations and disturbances in the magnetic field, and are
therefore less well suited for indoor applications.

Gyroscopes: Gyroscopes are heading sensors that preserve their orientation
with respect to a fixed inertial reference frame. Gyroscopes can be classified
in two categories: mechanical gyroscopes and optical gyroscopes. Mechanical gy-
roscopes rely on the angular momentum of a fast-spinning rotor to keep the
axis of rotation inertially stable. The inertial stability increases with the spin-
ning speed, ω, the precession speed, Ω, and the wheel’s inertia, I, since we can
express the reactive torque, τ, by:

τ = IωΩ.

Mechanical gyroscopes are built with an inner and outer gimbal that isolates the
rotor axis from external torques to keep it space-stable. Nevertheless, friction
in the bearings of the gimbals may introduce small torques, which over time
introduces small errors. A high quality mechanical gyroscope can cost up to
$100,000 and has an angular drift of about 0.1 degrees in 6 hours.

Optical gyroscopes are a relatively new invention. They use angular speed
sensors with two monochromatic light beams, or lasers, emitted from the same
source. Two beams are sent, one clockwise and the other counterclockwise,
through an optical fiber. Since the laser traveling in the direction of rotation
has a slightly shorter path, it will have a higher frequency. We can therefore
estimate angular velocity since it is proportional to the frequency difference.
In modern optical gyroscopes, bandwidth can easily exceed 100 kHz, while
resolution can be smaller than 0.0001 degrees/hr.

6.3.3 Accelerometers

An accelerometer is a device used to measure net acceleration due to external
forces, including gravity. Mechanical accelerometers are essentially spring-mass-
damper systems that we model by the second order differential equation12: 12 G. Dudek and M. Jenkin. “Inertial

Sensors, GPS, and Odometry”. In:
Springer Handbook of Robotics. Springer,
2008, pp. 477–490

Fapplied = mẍ + cẋ + kx

where m is the proof mass, c is the damping coefficient, k is the spring constant,
and x is the relative position to a reference equilibrium. When a static force is
applied, the system will oscillate until it reaches a steady state where the steady
state acceleration is:

aapplied =
kx
m

.

The design of the sensor chooses m, c, and k such that system can stabilize
quickly and then the applied acceleration can be calculated from steady state.
Modern accelerometers, such as the ones in mobile phones, are usually very
small and use Micro Electro-Mechanical Systems (MEMS), which consist of a

principles of robot autonomy 119

cantilevered beam and a proof mass. The deflection of the proof mass from its
neutral position is measured using capacitive or piezoelectric effects.

6.3.4 Inertial Measurement Unit (IMU)

Inertial measurement units (IMU) are devices that use gyroscopes and ac-
celerometers to estimate relative position, orientation, velocity, and accelera-
tion with respect to an inertial reference frame. We show their general working
principle in Figure 6.1.

Rate

gyroscope

Integrate

(to orientation)

Accelerometer

Transform to

local frame

Gravity

correction

Integrate

(to velocity)

Initial

velocity

Integrate

(to position)

Initial

position

Acceleration Velocity Position

Figure 6.1: Inertial measure-
ment unit (IMU) block diagram.

First, we integrate gyroscope data to estimate the vehicle orientation while
the three accelerometers estimate the instantaneous acceleration along each axis.
We then transform the acceleration into the local navigation frame using the
current estimate of the vehicle orientation relative to gravity and subtract the
gravity vector from the measurement. Next, we integrate the resulting accelera-
tion to obtain the velocity and integrate again to compute the position, provided
that we know both the initial velocity and position.

One of the fundamental issues with IMUs is the phenomenon called drift,
which describes the slow accumulation of errors over time. Drift in any one
component will also effect the downstream components. For example, drift in
the gyroscope leads to errors in the estimation of the vehicle orientation relative
to gravity, which results in incorrect cancellation of the gravity vector. Addition-
ally, errors in acceleration measurements will cause the integrated velocity to
drift in time, which will in turn also cause position estimate drift. We can ac-
count for drift by using periodic references to some external measurement, such
as GNSS position measurements, cameras, or other sensors.

6.3.5 Beacons

Beacons are signaling devices with precisely known positions13. We can deter- 13 Stars and lighthouses are classic
examples.mine the position of a mobile robot by knowing the position of the beacon and

120 introduction to robot sensors

by having access to relative position measurements. The GNSS positioning sys-
tem and indoor camera-based motion capture systems are advanced examples
of beacons. GNSS based positioning14, which is extremely popular in robotics 14 We can also use modified GNSS-

based methods, such as differential GPS,
to increase positioning accuracy.

and other fields, works by processing synchronized signals from at least four
satellites. We need signals from at least four satellites to estimate the four un-
known quantities: the three position coordinates and a clock correction variable.

6.3.6 Active Ranging

Active ranging sensors provide direct distance measurements to objects in the
vicinity of the sensor. These sensors are important in robotics for localization
and environment reconstruction. There are two main types of active ranging
sensors, time-of-flight active ranging sensors and geometric active ranging sen-
sors15. 15 Examples of time-of-flight sensors

include ultrasonic, laser rangefinder,
and time-of-flight cameras, and ex-
amples of geometric sensors include
optical triangulation and structured
light sensors.

Time-of-flight Active Ranging: Time-of-flight active ranging sensors make use
of the propagation speed of sounds or electromagnetic waves. In particular, the
travel distance is given by:

d = ct,

where d is the distance traveled, c is the speed of wave propagation, and t is
the time of flight. Note that the time of flight is significantly smaller when us-
ing electromagnetic signals, on the order of nanoseconds for distance on the
order of meters, which can make these types of sensors more challenging to
develop in an affordable and robust way. In general, the quality of different
time-of-flight range sensors depends on several factors including uncertainties
in determining the exact time of arrival of the reflected signal, inaccuracies in
the time of flight measurement, the dispersal cone of the transmitted beam16, 16 Mainly with ultrasonic range sensors.

interaction with the target17, and the speed of the mobile robot and dynamics 17 For example, surface absorption,
specular reflections.targets.

Geometric Active Ranging: Geometric active ranging sensors use geometric
properties in the measurements to establish distance readings. Generally, these
sensors project a known pattern of light and then we can use geometric prop-
erties to analyze the reflection and estimate range via triangulation. Optical
triangulation sensors (1D) transmit a collimated beam toward the target and use
a lens to collect reflected light and project it onto a position-sensitive device or
linear camera. Structured light sensors (2D or 3D) project a known light pattern
such as a point, line, or texture, onto the environment. The reflection is captured
by a receiver and then, together with known geometric values, we can estimate
range via triangulation.

6.3.7 Other Sensors

Some classical examples of other sensors include radar, tactile sensors, and
vision based sensors like cameras. Radar sensors leverage the Doppler effect to

principles of robot autonomy 121

produce relative velocity measurements. Tactile sensors are particularly useful
for robots that interact physically with their environment.

6.4 Computer Vision

Vision sensors have become crucial for perception in the context of robotics.
This is generally due to the fact that vision provides an enormous amount of
information about the environment and enables rich, intelligent interaction in
dynamic environments18. The main challenges associated with vision-based 18 The human eye provides millions of

bits of information per second.sensing are related to processing digital images to extract salient information
like object depth, motion and object detection, color tracking, feature detection,
scene recognition, and more. We generally refer to the analysis and processing
of images as computer vision and image processing. Tremendous advances and
new theoretical findings in these fields over the last several decades have led to
sophisticated computer vision and image processing techniques to be utilized
in industrial and consumer applications such as photography, defect inspection,
monitoring and surveillance, video games, movies, and more. This section intro-
duces some fundamental concepts related to these fields, and in particular, we
will focus on cameras and camera models.

6.4.1 Digital Cameras

Modern cameras consist of a sensor that captures light and converts the result-
ing signal into a digital image. Light falling on an imaging sensor is usually
picked up by an active sensing area, integrated for the duration of the expo-
sure19, and then passed to a set of sense amplifiers. The two main kinds of 19 The duration of exposure is usually

expressed as the shutter speed, such as
1/125, 1/60, or 1/30 of a second.

sensors used in digital cameras today are charge coupled devices (CCD) and
complementary metal oxide on silicon (CMOS) sensors. A CCD chip is an array
of light-sensitive picture elements called pixels, and can contain between 20,000

and several million pixels total. We can think of each pixel as a light-sensitive
discharging capacitor that is 5 to 25µm in size. While complementary metal
oxide semiconductor (CMOS) chips also consist of an array of pixels, they are
quite different from CCD chips. In particular, along the side of each pixel are
several transistors specific to that pixel. CCD sensors have typically outper-
formed CMOS for quality sensitive applications such as digital single-lens-reflex
cameras, while CMOS sensors are better for low-power applications. However,
today, CMOS sensors are standard in most digital cameras.

6.4.2 Image Formation

Rays of light reflected by an object tend to be scattered in many directions and
may consist of different wavelengths. Averaged over time, the emitted wave-
lengths and directions for a specific object can be precisely described using
object-specific probability distribution functions. In particular, the light reflec-
tion properties of a given object are the result of how light is reflected, scattered,

122 introduction to robot sensors

or absorbed based on the object’s surface properties and the wavelength of the
light. For example, an object might look blue because blue wavelengths of light
are primarily scattered off the surface while other wavelengths are absorbed.
Similarly, a black object looks black because it absorbs most wavelengths of
light, and a perfect mirror reflects all visible wavelengths.

Cameras capture images by sensing reflected light rays on a photoreceptive
surface such as a CCD or a CMOS sensor. Since light reflecting off an object
is generally scattered in many directions, exposing a planar photoreceptive
surface to these reflected rays would result in many rays being captured at each
pixel, which would lead to blurry images. A solution to this issue is to add a
barrier in front of the photoreceptive surface that only lets some of the rays pass
through an aperture, as we show in Figure 6.2. The earliest approach to filtering
light rays in this way was to have a small hole in the barrier surface. We refer to
cameras with this type of filter as pinhole cameras.

Figure 6.2: Light rays on a pho-
toreceptive surface, referred to
as the image plane. On the left,
numerous rays being reflected
and scattered by the object
leads to blurry images whereas,
on the right, a barrier has been
added so that the scattered light
rays can be distinguished.

6.4.3 Pinhole Camera Model

A pinhole camera has no lens but rather a single small aperture. Light from
the scene passes through this pinhole aperture and projects an inverted image
onto the image plane, as we show in Figure 6.3. While modern cameras do not
operate in this way, we can use the principles of the pinhole camera to derive
useful mathematical models.

Figure 6.3: Pinhole camera
model. Due to the geometry of
the pinhole camera system, the
object’s image is inverted on the
image plane. In this figure, O is
the camera center, c is the im-
age center, and p the principal
point.

principles of robot autonomy 123

We start by defining several useful references to help develop the mathe-
matical pinhole camera model. First, the camera reference frame is centered at a
point, O, that is at a focal length, f , in front of the image plane, as we show in
Figure 6.3. We define this reference frame, with directions (i, j, k), such that the
k axis is coincident with the optical axis that points toward the image plane. We
denote the coordinates of a point in the camera frame by P = (X, Y, Z). When a
ray of light is emitted from a point, P, and passes through the pinhole at point
O, it gets captured on the image plane at a point p. Since these points are all
collinear, we can deduce the following relationships between the coordinates
P = (X, Y, Z) and p = (x, y, z):

x = λX, y = λY, z = λZ,

for some λ ∈ R. This leads to the relationship:

λ =
x
X

=
y
Y

=
z
Z

.

From the geometry of the camera, we can see that z = f where f is the focal
length, such that we can rewrite these expressions as:

x = f
X
Z

, y = f
Y
Z

. (6.1)

Therefore, we can compute the position of the pixel on the image plane that
captures a ray of light from the point P.

6.4.4 Thin Lens Model

One of the main issues with having a fixed pinhole aperture is that there is a
trade-off associated with the aperture’s size. A large aperture allows a greater
number of light rays to pass through, which leads to image blurring. A small
aperture lets through fewer light rays, but the resulting image is darker. As a
solution, lenses focus light by refraction and can be used to replace the aperture,
avoiding the need for these trade-offs.

We can develop a mathematical model for lenses similar to the pinhole model
by using properties from Snell’s law. Figure 6.4 shows a diagram of the most
basic lens model, which is the thin lens model20. Snell’s law states that rays pass- 20 The thin lens model assumes no optical

distortion due to the curvature of the
lens.

ing through the center of the lens are not refracted, and those that are parallel
to the optical axis are focused on the focal point, labeled F′. In addition, all
rays passing through P are focused by the thin lens on the point p. We develop
a mathematical model similar to Equation (6.1) from the geometry of similar
triangles:

y
Y

=
z
Z

,
y
Y

=
z− f

f
=

z
f
− 1, (6.2)

where again the point P has coordinates (X, Y, Z), its corresponding point, p, on
the image plane has coordinates (x, y, z), and f is the focal length. Combining

124 introduction to robot sensors

these two equations yields the thin lens equation:

1
z
+

1
Z

=
1
f

. (6.3)

Note that in this model, and for a particular focal length, f , a point, P, is only
in sharp focus if the image plane is located a distance z from the lens. In prac-
tice, an acceptable focus is possible within some range of distances referred to
as depth of field or depth of focus. Additionally, if Z approaches infinity, light
would focus a distance of f away from the lens. Therefore, this model is essen-
tially the same as a pinhole model if the lens is focused at a distance of infinity.
We can use this formula to estimate the distance to an object if we know the
focal length, f , and the current distance of the image plane to the lens, z. This
technique is called depth from focus.

Figure 6.4: The thin lens model.

principles of robot autonomy 125

References

[13] G. Dudek and M. Jenkin. “Inertial Sensors, GPS, and Odometry”. In:
Springer Handbook of Robotics. Springer, 2008, pp. 477–490.

[64] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

7
Camera Models and Calibration

We introduced the problem of robot perception in Chapter 6, and described var-
ious types of sensors that robots use to understand their environment1. Cam- 1 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

eras are one sensing modality that is particularly important for many robotics
applications due to their ability to capture an enormous amount of informa-
tion in every image. Extracting information from an image that is relevant to
the robot, a process we refer to as image processing or computer vision, is another
aspect of robot perception that is quite challenging.

In this chapter, we begin to explore the problem of computer vision by fo-
cusing on some of the fundamental mathematical tools for calibrating cameras
and processing their images to extract useful information about the scene2,3. 2 D. A. Forsyth and J. Ponce. Computer

Vision: A Modern Approach. Prentice
Hall, 2011

3 R. Hartley and A. Zisserman. “Camera
Models”. In: Multiple View Geometry in
Computer Vision. Academic Press, 2002

Specifically, we leverage the pinhole camera model from Chapter 6 to explore the
fundamental image processing task of perspective projection, which is the task of
determining how a particular point in the scene maps to a point in the camera
image.

Figure 7.1: Graphical represen-
tation of the pinhole camera
model. In this model, the point
OC is the camera center, c is
the image center, and f is the
focal length of the camera.
We assume that all light rays
from point P in the scene pass
through point OC and are cap-
tured on the image plane at
point p.

128 camera models and calibration

7.1 Perspective Projection

The pinhole camera model, which we show graphically in Figure 7.1, can be
used to mathematically define relationships between points, P, in the scene and
points, p, on the image plane. Notice that we can represent any point P in the
scene in two ways: in camera frame coordinates, denoted as PC, or in world
frame coordinates, denoted as PW . Our overall objective of this section is to
derive a mathematical model that we can use to map a point, PW , expressed in
world frame coordinates to a point, p, on the image plane. We accomplish this
by combining two transformations together, a transformation of P from world
frame coordinates to camera frame coordinates, PW to PC, and a transformation
from camera coordinates to image coordinates, PC to p.

7.1.1 Mapping Camera Frame Coordinates to Image Coordinates (PC −→ p)

The first step we consider is how to map a point in the scene expressed in cam-
era frame coordinates, PC, to the corresponding point on the image plane, p,
using the pinhole camera model. In Chapter 6, we presented the pinhole camera
equations:

x = f
XC
ZC

, y = f
YC
ZC

, (7.1)

where PC = (XC, YC, ZC), p = (x, y), and f is the focal length of the pinhole
camera4. 4 We generally do not include the z term

of p simply because z = f is a fixed
value.

Note that the quantities x and y are coordinates in the camera frame, but it
is often desirable to express the point p in terms of pixel coordinates. Pixel co-
ordinates are generally defined with respect to a reference frame in the lower
corner of the image plane to avoid negative coordinates. We show this new
reference frame in Figure 7.2, where we define the image center, c, with coor-
dinates (x̃0, ỹ0), where ˜(·) is the notation we use to denote a coordinate with
respect to this new reference frame. In this new reference frame, we map the

Figure 7.2: We define a new
reference frame with coordi-
nates denoted by ˜(·) with its
origin in the lower corner of the
image plane. The image center
coordinates in this new frame
are (x̃0, ỹ0).

point PC to the coordinates (x̃, ỹ) by:

x̃ = f
XC
ZC

+ x̃0, ỹ = f
YC
ZC

+ ỹ0. (7.2)

principles of robot autonomy 129

Finally, given the number of pixels per unit distance, we can map these new
coordinates to pixel coordinates. In particular, we map the point PC to pixel
coordinates (u, v) by:

u = α
XC
ZC

+ u0, v = β
YC
ZC

+ v0, (7.3)

where α = kx f , u0 = kx x̃0, β = ky f , v0 = kyỹ0, and kx and ky are the number of
pixels per unit distance in image coordinates.

Note that the transformation from the point PC in camera frame coordinates
to p in pixel coordinates given by Equation (7.3) is not linear. However, we
can represent this transformation as a linear mapping5 through an additional 5 Expressing the perspective projec-

tion as a linear map will simplify the
mathematics later on.

change of coordinates. In particular, we will express the points PC and p in
homogeneous coordinates.

For a two-dimensional point (x1, x2) or a three-dimensional point (x1, x2, x3)

in Euclidean space, we represent the point in homogeneous coordinates by the
transformation:

(x1, x2)→ (αx1, αx2, α) , and (x1, x2, x3)→ (αx1, αx2, αx3, α) , (7.4)

for any α ̸= 0. These new coordinates are called homogeneous coordinates
because we can choose the scaling factor, α, arbitrarily as long as α ̸= 0. We
transform a set of homogeneous coordinates back by:

(y1, y2, y3)→
(

y1

y3
,

y2

y3

)
, and (y1, y2, y3, y4)→

(
y1

y4
,

y2

y4
,

y3

y4

)
. (7.5)

We will denote when a point is described in homogeneous coordinates using
the superscript h. For example, we express the point PC = (XC, YC, ZC) in
camera frame coordinates with α = 1 in homogeneous coordinates by:

Ph
C = (XC, YC, ZC, 1) ,

and we can express the pixel coordinate p = (u, v) in homogeneous coordinates
by:

ph = (ZCu, ZCv, ZC) = (αXC + u0ZC, βYC + v0ZC) ,

by choosing α = ZC and substituting the expressions from Equation (7.3).
With the expression of these points in homogeneous coordinates, we can see
that their relationship is transformed from the nonlinear relationship in Equa-
tion (7.3) to the linear relationship:

α 0 u0 0
0 β v0 0
0 0 1 0




Xc

Yc

Zc

1

 =

αXc + u0Zc

βYc + v0Zc

Zc

 . (7.6)

Often, in practice, we also add a skewness parameter, γ6, and we can write 6 The skewness parameter generally
ends up being close to zero.

130 camera models and calibration

this linear relationship in the more compact form:

[
K 03×1

]
Ph

C = ph, K :=

α γ u0

0 β v0

0 0 1

 . (7.7)

We refer the matrix K in Equation (7.7) as the camera matrix or matrix of intrinsic
parameters because it contains the five parameters that define the fundamental
characteristics of the camera from the perspective of the pinhole camera model.
While these parameters may be specified by the camera manufacturer, we often
estimate them in practice by performing a camera calibration.

7.1.2 Mapping World Coordinates to Camera Coordinates (PW −→ PC)

Recall from Figure 7.1 that we can express a point, P, in the scene either in
terms of camera frame coordinates, PC, or world frame coordinates, PW . While
we discussed the use of the pinhole model to map PC coordinates to pixel co-
ordinates, p, in the previous section, in this section we discuss the mapping
between the camera and world frame coordinates of the point P, as we show in
Figure 7.3.

Figure 7.3: A depiction of the
point P expressed either in
camera coordinates, PC, or in
world frame coordinates, PW .
We denote the world frame
origin by OW and the camera
frame origin by OC.

From Figure 7.3, we can write PC as:

PC = t + q, (7.8)

where t is the vector from OC to OW , expressed in camera frame coordinates,
and q is the vector from OW to P, expressed in camera frame coordinates. How-
ever, the vector q is the same vector as PW , just expressed with respect to a dif-
ferent coordinate frame. The coordinates are related by a rotation:

q = RPW , (7.9)

where R is the rotation matrix relating the camera frame to world frame defined

principles of robot autonomy 131

as:

R :=

 iw · i jw · i kw · i
iw · j jw · j kw · j
iw · k jw · k kw · k

 , (7.10)

where i, j, and k are the unit vectors that define the camera frame and iw, jw,
and kw are the unit vectors that define the world frame. To summarize, we can
map the point PW to camera frame coordinates PC by:

PC = t + RPW , (7.11)

where t is the vector in camera frame coordinates from OC to OW and R is the
rotation matrix defined in Equation (7.10). Similar to the previous section, we
can equivalently express this transformation for the case where the points PW

and PC are expressed in homogeneous coordinates:[
PC

1

]
=

[
R t

01×3 1

] [
PW

1

]
. (7.12)

7.1.3 Mapping World Frame Coordinates to Image Coordinates (PW −→ p)

The objective of the perspective projection task is to find a way to mathemati-
cally relate the position of a point in world frame coordinates, denoted PW , to
the corresponding pixel coordinates, p, on the image plane. With the relation-
ship from Equation (7.12) that we developed for mapping PW to the camera
frame coordinates, PC, and the relationship in Equation (7.7) for mapping PC

to pixel coordinates, p, we can now define the direct mapping from PW to p. In
particular, combining the two transformations together yields:

ph =
[
K 03×1

] [R t
01×3 1

]
Ph

W ,

which we can simplify to:
ph = K

[
R t

]
Ph

W . (7.13)

In Equation (7.13), Ph
W is the homogeneous coordinate representation of PW and

ph is the homogeneous coordinate representation of p. Recall that the matrix
K ∈ R3×3 is the matrix of intrinsic camera parameters, and the matrix [R t] ∈
R3×4 contains extrinsic parameters7. Note that the total number of degrees of 7 Extrinsic parameters describe the

camera’s position and orientation
relative the points in the scene.

freedom is 11, where 5 are from the intrinsic parameters that define K, 3 are
from the rotation matrix, R, and 3 are from the position vector, t.

7.2 Camera Calibration: Direct Linear Method

Before we can use the expression in Equation (7.13) in practice, we need to
determine the camera’s intrinsic and extrinsic parameters, denoted by the pa-
rameters K, R, and t. One approach is to use the direct linear transformation
method for camera calibration8, which requires a set of known correspondences, 8 R. Tsai. “A Versatile Camera Calibra-

tion Technique for High-accuracy 3D
Machine Vision Metrology Using Off-
the-shelf TV Cameras and Lenses”. In:
IEEE Journal on Robotics and Automation
3.4 (1987), pp. 323–344

pi ←→ PW,i for i = 1, . . . , n.

132 camera models and calibration

7.2.1 Direct Linear Calibration: Step 1

For direct linear calibration, the first step is to write each corresponding pair of
points, pi = (ui, vi) and PW,i = (XW,i, YW,i, ZW,i), in homogeneous coordinates
and then use the expression in Equation (7.13) to write:

ph
i = MPh

W,i, i = 1, . . . , n, (7.14)

where we refer to M = K[R t] as the homography. Next, we use the n corre-
spondences to estimate the homography, M, and then later we can extract the
intrinsic and extrinsic parameters from M. A useful first step to determine M is
to rewrite it in terms of its rows:

M =

m1

m2

m3

 , (7.15)

where mi ∈ R1×4 is the i-th row of M. By considering the rows of M individu-
ally, we can write the relationship in Equation (7.14) as:αui

αvi

α

 =

m1 · Ph
W,i

m2 · Ph
W,i

m3 · Ph
W,i

 , i = 1, . . . , n

which by mapping the homogeneous coordinates, ph
i , back to the original coor-

dinates, pi, yields the 2n expressions:

ui =
m1 · Ph

W,i

m3 · Ph
W,i

, i = 1, . . . , n

vi =
m2 · Ph

W,i

m3 · Ph
W,i

, i = 1, . . . , n,

or equivalently, by some algebraic manipulation, yields the expressions:

ui(m3 · Ph
W,i)− (m1 · Ph

W,i) = 0, i = 1, . . . , n

vi(m3 · Ph
W,i)− (m2 · Ph

W,i) = 0, i = 1, . . . , n.
(7.16)

We can now combine these 2n equations together in one large matrix equation:

P̃m = 0, m :=

m⊤1
m⊤2
m⊤3

 , (7.17)

where m ∈ R12×1 is a vector consisting of the stacked rows of M and P̃ ∈
R2n×12 is a matrix of known coefficients determined by the quantities ui, vi, and
Ph

W,i. For a more concrete representation of how we define P̃, the first couple
rows are given by:

P̃ =


−(Ph

W,1)
⊤ 01×4 u1(Ph

W,1)
⊤

01×4 −(Ph
W,1)

⊤ v1(Ph
W,1)

⊤

−(Ph
W,2)

⊤ 01×4 u2(Ph
W,2)

⊤

...
...

...

 . (7.18)

principles of robot autonomy 133

Note that we must have at least six correspondences, n ≥ 6, to ensure that
m is uniquely defined. With this sufficient number of correspondences, we
could ideally directly solve Equation (7.17). However, in practice, a more robust
procedure is to build P̃ with more than 6 points, which gives an overdetermined
set of equations that may not have a solution9. Therefore, to compute m, we 9 This is particularly true in real-world

applications where noise corrupts the
data.

formulate an optimization problem:

min.
m
∥P̃m∥2,

s.t. ∥m∥2 = 1,
(7.19)

where the constraint ∥m∥2 = 1 is required to ensure that the optimization
problem cannot be solved by trivially choosing mi = 0 for each i = 1, . . . , 12. We
call this optimization problem a constrained least-squares problem.

Example 7.2.1 (Constrained Least-Squares Optimization). The constrained least
squares problem:

min.
x
∥Ax∥2,

s.t. ∥x∥2 = 1,

with x ∈ Rn and A ∈ Rm×n and m > n is a finite-dimensional optimization
problem. Consider the corresponding Lagrangian:

L = x⊤A⊤Ax + λ(1− x⊤x),

and the necessary optimality conditions:

∇xL = 2(A⊤A− λI)x = 0,

∇λL = 1− x⊤x = 0.

We can write the first necessary optimality condition as A⊤Ax = λx, and
therefore any x that satisfies this condition must be an eigenvector of the ma-
trix A⊤A. Additionally, while all the eigenvectors satisfy this condition, the
optimum is the eigenvector associated with the smallest eigenvalue. We can
efficiently compute this eigenvector by using a singular value decomposition
of A = UΣV⊤ and then choosing x to be the column of V associated with the
smallest singular value, since A⊤A = VΣ2V⊤.

7.2.2 Direct Linear Calibration: Step 2

Once we have solved the optimization problem in Equation (7.19) to compute
the vector m, the homography, M, is completely defined. The next step in the
camera calibration process is to extract the intrinsic and extrinsic camera param-
eters from the matrix M. For this step, we will express the matrix M in terms of
its columns:

M =
[
c1 c2 c3 c4

]
,

134 camera models and calibration

where ci is the i-th column of M. We can factorize M as:

M = K
[

R t
]

, (7.20)

by taking the first three columns of M and performing a RQ factorization:[
c1 c2 c3

]
= KR, (7.21)

where R is an orthogonal matrix and K is an upper triangular matrix. Once K is
known, we can compute the vector t by t = K−1c4.

7.2.3 A Flexible Camera Calibration Method

The homography, M, is defined for a specific set of extrinsic parameters R and
t. In practice, however, it might be desirable for us to estimate the camera’s
intrinsic parameters from N different images from different perspectives, and
therefore with N different homographies due to the varying extrinsic param-
eters. In this case, we can apply an alternative procedure10 to the direct linear 10 Z. Zhang. “A Flexible New Technique

for Camera Calibration”. In: IEEE
Transactions on Pattern Analysis and
Machine Intelligence 22 (2000)

calibration method to extract the intrinsic parameters, K.
We begin by assuming that the known points, PW , for each individual image

lie on a plane. For example, the calibration scene might consist of a pattern,
such as a checkerboard pattern, on a planar surface. In this case, we can assume
that the world frame origin lies on the plane such that ZW = 0 for all points on
the plane. Since ZW = 0, we can simplify the relationship between ph and Ph

W
given by Equation (7.13) to:

ph = M̃P̃h
W , (7.22)

with:
M̃ = K

[
r1 r2 t

]
, P̃h

W =
[

XW YW 1
]⊤

, (7.23)

where M̃ is the simplified homography matrix, P̃h
W is the simplified position

of the point P in world frame, written in homogeneous coordinates, and ri is
the i-th column of the rotation matrix R. Note that we can still estimate the
homography matrix, M̃, using the same procedure discussed earlier.

Next, we identify a set of constraints on the intrinsic parameter matrix, K, by
writing the homography, M̃, as:

M̃ =
[
Kr1 Kr2 Kt

]
=
[
c̃1 c̃2 c̃3

]
.

and noting that since r1 and r2 are orthonormal we have:

c̃⊤1 Bc̃2 = 0, c̃⊤1 Bc̃1 = c̃⊤2 Bc̃2, (7.24)

where B = K−⊤K−1 ∈ R3×3 is a symmetric matrix. We can therefore solve for
the intrinsic camera parameters, K, by using the constraints in Equation (7.24)
to solve for the symmetric matrix B and then backing out the parameters that
define K. To compute the matrix B from the constraints in Equation (7.24), we
can employ several useful tricks. The main trick is to notice that even though

principles of robot autonomy 135

B consists of nine parameters, it is symmetric, and, therefore, we only need six
parameters to specify it fully. Therefore, we reparameterize the matrix B ∈ R3×3

as a vector b ∈ R6 as:

b =
[

B11 B12 B22 B13 B23 B33

]⊤
. (7.25)

This reparameterization is useful because it allows us to rewrite the expression
c̃⊤i Bc̃j as:

c̃⊤i Bc̃j = v⊤ij b, (7.26)

where:

vij =
[
c̃i1 c̃j1, c̃i1 c̃j2 + c̃i2 c̃j1, c̃i2 c̃j2, c̃i3 c̃j1 + c̃i1 c̃j3, c̃i3 c̃j2 + c̃i2 c̃j3, c̃i3 c̃j3

]⊤
,

and where c̃ik is the k-th element of the column vector c̃i and c̃jk is the k-th ele-
ment of the column vector c̃j. With this reparameterization, we can rewrite the
constraints in Equation (7.24) as:

c̃⊤1 Bc̃2 = 0 =⇒ v⊤12b = 0

c̃⊤1 Bc̃1 = c̃⊤2 Bc̃2 =⇒ (v11 − v22)
⊤b = 0,

or by combining them: [
v⊤12

(v11 − v22)
⊤

]
b = 0, (7.27)

which is linear with respect to the unknowns vector b. Importantly, while the
homographies, M, are different for each image due to the different extrinsic
parameters, the intrinsic camera parameters represented by the vector b are the
same. Therefore, with N images from the same camera, even with potentially
different perspectives, we can stack the constraints in Equation (7.27) to give:

Vb = 0, (7.28)

where V ∈ R2N×6. In the case where we include the skewness parameter, γ,
in K, there must be N ≥ 3 images in order to specify B uniquely. Similarly to
the approach for computing the homography in the previous section, we can
compute the vector b as the solution to the constrained least squares problem:

min.
b
∥Vb∥2,

s.t. ∥b∥2 = 1.
(7.29)

Once we have computed b, we can solve for the intrinsic camera parameters,
K, by leveraging the definition of B = K−TK−1. In particular, we compute the

136 camera models and calibration

intrinsic parameters by:

v0 =
B12B13 − B11B23

B11B22 − B2
12

,

λ = B33 −
B2

13 + v0(B12B13 − B11B23)

B11
,

α =

√
λ

B11
,

β =

√
λB11

B11B22 − B2
12

,

γ =
−B12α2β

λ
,

u0 =
γv0

β
− B13α2

λ
,

(7.30)

where we can think of λ as a scaling parameter that accounts for the fact that
there are five unknown camera intrinsic parameters but six degrees of freedom
in B.

Once we have extracted the camera intrinsic parameters, K, from this proce-
dure, given any new homography, M̃, we can compute the extrinsic parameters
by:

r1 =
K−1 c̃1

∥K−1 c̃1∥
,

r2 =
K−1 c̃2

∥K−1 c̃2∥
,

r3 = r1 × r2,

t =
K−1 c̃3

∥K−1 c̃1∥
.

(7.31)

As one final step, we note that the matrix R defined with column vectors r1, r2,
and r3 will not generally satisfy the orthonormality property of a rotation ma-
trix. We can correct this issue by again using optimization methods to compute
a valid rotation matrix that best corresponds to these column vectors:

min.
R
∥R−Q∥2,

s.t. R⊤R = I,
(7.32)

where:

Q =
[
r1 r2 r3

]
.

We solve this problem by choosing R = UV⊤, where U and V are defined by
the singular value decomposition of Q = UΣV⊤.

principles of robot autonomy 137

7.3 Camera Auto-Calibration

The direct linear transformation from Section 7.2 and Zhang’s flexible calibra-
tion method from Section 7.2.3 require point correspondences to calculate the
intrinsic and extrinsic parameters. Auto-calibration offers an alternative ap-
proach that does not make this assumption by utilizing multiple views of a
static scene to determine the camera’s intrinsic and extrinsic parameters. This
approach leverages the fact that a camera’s intrinsic parameters remain constant
across different views of the same scene. By identifying correspondences be-
tween points in multiple images using an algorithm like SIFT11, we can estimate 11 David G Lowe. “Object recognition

from local scale-invariant features”.
In: Proceedings of the seventh IEEE
international conference on computer
vision. Vol. 2. Ieee. 1999, pp. 1150–1157

the intrinsic matrix, K, and extrinsic matrices, R and t, by bundle adjustment12

12 Bill Triggs et al. “Bundle adjust-
ment—a modern synthesis”. In: Vision
Algorithms: Theory and Practice: Inter-
national Workshop on Vision Algorithms
Corfu, Greece, September 21–22, 1999
Proceedings. Springer. 2000, pp. 298–372

based on the static scene geometry. In total, the camera auto-calibration process
consists of five key steps.

First, we use an algorithm such as SIFT to identify key points in the scene
and their correspondence points across multiple images from different views.
The SIFT algorithm is robust in detecting and describing local features in im-
ages, making it effective for finding correspondences under varying conditions.

Second, we use the correspondences between a pair of images to compute the
fundamental matrix. The fundamental matrix, F ∈ R3×3, relates corresponding
points between a pair of images of the same scene13. For a pair of images (I, I′) 13 The fundamental matrix describes the

epipolar geometry between two image
views.

of the same scene, the fundamental matrix, F, satisfies:

p⊤Fp′ = 0, (7.33)

where p and p′ are corresponding points in images I and I′, respectively. We
will discuss the fundamental matrix more in the context of stereo vision in
Chapter 8.

To compute the fundamental matrix for the image pair, we first construct a
point correspondence matrix, W, where each row represents a correspondence
between points in the two images. Let (ui, vi) and (u′i, v′i) be the coordinates of
one set of matched points, pi and p′i. We form each row of the matrix W using
one set of corresponding coordinates as:

W =


u1u′1 u1v′1 u1 v1u′1 v1v′1 v1 u′1 v′1 1

...
...

...
...

...
...

...
...

...
unu′n unv′n un vnu′n vnv′n vn u′n v′n 1

 (7.34)

From this point correspondence matrix, we then compute the fundamental ma-
trix by solving the linear system W f = 0 using a singular value decomposition
(SVD), where f is the vectorized form of the fundamental matrix. We describe
the specifics of this procedure in more detail in Section 8.1.1.

Third, we compute the essential matrix, which is similar to the fundamental
matrix in that it relates corresponding points in two images based on scene ge-
ometry. For two images, I and I′, we define the essential matrix by the rotation
matrix, R, and translation vector, t, relating the coordinate frames of the two

138 camera models and calibration

images by:

E = [t]×R, (7.35)

where [t]× is the matrix representation of the cross product. Assuming the
intrinsic matrix, K, remains the same between the images, we can also define the
essential matrix, E, with respect to the fundamental matrix as:

E = K⊤FK. (7.36)

Therefore, we can first compute the essential matrix from the previously com-
puted fundamental matrix and the intrinsic parameter matrix, K, and then we
can compute the camera extrinsic rotation and translation parameters, R and t,
by the singular value decomposition:

E = UΣV⊤, (7.37)

where Σ = diag(1, 1, 0). From this decomposition, there are two possible solu-
tions for the camera extrinsic parameters:

R1 = UWV⊤, R2 = UW⊤V⊤,

t1 = U[:, 2], t2 = −U[:, 2],
(7.38)

where:

W =

0 −1 0
1 0 0
0 0 1

 . (7.39)

We can identify the correct solution by using each to compute the three-dimensional
points from the two-dimensional matched correspondence points, as we de-
scribe in the next step. The extrinsic parameters, R and t, we should use are the
ones that ensure that most of the three-dimensional points lie in front of both
cameras, meaning they will have positive depth values.

The fourth step is to perform triangulation to compute the 3D points in the
scene from the 2D image correspondence points. We define the projection ma-
trix, P, for an image as:

P = K
[

R t
]

, (7.40)

where again K is the camera intrinsic matrix, R is the rotation matrix, and t is
the translation vector. This projection matrix maps a 3D point in homogeneous
coordinates into the 2D camera frame coordinates by:

u
v
1

 = P


X
Y
Z
1

 . (7.41)

principles of robot autonomy 139

Therefore, for matched points across two images, we can compute the 3D coor-
dinates by solving the linear system:

uP⊤3 − P⊤1
vP⊤3 − P⊤2

u′P′⊤3 − P′⊤1
v′P′⊤3 − P′⊤2




X
Y
Z
1

 = 0, (7.42)

where (u, v) are the coordinates and P1, P2, and P3 are the first, second, and
third rows of the projection matrix, P, for image I, respectively, and (u′, v′) are
the coordinates and P′1, P′2, and P′3 are the rows of the projection P′ for image I′.
We can solve Equation (7.42) using a least squares method.

So far, we have used correspondences in pairs of images from the same cam-
era of the same scene to estimate the image extrinsics, R and t, and computed
estimates of the 3D scene points by triangulation. These computations require
knowledge of the camera intrinsic matrix, K, which is the quantity we are trying
to estimate. We can leverage the previous steps to compute K by using an itera-
tive optimization-based procedure, where we begin with an estimate14 of K and 14 For example, we could start with

an estimate by referencing the camera
manufacturer’s data, or using some
other simpler method.

refine it until convergence. In particular, we refine the estimate of the camera
intrinsics and extrinsics by solving the optimization:

N

∑
i=1

M

∑
j=1
∥pij − Pi(K, Ri, ti)Xj∥2, (7.43)

where pij is an observed 2D point in image i that corresponds to the j-th 3D
point, Xj is the j-th estimated 3D point, Pi(K, Ri, ti) is the projection matrix
for image i, M is the total number of triangulated 3D points, and N is the to-
tal number of images. Note that the each projection matrix is a function of the
intrinsic parameters, which are constant across all images, as well as the extrin-
sic parameters for the image. We can optimize this cost function by applying
a nonlinear method, such as Levenberg-Marquardt, to compute a new set of
parameters. We then repeat the steps listed above, computing new extrinsics,
triangulation points, and optimizing, until convergence.

7.4 Challenges

7.4.1 Radial Distortion

The pinhole camera model provides a nominal camera model for which it is
relatively straightforward to develop a mathematical model of the perspective
projection. However, in practice, this model is not a perfect representation of the
imaging process. One effect that is not captured by the pinhole model is radial
distortion, which is an effect seen in real lenses where either barrel distortion
or pincushion distortion will affect the real pixel coordinates. We show images
showing barrel and pincushion distortion in Figure 7.4.

140 camera models and calibration

Figure 7.4: Different kinds of
radial distortions that are seen
in real lenses, which may affect
the accuracy of the pinhole
camera model.

There are methods we can use to correct for image distortion. A simple and
efficient way is to model the relationship between the ideal pixel coordinates,
(u, v), and the distorted pixel coordinates, (ud, vd), as:[

ud

vd

]
=

[
ud

vd

]
(1 + kr2)

[
u− ucd

v− vcd

]
+

[
ucd

vcd

]
, (7.44)

where k ∈ R is the radial distortion factor, (ucd, vcd) are the pixel coordinates of
the image center, and r2 = (u− ucd)

2 + (v− vcd)
2 is the square of the distance

between the ideal pixel location and the center of distortion. Note that k differs
in different cameras and needs to be pre-determined.

7.4.2 Measuring Depth

Once we know the camera intrinsic and extrinsic parameters, K, R, and t, it is
still not possible to map pixel coordinates to the corresponding point in space.
Mathematically, this is a result of the matrix M in Equation (7.14) not being
invertible, but intuitively this is because we can not determine the distance
along the line of sight from p to P in Figure 7.1.

However, there are some techniques we can use to compute depth estimates
from a single camera. One approach is known as depth from focus, where several
images are taken until the projection of point P is in focus. Based on the thin
lens model, when this occurs we have:

1
z
+

1
Z

=
1
f

,

where f is the focal length, Z is the depth of the point P in camera frame, and z
is the depth of the image plane in the camera frame. Since f and z are known,
we can use this relationship to compute the depth, Z. If we have two cameras,
we can estimate depth by using binocular reconstruction or stereo vision. This ap-
proach requires known corresponding pixel coordinates, p and p′, of each cam-
era, and then uses triangulation to determine the 3D position of the source point,
P, in the scene, similar to the approach we used for camera auto-calibration in
Equation (7.42).

principles of robot autonomy 141

7.5 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: Camera Calibration: Extrinsics

In the file ch07/exercises/camera_extrinsics.ipynb, you will implement the
key parts of the method to compute the camera extrinsic parameters R and t.
Specifically, you will use the steps in Section 7.2.1 to compute the homography
matrix M given a calibration image. Then, given the camera intrinsic matrix K,
you will use the method at the end of Section 7.2.3 to compute the extrinisics, R
and t, for the image.

Problem 2: Camera Calibration: Intrinsics

In Problem 1, we provided the camera intrinsic matrix, K. In this exercise, you
will use the flexible calibration method described in Section 7.2.3 to compute the
intrinsic matrix yourself. Complete the exercise located at
ch07/exercises/camera_intrinsics.ipynb.

Problem 3: Manipulating Point Clouds From The KITTI Dataset

In this exercise we will explore the KITTI dataset, and look at point cloud and
RGB image data, and look at how these two sources of data can be aligned. The
code for this exercise can be found at
ch07/exercises/lidar_rgb_alignment.ipynb.

142 camera models and calibration

References

[16] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2011.

[21] R. Hartley and A. Zisserman. “Camera Models”. In: Multiple View Geome-
try in Computer Vision. Academic Press, 2002.

[41] David G Lowe. “Object recognition from local scale-invariant features”.
In: Proceedings of the seventh IEEE international conference on computer vision.
Vol. 2. Ieee. 1999, pp. 1150–1157.

[64] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

[73] Bill Triggs et al. “Bundle adjustment—a modern synthesis”. In: Vision
Algorithms: Theory and Practice: International Workshop on Vision Algorithms
Corfu, Greece, September 21–22, 1999 Proceedings. Springer. 2000, pp. 298–
372.

[74] R. Tsai. “A Versatile Camera Calibration Technique for High-accuracy 3D
Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses”.
In: IEEE Journal on Robotics and Automation 3.4 (1987), pp. 323–344.

[78] Z. Zhang. “A Flexible New Technique for Camera Calibration”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000).

8
Stereo Vision and Structure From Motion

In Chapter 7, we introduced the mathematical relationship between the position
of a point, P, in a scene, expressed in world frame coordinates, PW , and the
corresponding point, p, in pixel coordinates that gets projected onto the image
plane of a camera. This relationship is based on the pinhole camera model, and
requires knowledge about the camera’s intrinsic and extrinsic parameters. We
also presented methods for camera calibration, which allows us to determine
the intrinsic and extrinsic camera parameters.

Given a calibrated camera with known parameters, another fundamen-
tal problem in robotic perception is how to leverage images to recover three-
dimensional information about the structure of the environment 1. The camera 1 While we could also use a number

of other sensors to recover three-
dimensional scene information, such as
ultrasonic sensors or laser rangefinders,
cameras capture a broad range of
information that goes beyond depth
sensing and are also attractive based on
their cost and size.

projection model alone does not provide us with enough information to fully
determine the 3D position of a point from a single image, specifically because
we cannot determine the point’s depth2. In this chapter, we introduce stereo vi-

2 Unless you are willing to make some
strong assumptions, for example that
you know the physical dimensions of
the objects in the environment.

sion and structure from motion3,4, two approaches for extracting 3D information

3 R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

4 D. A. Forsyth and J. Ponce. Computer
Vision: A Modern Approach. Prentice
Hall, 2011

about a scene from camera images.
Stereo vision and structure from motion both leverage multiple images of a

scene in order to determine three-dimensional structure. Stereo vision leverages
images from different viewpoints, typically from two cameras, and structure
from motion typically considers images captured from a single camera that
moves through the scene.

8.1 Stereo Vision

Stereopsis5 is the process in visual perception leading to the sensation of depth 5 From stereo, meaning solidity, and
opsis, meaning vision or sight.from two slightly different projections of the world onto the retinas of the two

eyes. The difference in the two retinal images is called horizontal disparity, reti-
nal disparity, or binocular disparity, and arise from our eyes’ different positions
in the head. This disparity makes our brain fuse the two retinal images into a
single image, allowing us to perceive objects as single solid entities. For exam-
ple, if you hold your finger vertically in front of you and alternate closing each
eye, you will see that the finger jumps from left to right. The distance between
the left and right appearance of the finger is from the disparity between your

144 stereo vision and structure from motion

eyes.
Computational stereopsis, or stereo vision, is the process of obtaining depth in-

formation of a 3D scene given images from two cameras which look at the same
scene from different perspectives. This process consists of two major steps: fu-
sion and reconstruction. Fusion is a problem of correspondence, in other words,
identifying correlations between each point in the 3D environment and their
corresponding pixels in each camera. Reconstruction is the problem of triangula-
tion, which uses the pixel correspondences to determine the full position of the
source point in the scene, including depth.

8.1.1 Epipolar Constraints

The first step in the stereo vision process is to fuse the two or more images
and generate point correspondences6. This task can be quite challenging, and 6 We generally assume that the per-

spective of each image is only a slight
variation from the other, such that the
features appear similarly in image.

erroneously matching features can lead to large errors in the reconstruction
step. We leverage several techniques to simplify this task, including the use of
epipolar constraints.

Figure 8.1: The point, P, in the
scene, the optical centers, O
and O′, of the two cameras,
and the two images, p and p′,
of P all lie in the same plane,
which we refer to as the epipo-
lar plane. The lines l and l′ are
the epipolar lines of the points
p and p′, respectively. Note that
if the point p is observed in one
image, the corresponding point
in the second image must lie on
the epipolar line l′!

Consider the image pixel coordinates, p and p′, of a point, P, observed by
two cameras with optical centers, O and O′, as we show in Figure 8.1. These five
points all belong to the epipolar plane, defined by the two intersecting rays OP
and O′P. In particular, the point p lies on the line l where the epipolar plane
and the image plane intersect. We refer to the line l as the epipolar line associated
with the point p, and it passes through the point e, which we refer to as the
epipole). Based on this geometry, if p and p′ are images of the same point P, then
p must lie on the epipolar line l and p′ must lie on the epipolar line l′.

Therefore, when searching for correspondences between p and p′ for a par-
ticular point, P, in the scene, it makes sense to restrict the search to the corre-
sponding epipolar line. We refer to this as an epipolar constraint, and it greatly
simplifies the correspondence problem by restricting the possible candidate
points to a line rather than the entire image7. Mathematically, we write the 7 In other words, the correspondence

problem becomes a one-dimensional
problem rather than a two-dimensional
one.

epipolar constraint as:
Op · [OO′ ×O′p′] = 0, (8.1)

since Op, O′p′, and OO′ are coplanar. Assuming the world reference frame is

principles of robot autonomy 145

collocated with the camera with an origin at point O, we can write this con-
straint as:

p⊤Fp′ = 0, (8.2)

where we refer to F ∈ R3×3 as the fundamental matrix. The fundamental matrix,
which we already introduced in Chapter 7 in the context of camera calibration,
has seven degrees of freedom and is singular. Additionally, the fundamental
matrix is only dependent on the intrinsic camera parameters for each camera
and the geometry that defines their relative positioning, and we generally as-
sume it to be constant. The expression for the fundamental matrix in terms of
the camera intrinsic parameters is:

F = K−⊤EK′−1, E =

 0 −t3 t2

t3 0 −t1

−t2 t1 0

 R, (8.3)

where K and K′ are the intrinsic parameter matrices for the two stereo cameras,
and R and t = [t1, t2, t3]

⊤ are the rotation matrix and translation vector that map
the second camera frame coordinates into the first camera frame coordinates.
The matrix E is the essential matrix, which we also introduced in Chapter 7.

Note that with the epipolar constraint defined by the fundamental matrix
in Equation (8.2), we can express the epipolar lines l and l′ by l = Fp′ and
l′ = F⊤p. Additionally, we can show that F⊤e = Fe′ = 0, where e and e′ are the
epipoles in the image frames of cameras, since by definition the translation vec-
tor, t, is parallel to the coordinate vectors of the epipoles in the camera frames.
This fact guarantees that the fundamental matrix, F, is singular.

If the parameters K, K′, R, and t are not already known, we can compute the
fundamental matrix, F, in a manner similar to how we computed the intrinsic
parameter matrix, K, in the previous chapter. Suppose we have a number of
corresponding points p = [u, v, 1]⊤ and p′ = [u′, v′, 1]⊤ that are expressed
as homogeneous coordinates. Each pair of points has to satisfy the epipolar
constraint in Equation (8.2), which we can write as:

[
u v 1

] F11 F12 F13

F21 F22 F23

F31 F32 F33


u′

v′

1

 = 0

We can equivalently express this constraint by reparameterizing the matrix F in
vector form, which we denote as f , as:[

uu′ uv′ u vu′ vv′ v u′ v′ 1
]

f = 0 (8.4)

where f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
⊤. For n known correspon-

dences (p, p′), we can stack these constraints into a matrix, W, such that:

W f = 0, (8.5)

where W ∈ Rn×9.

146 stereo vision and structure from motion

Given n ≥ 8 correspondences, we compute an estimate, F̃, of the fundamental
matrix by solving the optimization problem:

min
f
∥W f ∥2,

s.t. ∥ f ∥2 = 1,
(8.6)

which is a constrained least squares problem, which we discussed in Exam-
ple 7.2.1. However, note that the estimate, F̃, computed using Equation (8.6) is
not guaranteed to be singular. We can compute a singular fundamental matrix
from this estimate through a second optimization step:

min
F
∥F− F̃∥2,

s.t. det(F) = 0,
(8.7)

which in practice we solve by computing a singular value decomposition of the
matrix F̃.

8.1.2 Image Rectification

Given a pair of stereo images, epipolar rectification8,9 is a transformation of 8 A. Fusiello, E. Trucco, and A. Verri.
“A compact algorithm for rectification
of stereo pairs”. In: Machine Vision and
Applications 12.1 (2000), pp. 16–22

9 C. Loop and Z. Zhang. “Computing
rectifying homographies for stereo
vision”. In: IEEE Computer Society Con-
ference on Computer Vision and Pattern
Recognition. Vol. 1. 1999, pp. 125–131

each image plane such that all corresponding epipolar lines become collinear
and parallel to one of the image axes10. We can think of the resulting rectified

10 For convenience, usually the horizon-
tal axis.

images as acquired by a new stereo camera obtained by rotating the original
cameras about their optical centers. The advantage of epipolar rectification
is that the correspondence search becomes simpler and computationally less
expensive because the search is done only along the horizontal lines of the rec-
tified images. We illustrate the steps of the epipolar rectification algorithm in
Figure 8.2. Observe that after the rectification, all of the epipolar lines in the left
and right image are collinear and horizontal.

8.1.3 Correspondence Problem

Epipolar constraints and image rectification are commonly used in stereo vision
to address the problem of correspondence, which is the problem of determining
the pixels, p and p′, from two different cameras with different perspectives that
correspond to the same scene feature, P. While these concepts make finding
correspondences easier, there are still several challenges that we must overcome.
These include challenges related to feature occlusions, repetitive patterns, dis-
tortions, and others.

8.1.4 Reconstruction Problem

In a stereo vision setup, once a correspondence between the two images is iden-
tified, we can reconstruct the 3D scene point based on the process of triangu-
lation. Triangulation has already been covered by our discussion on epipolar

principles of robot autonomy 147

Figure 8.2: Epipolar rectifica-
tion example from Loop et al.
(1999).

Figure 8.3: Triangulation with
rectified images (horizontal
view on the left, top-down view
on the right).

geometry. However, if the images have also be rectified such that the epipolar
lines become parallel to the horizontal image axis, the triangulation problem be-
comes simpler. This occurs, for example, when the two cameras have the same
orientation, are placed with their optical axes parallel, and are separated by
some distance, b, called the baseline, as we show in Figure 8.3.

In Figure 8.3, a point, P, in the scene is located at coordinate (x, y, z) with
respect to the origin located in the left camera at point O. We denote the hor-
izontal pixel coordinate in the left and right image by pu and p′u, respectively.
Based on the geometry, we can compute the depth of point P from the proper-
ties of similar triangles:

z
b
=

z− f
b− pu + p′u

,

148 stereo vision and structure from motion

which we can algebraically simplify to:

z =
b f

pu − p′u
, (8.8)

where f is the focal length. Generally a small baseline, b, will lead to larger
depth errors, but a large baseline may cause features to be visible from one
camera and not the other. We refer to the difference in the image coordinates,
pu − p′u, as disparity. This is an important term in stereo vision because it is only
by measuring disparity that we can recover depth information. The disparity
can also be visually represented in a disparity map, which is simply a map of the
disparity values for each pixel in an image. We show an example of a disparity
map in Figure 8.411. Note that the largest disparities occur from nearby objects,

11 D. Scharstein and R. Szeliski. “High-
accuracy stereo depth maps using
structured light”. In: IEEE Computer
Society Conference on Computer Vision and
Pattern Recognition. Vol. 1. 2003since disparity is inversely proportional to the depth, z.

Figure 8.4: Disparity map from
a pair of stereo images. Notice
that the lighter values of the
disparity map represent larger
disparity, and correspond to
the point in the scene that are
closer to the cameras. The black
points represent points that
were occluded from one of the
images and therefore no cor-
respondence could be made.
Images from Scharstein et al.
(2003).

8.2 Structure From Motion (SFM)

The structure from motion (SFM) method uses a similar principle as stereo vision,
but uses a single camera to capture multiple images from different perspectives
while moving within the scene. In this case, the intrinsic camera parameter
matrix, K, will be constant across images, but the extrinsic parameters consisting
of the rotation matrix, R, and relative position vector, t, will be different for
each image. Consider a case where we take m images of n fixed 3D points from

Figure 8.5: A depiction of the
structure from motion (SFM)
method. A single camera is
used to take multiple images
from different perspectives,
which provides enough infor-
mation to reconstruct the 3D
scene.

different perspectives. This would lead to m homography matrices, Mk, and

principles of robot autonomy 149

n 3D points, Pj, that we would need to determine by leveraging the projection
relationships:

ph
j,k = MkPh

j , j = 1, . . . , n, k = 1, . . . , m.

Notice that there is quite a bit of similarity between this problem and the cam-
era auto-calibration problem discussed in Chapter 7, except here we assume we
already know the camera intrinsic parameters.

Structure from motion methods also have some unique disadvantages, such
as an ambiguity in the absolute scale of the scene that cannot be determined.
For example, a bigger object at a longer distance and a smaller object at a closer
distance can yield the same projections. One application of the structure from
motion concept is known as visual odometry. Visual odometry estimates the
motion of a robot in part by using visual inputs. This approach is commonly
used in practice, for example by rovers on Mars, and is useful because it not
only allows us to recover the motion of the robot but we can also generate a 3D
scene reconstruction that we can use for planning.

150 stereo vision and structure from motion

References

[16] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2011.

[17] A. Fusiello, E. Trucco, and A. Verri. “A compact algorithm for rectification
of stereo pairs”. In: Machine Vision and Applications 12.1 (2000), pp. 16–22.

[40] C. Loop and Z. Zhang. “Computing rectifying homographies for stereo
vision”. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition. Vol. 1. 1999, pp. 125–131.

[57] D. Scharstein and R. Szeliski. “High-accuracy stereo depth maps using
structured light”. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Vol. 1. 2003.

[64] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

9
Image Processing

The previous chapters focused on using camera models to identify the relation-
ship between points in a 3D scene and their projections onto the camera image,
as well as how to leverage those models to reconstruct 3D scene structure from
images. In this chapter, we introduce methods for extracting other types of in-
formation, such as semantic information, through image processing. For example,
we might want to identify what type of objects are in the scene in addition to
understanding where they are located. Extracting this type of visual content
from raw images is important for mobile robots to be able to intelligently inter-
pret their surroundings1. 1 Information extracted through image

processing can have a significant impact
on a robot’s ability perform funda-
mental tasks including localization,
mapping, and decision making.

At its core, image processing is a form of signal processing where the input
signal is an image, such as a photo or a video, and the output is either an image
or a set of parameters associated with the image. While a large number of im-
age processing techniques exist, in this chapter, we focus on some of the more
fundamental methods that are relevant for robotics2,3. In particular, the meth- 2 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

3 H. P. Moravec. “Towards automatic
visual obstacle avoidance”. In: 5th
International Joint Conference on Artificial
Intelligence. 1977

ods we focus on are related to image filtering, feature detection, and feature
description.

9.1 Image Filtering

Image filtering is one of the principal tasks in image processing. The term filter
comes from frequency domain signal processing and refers to the process of
accepting or rejecting certain frequency components of a signal4. Perhaps the 4 For example, eliminating high-

frequency noise is a classic filtering
problem.

most common type of image filtering is spatial filtering. The basic principle of
spatial filtering is that a particular pixel is modified in the filtered image based
on the pixels in the immediate spatial neighborhood, as we show in Figure 9.1.

Mathematically, we describe an image as a function, I(x, y), that maps a pixel
at coordinate (x, y) in the domain [a, b]× [c, d] to either a scalar for grayscale im-
ages or a three-dimensional vector corresponding to red, green, and blue values
for color images. A spatial filter for an image, I(x, y), consists of a neighborhood
of pixels around a particular point, (x, y), under examination, which we denote
as Sxy

5, and a predefined operation, F, that is performed on the image pixels 5 This region is typically rectangular.

encompassed by the neighborhood Sxy. We define a new image, I′(x, y), by ap-

152 image processing

plying the spatial filter operation F to all pixels, (x, y), in the original image,
I.

Figure 9.1: Illustration of the
concept of spatial filtering.
The spatial filter operates on
a neighborhood, Sxy, of each
point in the original image to
produce a new pixel in the
filtered image.

In general, filters can leverage linear or nonlinear operations, but many of the
most fundamental filters are linear and we can express them mathematically as:

I′(x, y) = F ◦ I =
N

∑
i=−N

M

∑
j=−M

F(i, j)I(x + i, y + j), (9.1)

where N and M are integers that define the width and height of a rectangular
neighborhood, Sxy. Based on the size of this neighborhood, we say that this fil-
ter is of size (2N + 1)× (2M + 1). We generally refer to the filter operation F as
a mask or kernel. Broadly speaking, we refer to filters expressed by Equation (9.1)
as correlation filters.

Convolution filters are another class of linear filters that we commonly use.
Convolution filters are similar to correlation filters, but use reverse image in-
dices6. In particular, we express convolution filters mathematically by: 6 In fact, correlation and convolution

filters are identical when the filter mask
is symmetric in both the horizontal and
vertical directions.I′(x, y) = F ∗ I =

N

∑
i=−N

M

∑
j=−M

F(i, j)I(x− i, y− j). (9.2)

Convolution filters are associative, meaning that for two different filter masks,
F and G, it is true that F ∗ (G ∗ I) = (F ∗ G) ∗ I. This associative property is
useful for tasks such as smoothing an image before applying a differentiation
filter. Suppose the mask F implements a derivative filter and G implements a
smoothing filter, then sequentially applying these filters would result in F ∗ (G ∗
I). However, because of the associative property, we can convolve the masks
together first such that only the single filter (F ∗G) ∗ I needs to be applied to the
image.

Note that in both correlation and convolution filters, the boundaries of the
image need some special care because of the width and height of the mask.
For example, in Figure 9.2 we show how the filtered image is smaller than the
original due to the width and height of the mask. Some possible options to
handle this include padding the image, cropping it, extending it, or wrapping it.
However, as images are generally quite large relative to the mask size, the exact
approach likely won’t vary the final result significantly.

principles of robot autonomy 153

Figure 9.2: Due to the width
and height of the mask, the
filtered image may be smaller
than the original. This can be
fixed with several techniques,
such as padding.

Example 9.1.1 (Practical Tricks for Image Filtering). When implementing cor-
relation and convolution filters, we can leverage special tricks to simplify the
process. In this example, we introduce two simplification tricks: a change in
indexing and zero-padding.

First, to accommodate varying sizes of filters, including even and odd sized
filters, we can change the indexing such that the coordinate of interest is as-
sociated with the top-left element in the window rather than the center. For a
correlation filter, this would correspond to:

I′(x, y) = F ◦ I =
K

∑
i=1

L

∑
j=1

F(x, y)I(x + i− 1, y + j− 1), (9.3)

where K and L are integers that define the width and height of the filter, and
the pixel (x, y) is at row x and column y. Note that this formulation results in
an output image, I′, that is shifted up and to the left. To see this shift, consider
the top-left pixel at x = 1 and y = 1 in the new image, I′. We generate this new
pixel value by applying the filter, F, over the pixels in the original image at rows
{1, . . . , K} and columns {1, . . . , L}, which is not centered at (1, 1) in the original
image, I. In practice, this shifting is not an issue as long as we always index
with respect to the top-left corner. We show an example of top-left indexing in
Figure 9.3.

Figure 9.3: Top-left indexing is
typically easier to implement
than center indexing. Notice
that when top-left indexing, it
appears as if the filtered im-
age has shifted with respect to
when we use center indexing.

Zero-padding7 is another simple trick that we can use to ensure that the 7 Also commonly referred to as same
padding.output filtered image, I′, has the same dimension as the input image, I. In this

154 image processing

approach, we pad the left and right boundaries of the image by ⌊K/2⌋ columns
of zeros, and pad the top and bottom boundaries by ⌊L/2⌋ rows of zeros, where
⌊·⌋ denotes the floor operation. For example, the image:

I =

1 2 3
4 5 6
7 8 9

 ,

becomes:

Ipadded =


0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

 ,

for filters F ∈ R3×3, F ∈ R2×2, F ∈ R2×3 and F ∈ R3×2. When using this
padding rule with a correlation filter from Equation (9.3) and a filter, F, with
K = 2, 3 and L = 2, 3, we can define the new image, I′, for values x ∈ {1, 2, 3}
and y ∈ {1, 2, 3}, resulting in I′ being the same dimension as the original im-
age, I. We show an example use of padding combined with top-left indexing
graphically in Figure 9.4.

Figure 9.4: Image padding is
a commonly used technique
to ensure that the size of the
filtered image is the same size
as the original.

9.1.1 Moving Average Filter

The moving average filter returns the average of the pixels in the mask, which
achieves a smoothing effect8. For example, we can define a moving average 8 Smoothing removes sharp features in

the image.filter with a normalized9 3× 3 mask with F from Equation (9.1) defined as:
9 The normalization is used to maintain
the overall brightness of the image.

F =
1
9

1 1 1
1 1 1
1 1 1

 .

Due to the symmetry of the mask, the correlation filter from Equation (9.1) and
convolution filter from Equation (9.2) will be identical.

principles of robot autonomy 155

9.1.2 Gaussian Smoothing Filter

Gaussian smoothing filters are similar to the moving average filer, but instead of
weighting all of the pixels evenly they are weighted by the Gaussian function:

Gσ(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
.

We use this function to obtain the mask operation, F, by sampling the function
about the center pixel. For example, for the center pixel with i = j = 0 in
Equation (9.1), we sample Gσ(0, 0). For a normalized 3× 3 mask with σ = 0.85,
this filter is approximately defined by:

F =
1

16

1 2 1
2 4 2
1 2 1

 .

Like the moving average filter, this filter mask is symmetric and therefore yields
identical results with respect to the correlation or convolution filters. The ad-
vantage of the Gaussian filter is that it provides more weight to the neighboring
pixels that are closer. We show an example of this filter in Figure 9.5.

Figure 9.5: Example of a Gaus-
sian smoothing filter, which
produces a smoothing (blur-
ring) effect on the filtered im-
age.

9.1.3 Separable Masks

We call a mask separable if it can be broken down into the convolution of two
kernels, F = F1 ∗ F2. If a mask is separable into smaller masks, then it is often
cheaper to apply F1 followed by F2, rather than by F directly. One special case
of this is when we can represent the mask as an outer product of two vectors,
meaning it is equivalent to the 2D convolution of those two vectors. If a sep-
arable mask has shape M × M and the input image has size w × h, then the
computational complexity of directly performing the convolution is O(M2wh).
By separating the masks, the computational cost is O(2Mwh), which is linear
in M rather than quadratic. As an example, consider the moving average filter

156 image processing

mask from before:

F =
1
9

1 1 1
1 1 1
1 1 1

 =
1
9

1
1
1

 [1 1 1
]

.

As another example, we note that the Gaussian smoothing filter mask is also
separable. To see why this is, note that we can decompose the Gaussian weight-
ing function as:

Gσ(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
,

=
1√
2πσ

exp
(
− x2

2σ2

)
1√
2πσ

exp
(
− y2

2σ2

)
,

= gσ(x) · gσ(y).

9.1.4 Image Differentiation Filters

We can identify some image features, such as edges, by looking at the spatial
derivatives in the pixel intensity values in both the vertical and horizontal direc-
tions. Since we represent images as functions defined over a discrete domain,
the traditional method for differentiating continuous functions is not applicable.
Instead, we can compute differences between pixels using techniques like the
central difference method:

∂I
∂x

=
I(x + 1, y)− I(x− 1, y)

2
,

∂I
∂y

=
I(x, y + 1)− I(x, y− 1)

2
.

(9.4)

where ∂I/∂x is the derivative in the horizontal direction and ∂I/∂y is the
derivative in the vertical direction. We can also define the derivatives using just
one side instead of a central difference, for example ∂I

∂x = I(x + 1, y)− I(x, y).
We can also differentiate an image using convolution filters. In particular,

one common approach is to use a convolution filter of the form Equation (9.2)
defined with a mask, F, called a Sobel mask10. We denote this mask as Sx for the 10 Also referred to as simply a Sobel

operator.x direction and Sy for the y direction:

Sx =

1 0 −1
2 0 −2
1 0 −1

 , Sy =

 1 2 1
0 0 0
−1 −2 −1

 (9.5)

Sobel masks are similar to the central difference method but use more neighbor-
ing pixels when calculating the derivative11. Note that Sobel masks are separable. 11 Specifically, they also consider the

rows above and below to compute the
difference.

9.1.5 Similarity Measures

We can also use filtering to find similar features in different images, which can
be useful for solving the correspondence problem in stereo vision or structure-
from-motion techniques. In particular, we can compute the similarity between

principles of robot autonomy 157

the pixel (x, y) in image I1 and pixel (x′, y′) in image I2 by:

SAD =
N

∑
i=−N

M

∑
j=−M

|I1(x + i, y + j)− I2(x′ + i, y′ + j)|,

SSD =
N

∑
i=−N

M

∑
j=−M

[I1(x + i, y + j)− I2(x′ + i, y′ + j)]2,

(9.6)

where SAD is an acronym for sum of absolute differences, SSD is an acronym for
sum of squared differences, and N and M define the size of the window around
the pixels that we consider.

9.2 Image Feature Detection

A local feature12 in an image is a pattern that differs from its immediate neigh- 12 Also sometimes referred to as interest
points, interest regions, or keypoints.borhood in terms of intensity, color, or texture. We can generally categorize local

features in several ways, for example by whether or not they provide semantic
content. For example, features that may provide semantic content include edges
or other geometric shapes, such as lanes of a road or blobs corresponding to
blood cells in medical images. Features that do not provide semantic content
may also be useful, for example in feature tracking, camera calibration, 3D re-
construction, image mosaicing, and panorama stitching. In these cases, it may
be more important that the feature be able to be located accurately and robustly
over time. A third category of features are those that may not have semantic
interpretations individually, but may have meaning as a collection. For instance,
we could recognize a scene by counting the number of feature matches between
the observed scene and a query image. In this case, only the number of matches
is relevant and not the location or type of feature. Applications where these
types of features are important include texture analysis, scene classification,
video mining, and image retrieval.

In this section, we discuss several feature detection strategies. While many
strategies exist for different types of features, our focus will be on two common
features that are often useful in robotics: edges and corners.

9.2.1 Edge Detection

An edge in an image is a region where there is a significant change in intensity
values along one direction, and negligible change along the orthogonal direc-
tion. In one dimension an edge corresponds to a point where there is a sharp
change in intensity, which mathematically can be thought of as a point of a
function having a large first derivative and a small second derivative. Many
edge detectors rely on this concept by differentiating images and looking for
spikes in the derivative. We can evaluate an edge detector based on several cri-
teria for robustness and performance, including accuracy, localization, and sin-
gle response. Good accuracy implies few false positives or negatives13, good lo- 13 In this case, a false positive is a

detection of an edge that isn’t real, and
a false negative is a missed edge.

158 image processing

calization implies that the detected edge should be exactly where the true edge
is in the image, and a single response implies that only one edge is detected
for each real edge. Noise and discretization effects can make edge detection
challenging in practice.

Most edge detection methods rely on two key steps: smoothing and differen-
tiation. We perform differentiation in both the vertical and horizontal directions
to find locations in the image with high intensity gradients. However, differen-
tiation alone is vulnerable to false positives due to image noise, which is why
many algorithms will first smooth the image.

Example 9.2.1 (Edge Detection in 1D). In Figure 9.6, we show an example of
how noise can corrupt image differentiation. Notice that in this case it is impos-

Figure 9.6: Differentiation of a
signal with noise can be par-
ticularly challenging. We can
address this by first smoothing
the signal.

sible to identify the jump in the signal due to the noise levels. Smoothing filters,
such as the Gaussian smoothing filter discussed earlier, can help remedy this
problem. In particular, suppose the original signal in Figure 9.6 is defined by
I(x). We can compute a smoothed version by applying a smoothing convolution
filter:

s(x) = gσ(x) ∗ I(x),

where gσ(x) represents a Gaussian smoothing filter, and then by applying the
differentiation filter:

s′(x) =
d

dx
∗ s(x).

We show this process in Figure 9.7. Note that since these filters are convolu-
tions, we can leverage the associativity property to combine them into a single
filter:

s′ = (
d

dx
∗ gσ) ∗ I.

Example 9.2.2 (Edge Detection in 2D). Edge detection in a two-dimensional im-
age is quite similar to the example previously discussed for one-dimension. Let
the smoothing filter be the Gaussian smoothing filter from before, and consider

principles of robot autonomy 159

Figure 9.7: Edge detection
through convolution with a
Gaussian smoothing filter, fol-
lowed by a differentiation filter.

a differentiation filter such as the Sobel filter. We can write the gradient of the
smoothed image in both the x and y directions as:

∇S =

[
∂

∂x ∗ Gσ ∗ I
∂

∂y ∗ Gσ ∗ I

]
=

[
Gσ,x ∗ I
Gσ,y ∗ I

]
=

[
Sx

Sy

]
,

where I is the original image and we use the associativity property of the
smoothing and differentiation convolution filters to define the combined filters
Gσ,x and Gσ,y. We can then compute the magnitude of the gradient by:

|∇S| =
√

S2
x + S2

y,

which we can use to compare against a predefined threshold value for edge
detection. To guarantee that we define thin edges, it is also possible to filter
out points whose gradient magnitude are above the threshold but are not local
maxima. We show an example of this process in Figure 9.8.

160 image processing

Figure 9.8: Edge detection
using the Sobel edge detector.

9.2.2 Corner Detection

A corner in an image is defined as an intersection of two or more edges, and
also sometimes as a point where there is a large intensity variation in every
direction. Important properties of corner detectors include repeatability and dis-
tinctiveness. The repeatability of a corner detector quantifies how well we can
find the same features in multiple images even under geometric and photomet-
ric transformations. Distinctiveness refers to whether the information carried
by the patch surrounding the feature is distinctive, which we can use to reliably
produce correspondences. Both of these properties are particularly important in
applications such as panorama stitching and 3D reconstruction.

We can generally think of corner detection in a similar way to edge detec-
tion, except that instead of looking for change along one direction there should
be changes in all directions. One well known corner detector is known as the
Harris detector14, which has the useful property that the detection is invariant 14 C. Harris and M. Stephens. “A

combined corner and edge detector”.
In: 4th Alvey Vision Conference. 1988

to rotations and linear intensity changes, such as geometric and photometric
invariance. However, the Harris detector is not invariant to scale changes or
geometric affine changes, which has led to the development of scale-invariant
detectors such as the Harris-Laplacian detector or the scale-invariant feature
transform (SIFT) detector.

9.3 Image Descriptors

Image descriptors describe features so that they can be compared across images,
or used for object detection and matching. Similar to image detectors, it is desir-
able for image descriptors to be repeatable15 and distinct. Perhaps the simplest 15 For example, invariant with respect to

pose, scale, and illumination.example of a descriptor is an n× m window of pixel intensities centered at the
feature, which we can normalize to be illumination invariant. However, such a
descriptor is not invariant to pose or scale and is not distinctive, and therefore is
generally not useful in practice.

principles of robot autonomy 161

9.4 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: Correlation and Gaussian Smoothing Filters

In the file ch09/exercises/correlation_filter.ipynb, you will implement the
correlation filter and Gaussian smoothing filter from Section 9.1.2.

162 image processing

References

[20] C. Harris and M. Stephens. “A combined corner and edge detector”. In:
4th Alvey Vision Conference. 1988.

[47] H. P. Moravec. “Towards automatic visual obstacle avoidance”. In: 5th
International Joint Conference on Artificial Intelligence. 1977.

[64] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

10
Information Extraction

Chapter 9 introduced some fundamental topics related to image processing,
including filtering, feature detection, and feature description. While these tech-
niques are useful for a large number of computer vision applications, they are
not sufficient to extract higher-level information. For example, we discussed
methods for identifying local features of the image, such as corners and edges,
but these may be too localized to understand higher-level features or semantic
content.

In this chapter, we introduce methods for higher-level feature extraction,
including geometric feature extraction and image object recognition1. Geometric 1 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

feature extraction is useful to identify structure, including geometric primitives
such as lines, circles, and planes, which is useful in robotics applications for
localization and mapping2. Object recognition from images is also important 2 Geometric feature extraction methods

are generally applicable to different
types of sensor data, including images
or data collected from laser rangefind-
ers or radar.

in robotics applications to ensure robots operating in real environments can
complete their tasks safely and effectively.

10.1 Geometric Feature Extraction

It is common in robotic localization and mapping to represent the environment
using simple geometric primitives3 that we can efficiently extract from sensor 3 Common geometric primitives include

lines, circles, corners, and planes.data. In this section, we present some techniques for line extraction from range
data4. Lines are one of the most fundamental geometric primitives that we 4 Range data can generally come from

a variety of sources, including laser
rangefinders, radar, or even computer
vision.

would want to extract from data, and techniques for extracting other primitives
are conceptually similar.

There are two main challenges with extracting lines from range data. The
first is segmentation, which is the task of identifying which data points belong
to which line, and inherently also identifying how many lines there are. The
second is fitting, which is the task of estimating the parameters that define a line
given a set of points. For simplicity, in this chapter, we consider line extraction
problems based on two-dimensional range data.

164 information extraction

10.1.1 Line Segmentation

The line segmentation problem is to determine how many lines exist in a given
set of data and which data points correspond to each line. We will discuss three
popular algorithms for line segmentation: the split-and-merge algorithm, the ran-
dom sample consensus (RANSAC) algorithm, and the Hough-transform algorithm.

Split-and-Merge: The split-and-merge algorithm is a popular line extraction
algorithm that is fast but not very robust to outliers. The split-and-merge al-
gorithm repeatedly fits lines to sets of points and then splits the set of points
into two sets if any point lies more than a specified distance, d, from the line.
By repeating this process until no more splits occur, we are guaranteed that all
points will lie less than the distance, d, to a line. After this splitting process is
complete, a second step merges any of the newly formed lines that are collinear.
We present this algorithm in more detail in Algorithm 10.1. A popular variant

Algorithm 10.1: Split-and-Merge
Data: Set, S, of N points, distance threshold, d > 0
Result: A list, L, of sets of points, each resembling a line
L←− [S]
i←− 1
while i ≤ length(L) do

Fit a line (α, r) to the set L[i]
Detect the point P ∈ L[i] with maximum distance, D, to the line (α, r)
if D < d then

i←− i + 1
else

Split L[i] at P into new sets, S1 and S2

L[i]←− S1

L[i + 1]←− S2

Merge collinear sets in L

of the split-and-merge algorithm is known as the iterative-end-point-fit algo-
rithm. This algorithm is the split-and-merge algorithm in Algorithm 10.1 where
the line is constructed by simply connecting the first and the last points of the
set. We show this approach graphically in Figure 10.1.

Random Sample Consensus (RANSAC): Random Sample Consensus (RANSAC)5 5 Martin A. Fischler and Robert C.
Bolles. “Random sample consensus:
a paradigm for model fitting with
applications to image analysis and
automated cartography”. In: Commun.
ACM 24.6 (1981), pp. 381–395

is an algorithm to estimate the parameters of a model from a set of data that
may contain outliers6. Outliers are data points that do not fit the model and

6 This problem is sometimes referred to
as robust model parameter estimation.

may be the result of high noise in the data, incorrect measurements, or simply
points which come from objects that are unrelated to the current model. For
example, a laser scan of an indoor environment may contain distinct lines from
the surrounding walls but also points from other static and dynamic objects

principles of robot autonomy 165

Figure 10.1: Iterative-end-point-
fit variation of the split-and-
merge algorithm for extracting
lines from data.

such as chairs or humans. In this case, if the goal is to extract lines to repre-
sent the walls, then any data point corresponding to other objects would be an
outlier. In general, we can apply RANSAC to many parameter estimation prob-
lems, and typical applications in robotics include line extraction from 2D range
data, plane extraction from 3D point clouds, and structure-from-motion7. In this 7 Where the goal in structure-from-

motion problems is to identify image
correspondences which satisfy a rigid
body transformation.

section, we focus on using RANSAC for line extraction from two-dimensional
data.

RANSAC is an iterative method and is non-deterministic8. Given a dataset, 8 In other words, it is stochastic or
random. Running the algorithm twice
on the same inputs will not necessarily
produce the same results.

S, of N points, we start by randomly selecting a sample of two points from
S. Next, we construct a line from the two sampled points and compute the
distance of all other points to this line. We then define the set of inliers, which
is comprised of all points whose distance to the line is within a predefined
threshold, d. By repeating this process k times, we generate k inlier sets and
their associated lines and return the inlier set with the most points. We detail
this procedure in Algorithm 10.2 and illustrate the process in Figure 10.2.

Algorithm 10.2: Random Sample Consensus (RANSAC) for Line Extrac-
tion

Data: Set, S, of N points, distance threshold, d
Result: Set with maximum number of inliers and corresponding line
while i ≤ k do

Randomly select two points from S.
Fit line, li, through the two points.
Compute distance of all other points to li.
Construct set of points, S̃i, with distance less than d to li.
Store line, li, and set of points, S̃i.
i←− i + 1

Choose set S̃i with maximum number of points.

Due to the probabilistic nature of the algorithm, as the number of iterations,
k, increases the probability of finding a good solution increases. This approach
is used over a brute force search of all possible combinations of two points since
the total number of combinations is N(N − 1)/2, which can be extremely large.
In fact, we can perform a simple statistical analysis of RANSAC. Let p be the
desired probability of finding a set of points free of outliers and let w be the

166 information extraction

Figure 10.2: Example of the
RANSAC algorithm, showing
four iterations of the algorithm.
If the algorithm was terminated
after these four iterations, line
l3 would be returned since it
contains the maximum number
of points.

probability of selecting an inlier from the dataset, S, of N points, which we can
express as:

w =
inliers

N
.

Assuming we draw point samples independently from S, the probability of
drawing two inliers is w2, and 1− w2 is the probability that at least one is an
outlier. Therefore, with k iterations, the probability that RANSAC never selects
two points that are both inliers is (1− w2)k. We can therefore find the minimum
number of iterations, k̄, needed to find an outlier-free set with probability p by
solving:

1− p = (1− w2)k,

for k. In other words, we can compute k̄ as:

k̄ =
log(1− p)

log(1− w2)
.

While the value of w may not be known exactly9, we can still use this expres- 9 There are advanced versions of
RANSAC that can estimate w in an
adaptive online fashion.

sion to get a good estimate of the number of iterations, k, that we need for good
results. It is important to note that this probabilistic approach often leads to a
much smaller number of iterations than a brute force search through all combi-
nations. We can attribute this to the fact that k̄ is only a function of w and not
the total number of samples, N, in the dataset.

Overall, the main advantage of RANSAC is that it is a generic extraction
method and can be used with many types of features given a feature model.
It is also simple to implement and is robust to data outliers. The main disad-
vantages are that the algorithm needs to run multiple times to extract multiple
features, and there are no guarantees that the solutions will be optimal.

Hough Transform: In the Hough transform algorithm, each point, (xi, yi), of
the dataset, S, votes for a set of possible line parameters, (m, b), where m is the
slope and b is the intercept point. For any given point, (xi, yi), the candidate
set of line parameters, (m, b), that could pass through this point must satisfy
yi = mxi + b, which we can also write as:

b = −mxi + yi.

Therefore, each point, (x, y), in the original space space maps to a line, (m, b), in
the Hough space, as we show in Figure 10.3). The Hough transform algorithm

principles of robot autonomy 167

exploits this fact by noting that two points on the same line in the original space
will yield two intersecting lines in Hough space. In particular, the point where
they intersect in the Hough space corresponds to the parameters m∗ and b∗ that
defines the line passing between the points in the original space, as we show in
Figure 10.4.

Figure 10.3: Each point, (xi, yi),
in the original space maps
to a line in the Hough space
which describes all possible
parameters m and b that would
generate a line passing through
the point (xi, yi).

Figure 10.4: All points on a
line in the original space yield
lines in the Hough space that
intersect at a common point.

We can apply this concept to the line segmentation problem by searching
in the Hough space for intersections among the lines that correspond to each
point, (x, y), in the set, S. In practice, we do this by discretizing the Hough
space with a grid and simply counting for each grid cell the number of lines
corresponding to (xi, yi) points from S that pass through it. We choose local
maxima among the cells as lines that “fit” the data set, S.

However, performing a discretization of the Hough space requires a trade-
off between range and resolution, in particular because the slope, m, can range
from −∞ to ∞. Alternatively, we can use a polar coordinate representation of
the Hough space which defines a line as:

x cos α + y sin α = r,

where (α, r) are the new line parameters. With this representation, we map
a point, (xi, yi), from the original space to the polar Hough space, (α, r), as a
sinusoidal curve, as we show in Figure 10.5). We provide an example of the
Hough transform using the polar representation in Figure 10.6.

10.1.2 Line Fitting

Line segmentation is the process of identifying which data points belong to a
line, and line fitting is the process of estimating parameters of a line for those

168 information extraction

Figure 10.5: Representation of
a point, (xi, yi), in the Hough
space when using a polar coor-
dinate representation of a line
with parameters α and r.

Figure 10.6: Example of the
Hough transformation using a
polar coordinate representation
of lines.

corresponding data points. For the split-and-merge, RANSAC, and Hough-
transform line segmentation algorithms we previously discussed, we also im-
plicitly defined a line associated with the segmented data points. However,
these implicitly defined lines may not always be ideal and so other techniques
have been developed to specifically address the line fitting task.

Line fitting algorithms search for lines that best fit a set of data points. In
almost all cases, the problem is over-determined, meaning that there are more
data points than parameters to choose, and noise in the data means that there
is not a perfect solution. Therefore, one of the most common approaches to
line fitting is based on least-squares estimation, which tries to find a line that
minimizes the overall error in the fit. For this approach, it is useful to work in
polar coordinates defined by:

x = ρ cos θ, y = ρ sin θ,

where (x, y) is the 2D Cartesian coordinate of a data point and (ρ, θ) is the 2D
polar coordinate. In polar coordinates, the equation of a line is given by:

ρ cos(θ − α) = r, or x cos α + y sin α = r, (10.1)

where α and r are the parameters that define the line. We provide a visual rep-
resentation of these definitions in Figure 10.7.

Figure 10.7: Representation
of a line in polar coordinates,
defined by the parameters r and
α, which are the distance and
angle to the closest point on the
line to the origin.

For a collection, S, of N points, which we denote by (ρi, θi), we compute the
error corresponding to the perpendicular distance from a point to a line defined
by parameters α and r by:

di = ρi cos(θi − α)− r, (10.2)

where di is the error. We can therefore formulate the line fitting task as an opti-
mization problem over the parameters α and r to minimize the combined errors

principles of robot autonomy 169

di for i = 1, . . . , N. In particular, we aggregate the combined errors using a sum
of the squared errors:

S(r, α) =
N

∑
i=1

d2
i =

N

∑
i=1

(ρi cos(θi − α)− r)2. (10.3)

This is a classic least squares optimization problem that we can efficiently solve.
However, this cost function generally assumes that each of the data points is
equally affected by noise10. In some cases, it might be beneficial to account for 10 In other words, the uncertainty of

each measurement is the samedifferences in data quality for each point i, which could give preference to well-
known points.

Accounting for unique uncertainties in each data point leads to a weighted
least squares estimation problem. In particular, we assume that the variance of
each range measurement, ρi, is given by σi. We then modify the cost function
from Equation (10.3) to be:

Sw(r, α) =
N

∑
i=1

wid2
i =

N

∑
i=1

wi(ρi cos(θi − α)− r)2, (10.4)

where the weights, wi, are given by:

wi =
1
σ2

i
.

We can show that the solution to the optimization problem defined by the
weighted cost function in Equation (10.4) is:

r = ∑N
i=1 wiρi cos(θi − α)

∑N
i=1 wi

,

α =
1
2

atan2

 ∑N
i=1 wiρ

2
i sin(2θi)− 2

∑N
i=1 wi

∑N
i=1 ∑N

j=1 wiwjρiρj cos θi sin θj

∑N
i=1 wiρ

2
i cos(2θi)− 1

∑N
i=1 wi

∑N
i=1 ∑N

j=1 wiwjρiρj cos(θi + θj)

+
π

2
.(10.5)

10.2 Object Recognition

Another high-level information extraction task that is common in robotics is
object recognition. Object recognition is the task of classifying or naming discrete
objects in the world, usually based on images or video. This is a particularly
challenging task because real world scenes are commonly made up of many
varying types of objects which can appear at different poses and can occlude
each other. Additionally, objects within a specific class can have a large amount
of variability, for example breeds of dogs or car models. In this section, we in-
troduce three common methods for object recognition, namely template matching,
bag of visual words, and neural network methods.

10.2.1 Template Matching

Template matching11 is a machine vision technique for identifying parts of 11 N. Perveen, D. Kumar, and I. Bhard-
waj. “An overview on template match-
ing methodologies and its applica-
tions”. In: International Journal of Re-
search in Computer and Communication
Technology 2.10 (2013), pp. 988–995

170 information extraction

an image that match a given image pattern12. This approach has seen success

12 Advanced template matching algo-
rithms enable finding pattern occur-
rences regardless of their orientation
and local brightness.

in a variety of applications, including manufacturing quality control, mobile
robotics, and more. The two primary components needed for template matching
are the source image, I, and a template image, T.

Given a source and template image, one approach to template matching
is to leverage the linear spatial correlation filters discussed in Chapter 9. In
particular, a naive approach would be to use the normalized template image as
a filter mask in a correlation filter. By applying this filter mask to every pixel
in the source image, the resulting output would quantify the similarity of that
region of the source image to the template. This type of approach is sometimes
referred to as a cross-correlation. Another approach based on linear spatial filters
from Chapter 9 would be to leverage the similarity filters that compute the
sum of absolute differences (SAD) metric for each pixel in the source image.
Regions of the source image similar to the template would correspond to low
SAD scores. The disadvantages of these approaches is that they do not handle
rotations or scale changes, which are quite common in real world applications.

One solution to the scaling issue in correlation filter based template match-
ing is to simply re-scale the source image multiple times and perform template
matching on each. We can use this concept, referred to as using image pyra-
mids13, to accelerate object search by first using a coarser resolution image to 13 R. Szeliski. Computer vision: algorithms

and applications. Springer Science &
Business Media, 2010

localize the object, and then using finer resolution images for actual detection.
We can build image pyramids in several ways. One naive approach is to simply
eliminate some rows and columns of the image. Another approach is to first use
a Gaussian smoothing filter to remove high frequency content form the image
and then subsample the image. We refer to the sequence of images resulting
from this approach as a Gaussian pyramid.

10.2.2 Bag of Visual Words

The key idea behind the bag of visual words14 approach is that we can sim- 14 The model originated in natural lan-
guage processing, where we consider
texts such as documents, paragraphs,
and sentences as collections, or “bags”,
of words.

plify object representations by considering them as a collection of their sub-
parts15, and we refer to the subparts as visual words. In this approach, we search

15 For example, a bike is an object with
wheels, a frame, and handlebars.

a source image for visual words, and we create a distribution of visual words that
we find in the image in the form of a histogram. We can then perform object de-
tection by comparing this distribution to a set of training images. For example,
suppose the source image contains a human face and the recognized features in-
cluded eyes and a nose. Then, by comparing the distribution to training images,
we would likely determine that the training images that also have eyes and a
nose are also images of faces.

10.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a very powerful paradigm
in object recognition16. These approaches were first introduced in the field of 16 I. Goodfellow, Y. Bengio, and A.

Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016

computer vision for image recognition in 1989, and since then have significantly

http://www.deeplearningbook.org
http://www.deeplearningbook.org

principles of robot autonomy 171

boosted performance in image recognition and classification tasks. Research in
this field is still active.

172 information extraction

References

[15] Martin A. Fischler and Robert C. Bolles. “Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography”. In: Commun. ACM 24.6 (1981), pp. 381–395.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[52] N. Perveen, D. Kumar, and I. Bhardwaj. “An overview on template
matching methodologies and its applications”. In: International Journal
of Research in Computer and Communication Technology 2.10 (2013), pp. 988–
995.

[64] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

[71] R. Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

11
Deep Learning Architectures for Perception

11.1 Convolutional Neural Networks (CNNs)

Convolutional neural networks are a type of deep learning architecture that
is very common in the fields of computer vision and image processing. The
architecture of a CNN contains a special structure that leverages convolution
filters similar those we discussed in Chapter 9. However, in the context of ma-
chine learning, the convolution filters embedded in the structure of a CNN are
optimized for the desired task and do not require human specification, giving
higher performance and reducing the amount of required manual engineering.
CNN architectures are comprised of several main components, convolutional
layers, nonlinear activations, pooling layers, and fully-connected layers. We will
go over each of these core building blocks in this section:

Figure 11.1: A convolution filter
being applied to a 3-channel
RGB image.

Convolution Layers. One of the main structural concepts that is unique to the
architecture of a CNN is the use of convolution layers. Convolution layers ex-
ploit the underlying spatial locality structure in images by using sliding, learned,
filters, which are often much smaller than the image itself. Mathematically,
these filters perform operations in a similar way as other linear filters that have

174 deep learning architectures for perception

been used in image processing, such as Gaussian smoothing filters, and we can
express them as affine functions:

f (x) = w⊤x + b,

where w is a vectorized representation of the weight parameters that define the
filter, x is a vectorized version of the image pixels covered by the filter, and b is
a scalar bias term. For example, in Figure 11.1, we show how a filter is applied
over an image with three color channels (red, green, and blue). In this case, the
filter has dimension m× n× 3, which is vectorized to a weight vector, w, with
3mn elements. The stride of the filter describes how many positions it shifts by
when sliding over the input. The output of the filter is then passed through a
nonlinear activation1. 1 Typically a ReLU function.

Once we have applied the filter to the entire image, the collection of outputs
from the nonlinear activation function create a new filtered image, which we
typically refer to as an activation map. In practice, a number of different filters

Figure 11.2: The outputs of a
convolution filter and activa-
tion function applied across an
image make up a new image,
called an activation map.

are usually learned in each convolution layer, which produces a correspond-
ing number of activation maps as the output2. This is crucial such that each 2 Besides the number of filters applied

to the input, the width and height of
the filter, the amount of padding on the
input, and the stride of the filter are
other hyperparameters.

filter can focus on learning one specific relevant feature. We show examples of
different filters that might be learned in different convolution layers of a CNN
in Figure 11.33. Notice that the low-level features which are learned in earlier

3 M. D. Zeiler and R. Fergus. “Visualiz-
ing and Understanding Convolutional
Networks”. In: European Conference on
Computer Vision (ECCV). Springer, 2014,
pp. 818–833

convolution layers look a lot like edge detectors, which are more basic and fun-
damental features, while later convolution layers have filters that look more like
actual objects.

In general, using convolution layers to exploit the spatial locality of images
provides several benefits. One benefit is parameter sharing, where the (small)
filter’s parameters are applied at all points on the image. This keeps the total
number of learned parameters in the model much smaller than if we used a
fully-connected layer. Another benefit is that the sparse interactions from hav-
ing the filter be smaller than the image allows for better detection of smaller,
more meaningful features, and improves computation time by requiring fewer
mathematical operations to evaluate. The convolution layer is also equivariant
to translation, meaning that the convolution of a shifted image is equivalent to

principles of robot autonomy 175

Figure 11.3: Low-level, mid-
level, and high-level feature
visualizations in a convolu-
tional neural network from
Zeiler and Fergus (2014).

the shifted convolution of the original image4. This allows convolution layers 4 However, convolution is not equivari-
ant to changes in scale or rotation.to detect features regardless of their position in the image. Finally, the use of

convolution layers gives us the ability to work with images of varying size, if
needed.

Pooling Layers Pooling is the second major structural component in CNNs.
Pooling layers typically come after convolution layers and their nonlinear activa-
tion functions. The primary function of a pooling layer is to replace the output
of the convolution layer’s activation map at particular locations with a summary
statistic from other spatially local outputs. This helps make the network more
robust against small translations in the input, helps improve computational ef-
ficiency by reducing the size of the input5, and is useful in enabling the input

5 This occurs because it lowers the
resolution.

images to vary in size6. The most common type of pooling is max pooling, but

6 The size of the pooling can be modi-
fied to keep the size of the pooling layer
output constant.

other types also exist, such as mean pooling.

Figure 11.4: Max pooling exam-
ple with 2 × 2 filter and stride
of 2.

Computationally, both max and mean pooling layers operate with the same
filtering idea as in the convolution layers. Specifically, a filter of width, m, and
height, n, slides around the layer’s input with a particular stride. The difference
between the two comes from the mathematical operation performed by the
filter, which as their names suggest are either a maximum element or the mean
over the filter. If the output of the convolution layer has N activation maps, the
output of the pooling layer will also have N images, since the pooling filter is
only applied across the spatial dimensions.

Fully Connected Layers Downstream of the convolution and pooling layers are
fully connected layers. These layers make up what is essentially just a standard
neural network, which is appended to the end of the network. The function of
these layers is to take the output of the convolution and pooling layers, which
we can think of as a highly condensed representation of the image, and perform
a classification or regression. Generally, the total number of fully connected
layers at the end of the CNN will only make up a fraction of the total number of
layers.

CNN Performance We can say that a CNN learns how to process images end-to-
end because it essentially learns how to perform two steps simultaneously: fea-

176 deep learning architectures for perception

ture extraction and classification or regression7. In contrast, classical approaches 7 In other words, it learns the entire
process from image input to the desired
output.

to image processing use hand-engineered feature extractors. Since 2012, the
performance of end-to-end learning approaches to image processing have dom-
inated and continue to improve8. This continuous improvement has generally 8 In some specific applications, hand-

engineered features may still be better.
For example, we might use engineering
insight to identify a structure to the
problem that a CNN could not easily
learn.

been realized with the use of deeper networks with more parameters, and also
by combining CNN architectures with other techniques such as Transformers.

Notable Architectures Several landmark CNN architectures have significantly
advanced the field of computer vision and demonstrated the power of deep
learning. AlexNet (2012) was the first deep CNN to achieve breakthrough per-
formance on ImageNet, popularizing the use of ReLU activations and dropout
regularization while demonstrating that deeper networks could dramatically
outperform traditional methods. ResNet (2015) introduced residual connec-
tions that allow information to skip layers, enabling the training of much deeper
networks (up to 152 layers) without suffering from vanishing gradients, and
showed that depth itself could be a key factor in improving performance. YOLO
(You Only Look Once) represents a different approach to CNN design, pio-
neering real-time object detection by treating detection as a single regression
problem rather than a classification task, demonstrating how CNN architectures
can be adapted for various computer vision tasks beyond simple image classifi-
cation. These architectures have not only achieved state-of-the-art results in their
respective domains but have also influenced countless subsequent designs and
established important principles for CNN development.

11.2 Vision Transformers (ViTs)

A vision transformer9 leverages a transformer architecture for computer vi- 9 A. Dosovitskiy et al. “An Image is
Worth 16x16 Words: Transformers
for Image Recognition at Scale”. In:
International Conference on Learning
Representations. 2021

sion applications by segmenting an image into a set of square patch tokens that
are embedded by a linear operation. Since this architecture does not contain
some of the structural constraints of CNN-based models, it requires larger train-
ing datasets to achieve similar performance with similar model size. However,
empirical results have shown that with sufficiently large datasets it is possible
for vanilla Transformer architectures to perform well. In practice, we can also
pre-train a vision transformer on a large scale image dataset, followed by fine-
tuning on smaller datasets for specific applications. Below, we will discuss each
component in more detail.

Transformers Transformers are a deep learning architecture that have been
widely applied in a variety of domains, including machine translation, natural
language processing, computer vision, and more. Compared to CNNs, Trans-
formers enforce fewer structural constraints, and as long as we can organize the
input data into a set or sequence, it can be processed by a Transformer-based
model. Since the internal structure of the Transformer is purely learned from
data, it requires less domain knowledge, which makes it easier to generalize to

principles of robot autonomy 177

different data modalities. Transformers are also quite computationally efficient
and scalable due to their ability to be parallelized, allowing for extremely large
models with hundreds of billions of parameters to be trained.

Transformer architectures have several main components: tokenizers, em-
bedding layers, transformer layers, and unembedding layers. In this section, we
briefly introduce each of these main components.

Tokens and Embeddings Transformers take inputs in the form of a set or se-
quence of tokens. A token is a numeric representation of the raw input data10, 10 A tokenizer refers to the method for

generating tokens from the raw inputs.expressed by a vector. For example, for a language task, a token could be a nu-
meric representation of a word, or set of words or characters. We can generate
language tokens through a word-to-token mapping defined by a learned dic-
tionary lookup. In the context of computer vision, a token is often a numeric
representation of a patch11 of an input image. For example, we can convert a 11 A patch is usually a square subset of

the full image.patch of size P × P with C color channels into a token vector of size CP2 by
flattening the patch.

We then transform tokens into a new vector, which we refer to as a token
embedding vector. A token embedding vector is a high-dimensional latent space
representation of the token. In computer vision tasks, we can also append a spe-
cial “class” token embedding that the model can use as a workspace to reason
about the classification of the image. We also typically add an embedding of
the token’s position to the embedding vector, since this information is often also
relevant12. The embeddings are learned, for example as a linear operation, and

12 The position embedding could give
information about the position of a
word in a sequence or position of a
patch in an image. For example, in the
sentence, “The dog chased the cat.”, it
is important to know that “dog” comes
before “cat” to capture the sentence’s
correct meaning.

we can think of the embedding latent space as a space where “closeness” of two
embedding vectors implies there is some similarity between the two tokens.

Once we have transformed the raw input into a set of embedding vectors, we
aggregate them as rows of an input matrix, X0, of dimension N × D, where N is
the context size13 and D is the size of the embedding space. 13 In general, larger context sizes will

give better performance because we
can capture more unique information.
However, this comes at the cost of
increased computational requirements.

Transformer Layer One of the key components of the Transformer architecture is
the self-attention layer. Each embedding vector from the input, which is a row of
X0, represents only a single token. Therefore, they don’t yet contain contextual
information captured by the other tokens. For example, in the sentence, “The
child played with the toy car.” the embedding vector for the word “car” doesn’t
have awareness of the adjective “toy”. Our goal with self-attention is to allow
the model to figure out how to modify each embedding vector from the input
in a way that is relevant, given the entire set of inputs. In the previous example,
we want the model to learn that the “car” embedding vector can be modified
by the “toy” adjective so that it becomes a new vector in the high-dimensional
embedding space that corresponds to “toy car” rather than some other type of
car, like a delivery van.

Mathematically, scaled dot-product self-attention layers have the form:

O = Attention(Q, K, V) = softmax(
QK⊤√

dk
)V,

178 deep learning architectures for perception

where we call Q ∈ Rm×dk the query matrix, K ∈ Rn×dk the key matrix, V ∈ Rn×dv

the value matrix, and O ∈ Rm×dv the output matrix. The intuition of this math-
ematical formulation is that the term QK⊤ is taking the dot product between
all pairs of queries and keys, represented by the rows of Q and K, and a larger
dot product suggests that a particular pair are similar to each other. We then
apply the softmax function to each column of the resulting matrix to normalize
the columns so that their elements sum to one14. Finally, the multiplication by 14 The division by

√
dk , where dk is the

size of the keys and queries, is another
trick to help with the stability of the
training process.

the value matrix, V, makes it such that each row of the output matrix, O, is the
weighted sum of the rows of the value matrix, where the weights correspond to
the normalized dot products.

In the context of the transformer, we typically define the matrices as Q =

XWQ, K = XWK, and V = XWV , where X is the input matrix with each row
corresponding to one embedding vector from the input sequence and W(·) are
matrices of learnable parameters. We then add the output of the self-attention
function to the the input in what we refer to as a residual connection:

X̄ = X + Attention(XWQ, XWK, XWV).

Here we present the mathematical form using matrix notation, which is how
these models are implemented in practice. However, for intuition, it is easier
to reason about the transformation of a single input embedding vector, corre-
sponding to a single row of X. For example, going back to the toy car sentence
example, let’s consider the embedding vector for the word “car”. The atten-
tion function modifies this vector into a new vector in the embedding space
that captures more information from the rest of the sentence. Specifically, the
value matrix, V, would give a set of potential modifications corresponding to
the other words of the sentence, and then we pick which modifications to actu-
ally apply by the dot-product relevance weighting. The relevance weightings,
which specify which other words in the sentence we should attend to, would
likely show there is a strong match between “car” and “toy”.

A single attention mechanism is limited in the ways it can define relevance
among the various tokens, specifically by the finite matrices WQ, WK, and WV .
We can increase the model’s capability through multi-head attention, which sim-
ply defines a number of attention mechanisms with unique parameters, Wi

Q,
Wi

K, and Wi
V , concatenates their results, and multiplies by another learned ma-

trix, WO.
Next, we pass the output of the multi-head self-attention layer into a feed-

forward layer, such as a multi-layer perceptron. A multi-layer perceptron is a
sequence of layers that alternate between a fully connected linear function and a
non-linear activation function15. Specifically, we apply a multi-layer perceptron 15 For example, a rectified linear unit

(ReLU).to each individual token of the output of the attention layer.
Each transformer layer consists of the two main components of a multi-head

attention layer followed by the multi-layer perceptron. After each of these com-
ponents, there is a residual connection that adds the output of the component
to the input16. We then stack some number of these Transformer layers in se-

16 We also usually apply a normaliza-
tion operation to help stabilize training,
and also leverage other common train-
ing tricks such as dropout.

principles of robot autonomy 179

quence17. 17 Note that the dimensions of the
inputs and outputs of each Transformer
layer are typically the same, N × D.

Unembedding Layer Once we have converted the raw input into a sequence of
tokens, converted them into embedding vectors, and passed them through the
Transformer layers, our next step is to convert the output from the embedding
space back into the space of tokens. Specifically, we take an embedding vector,
x, and convert it into a probability distribution over tokens by using a softmax
function:

o = softmax(xW + b),

where W and b are learned parameters. The output, o, is a vector whose size
matches the size of the token vocabulary, and whose elements sum to one.

Practical Considerations Vision Transformers represent a paradigm shift in com-
puter vision by adapting the flexible transformer architecture to image process-
ing tasks through patch-based tokenization and self-attention mechanisms. Un-
like CNNs, which rely on built-in spatial inductive biases through convolution
operations, ViTs learn spatial relationships purely from data via positional em-
beddings and attention patterns, requiring larger datasets but offering greater
flexibility across different visual tasks. The self-attention mechanism allows each
image patch to attend to all other patches globally, enabling the model to cap-
ture long-range dependencies that might be difficult for CNNs with their local
receptive fields. While ViTs typically require more training data than CNNs to
achieve comparable performance on smaller datasets, they demonstrate superior
scalability and can be effectively pre-trained on large-scale datasets before fine-
tuning for specific applications. This approach has proven particularly success-
ful in scenarios where large amounts of training data are available, establishing
ViTs as a complementary and sometimes superior alternative to traditional con-
volutional approaches in computer vision.

11.3 PointNet and Point Cloud Processing

Point Cloud Characteristics Point clouds represent 3D data as collections of
points in three-dimensional space, where each point is typically defined by
its position, p, in space18 and may include additional attributes such as color, 18 The exact representation can vary:

Cartesian coordinates (x, y, z), spherical
coordinates (r, θ, ϕ), or cylindrical
coordinates (r, θ, z) depending on the
application and sensor type.

intensity, or surface normals. This representation is particularly prevalent in
autonomous driving systems, where LiDAR (Light Detection and Ranging)
sensors capture millions of points per second to create detailed 3D maps of the
vehicle’s surroundings, enabling real-time obstacle detection and navigation.
Unlike images, which have a regular 2D grid structure with fixed dimensions,
point clouds possess several unique characteristics that make them challenging
to process with traditional deep learning architectures.

Point clouds are fundamentally unordered sets of points, meaning there is
no inherent sequential or spatial ordering like the pixel arrangement in images.

180 deep learning architectures for perception

Figure 11.5: LiDAR point cloud
data from an autonomous ve-
hicle showing detected objects
including cars, pedestrians, and
road infrastructure.

A point cloud containing N points can be represented as a set p1, p2, . . . , pN

where each point pi ∈ Rd (typically d = 3 for spatial coordinates). Crucially,
any permutation of these points represents the same geometric object, which
requires our neural network architectures to be permutation invariant.

Point clouds also exhibit variable cardinality, meaning different point clouds
can contain vastly different numbers of points. While an image always has a
fixed resolution (e.g., 224 × 224 pixels), one point cloud might contain 1,000

points while another contains 100,000 points, depending on the scanning res-
olution, distance from the sensor, and object complexity. This variability poses
challenges for batch processing and network design. The sparse and irregular

Figure 11.6: Point clouds of
different objects showing vari-
able cardinality: a simple table
(more points), a detailed chair
(more points), and a toy build-
ing facade (most points).

nature of point cloud data differs from the dense, regular grid of image pixels.
Points are distributed non-uniformly throughout 3D space, with varying local
densities that depend on the scanning angle, distance, and surface properties
of the objects being captured. This sparsity means that most of the 3D space
contains no points, and the local neighborhood structure around each point is
highly variable and irregular. These fundamental differences necessitate special-
ized neural network architectures that can handle the unique properties of point
cloud data.

PointNet Architecture PointNet approaches point cloud processing through sev-
eral key architectural innovations that ensure permutation invariance while ex-
tracting meaningful geometric features. The architecture consists of point-wise

principles of robot autonomy 181

feature extraction, symmetric aggregation functions, and spatial transformation
components that work together to process unordered point sets effectively.

Figure 11.7: PointNet archi-
tecture showing point-wise
MLPs, transformation networks
(T-Net), and symmetric aggre-
gation for classification and
segmentation tasks.

Point-wise Multi-Layer Perceptrons The foundation of PointNet19 is the applica- 19 details on where to find more

tion of multi-layer perceptrons (MLPs) to individual points in the point cloud.
Given a point cloud with N points, where each point pi ∈ R3 represents spatial
coordinates, PointNet applies the same MLP function f to each point indepen-
dently:

hi = f (pi) = MLP(pi)

where hi ∈ Rk is the learned feature representation for point pi. This point-
wise processing is crucial for maintaining permutation invariance because the
same transformation is applied to each point regardless of its position in the
input sequence. The MLP typically consists of several fully connected layers
with ReLU activations, progressively increasing the feature dimensionality from
the input coordinates (usually 3D) to higher-dimensional feature spaces (e.g.,
64, 128, 1024 dimensions). Importantly, the parameters of this MLP are shared
across all points, similar to how convolutional filters share parameters across
spatial locations in CNNs, but without the spatial locality constraints.

Symmetric Aggregation Functions After extracting point-wise features, PointNet
must aggregate these features into a single global representation while preserv-
ing permutation invariance. This is achieved through symmetric functions that
produce the same output regardless of input ordering. The most commonly
used symmetric function in PointNet is the element-wise maximum:

g = max
i=1,...,N

hi

where the max operation is applied element-wise across all feature vectors hi.
Mathematically, this can be proven to be permutation invariant: if σ is any per-
mutation of the points, then maxi=1,...,N hσ(i) = maxi=1,...,N hi. While alternative
symmetric functions like summation or mean could be used, max pooling has
the advantage of being selective, allowing the network to focus on the most

182 deep learning architectures for perception

discriminative features across all points. However, this global aggregation ap-
proach means that PointNet captures only global features and may miss impor-
tant local geometric structures, which motivates the hierarchical extensions in
PointNet++.

Transformation Networks (T-Net) To achieve invariance to geometric transfor-
mations such as rotation and translation, PointNet incorporates transformation
networks (T-Net) that learn to align point clouds to a canonical orientation. The
T-Net is itself a mini-PointNet that predicts a transformation matrix T ∈ Rk×k:

T = T-Net({p1, p2, . . . , pN})

This transformation matrix is then applied to either the input coordinates (input
transform) or intermediate features (feature transform). For the input trans-
form, T ∈ R3×3 aligns the spatial coordinates, while for the feature transform,
T ∈ R64×64 normalizes the feature space. To ensure the stability of optimization,
a regularization term is added to the loss function that encourages the transfor-
mation matrix to be close to orthogonal:

Lreg = ||I − TTT ||2F

where || · ||F denotes the Frobenius norm. This regularization prevents the
transformation from becoming degenerate and helps maintain the geometric
properties of the point cloud.

Hierarchical Feature Learning (PointNet++) While PointNet effectively captures
global features, it struggles to learn local geometric patterns due to its reliance
on global max pooling. PointNet++20 addresses this limitation by introducing 20 details on where to find more

a hierarchical architecture that learns features at multiple scales, similar to how
CNNs build hierarchical representations through multiple convolutional layers.
The core innovation in PointNet++ is the set abstraction layer, which recursively
applies the PointNet architecture to local regions of the point cloud. Given a
point cloud with N points, each set abstraction layer samples N′ representa-
tive points (where N′ < N), groups nearby points around each representative
point, and applies a PointNet to extract local features. This process creates a
hierarchical pyramid of features, where early layers capture fine-grained local
details and later layers capture broader geometric patterns. Set abstraction in
PointNet++ consists of three key operations: sampling, grouping, and feature
extraction. Sampling uses farthest point sampling (FPS) to select representa-
tive points that provide good coverage of the entire point cloud. Given a set of
points, FPS iteratively selects the point that is farthest from all previously se-
lected points, ensuring diverse spatial coverage. Grouping then defines local
regions around each selected point using either ball query (all points within
radius r) or k-nearest neighbors. This creates local point sets of varying sizes
that capture the local geometry around each representative point. Feature ex-
traction refers to feature propagation layers that upsample features from coarser

principles of robot autonomy 183

to finer resolutions. These layers use inverse distance weighted interpolation to
propagate features from subsampled points back to the original point cloud:

f (j)(x) =
∑k

i=1 wi(x) f (j−1)
i

∑k
i=1 wi(x)

, wi(x) =
1

d(x, xi)p

where f (j) represents features at layer j, d(x, xi) is the distance between points,
and p is typically set to 2. Skip connections between corresponding abstraction
and propagation layers help preserve fine-grained details, similar to U-Net
architectures in image segmentation.

Graph Neural Networks for 3D Data An alternative approach to processing point
clouds treats them as graph structures, where points serve as nodes and edges
are defined based on spatial proximity or learned relationships. Dynamic Graph
Convolutional Neural Networks (DGCNN)21 exemplify this approach by con- 21 details on where to find more

structing graphs dynamically in feature space rather than just coordinate space.
DGCNN applies edge convolution operations that aggregate information from
neighboring points:

x′i = max
j:(i,j)∈E

hθ(xi, xj − xi)

where xi and xj are feature vectors of connected points, hθ is a learnable func-
tion (typically an MLP), and the edge set E is dynamically updated based on
feature similarity after each layer. This dynamic graph construction allows the
network to capture both geometric and semantic relationships that evolve as
features are learned. The edge convolution operation differs from standard
graph convolutions by explicitly modeling the edge information (xj − xi), which
captures the relative geometric relationships between neighboring points. This
approach has shown success in tasks like point cloud classification and part
segmentation, often outperforming PointNet on datasets where local geometric
structure is crucial.

Point-based Feature Learning for Downstream Tasks After processing through
PointNet’s point-wise MLPs and symmetric aggregation, or PointNet++’s hier-
archical set abstraction layers, these architectures produce rich point-wise fea-
ture representations that encode both local geometric patterns and global shape
information. These learned features serve as powerful inputs for various down-
stream tasks including 3D object detection, semantic segmentation where each
point is classified into categories like road, building, or vegetation, and instance
segmentation for identifying individual object instances within the point cloud.
We will explore the details of training point-based detection and segmentation
networks in a subsequent section on object detection architectures.

Computational Limitations and Alternative Approaches Despite their intuitive de-
sign, point-based methods including PointNet, PointNet++, and DGCNN face
significant computational challenges when processing large-scale point clouds.

184 deep learning architectures for perception

Real-world applications like autonomous driving can generate point clouds
with millions of points per frame, making the O(N2) complexity of neighbor-
hood search in DGCNN or the recursive sampling in PointNet++ computation-
ally prohibitive. Memory requirements also scale poorly, as each point must be
processed individually, leading to irregular memory access patterns that are
inefficient on modern GPU architectures. In the following section, we will dis-
cuss some voxel-based and pillar-based approaches that leverage regular grid
structures for efficient 3D convolutions. By discretizing the 3D space into reg-
ular voxels or vertical pillars, these methods can apply standard convolutional
operations while maintaining spatial locality and enabling efficient parallel
processing. This structured representation trades some geometric precision for
computational efficiency and scalability, making it particularly suitable for real-
time applications in autonomous driving and robotics where processing speed
is critical.

11.4 3D Convolutions: VoxelNet and PointPillars

In the previous section, we discussed that the computational limitations of
point-based methods have motivated the development of grid-based approaches
that discretize 3D space into regular structures, enabling the application of ef-
ficient convolutional operations. Rather than processing individual points with
irregular neighborhoods, voxel-based and pillar-based methods transform point
clouds into structured representations where standard CNNs can be applied.
This paradigm shift trades some geometric precision for substantial compu-
tational advantages, making real-time processing of large-scale point clouds
feasible for applications like autonomous driving. By leveraging the regularity
of grid structures, these methods can utilize optimized convolution implementa-
tions and parallel processing capabilities of modern hardware.

Figure 11.8: Comparison of
point cloud representations:
(blue) original point cloud over-
laid on the (grey) voxel-based
discretization into 3D cubic
cells.

Voxel and Pillar-based Representations Grid-based methods transform irregular
point clouds into structured representations by discretizing 3D space into regu-
lar units. Two primary approaches have emerged: voxel-based representations

principles of robot autonomy 185

that divide space into cubic voxels, and pillar-based representations that use
vertical columns extending through the entire height of the scene22. The voxel- 22 These are frequently used in au-

tonomous vehicle or navigation do-
main, where the scene can be viewed as
a 2D “map" instead of a true 3D scene,
for computational efficiency

based representation creates a full 3D regular grid structure of size L×W × H
by partitioning space into cubic cells of size vl × vw × vh

23, where each voxel

23 In practice, these dimensions are often
set to be equal, creating cubic voxels.

can contain zero or more points from the original point cloud. This approach
preserves complete spatial relationships in all three dimensions, enabling rich
3D feature learning through volumetric convolutions. Points within each voxel
are aggregated into a single feature representation, typically through operations
like mean pooling, max pooling, or learned aggregation functions. In contrast,
the pillar-based representation adopts a 2.5D approach, looking at the scene
from a birds-eye view, and treats vertical columns (“pillars”) as the fundamental
processing unit. The space is transformed into a 2D grid structure of size L×W.
Each pillar extends vertically through the entire height range of the point cloud,
effectively collapsing the height dimension during initial processing. This ap-
proach is particularly useful in self-driving settings, where the scene processed
is often very large and the reduction to 2D significantly improves computa-
tional efficiency. Points within each pillar are aggregated while preserving some
height information through encoding strategies, but the primary spatial reason-
ing occurs in the horizontal, birds-eye view plane.

The choice between these representations involves significant trade-offs in
computational complexity and spatial information preservation. Voxel-based
methods provide richer spatial context by maintaining full 3D neighborhood
relationships with memory scaling as O(L ×W × H), enabling detection of
complex 3D geometric patterns but requiring computationally expensive 3D
convolutions. Pillar-based approaches reduce complexity by projecting the prob-
lem into 2D with memory scaling as O(L×W), enabling the use of mature 2D
CNN architectures and optimized implementations, but potentially losing im-
portant vertical structure information crucial for multi-level feature detection.
Both representations face spatial resolution trade-offs, where finer grids capture
more geometric detail at exponentially higher computational cost, and must
address sparsity challenges where most grid cells remain empty, motivating the
development of sparse convolution techniques.

Sparse Convolutions for Efficiency Real-world point clouds exhibit extreme
sparsity when discretized into voxel grids. In many applications such as au-
tonomous driving and indoor scene processing, the majority of 3D space con-
sists of empty air or unoccupied regions. Standard dense 3D convolutions waste
significant computation on empty space, making them impractical for large-
scale applications. Sparse convolutions address this by computing only on occu-
pied voxels and their neighborhoods, using efficient data structures to maintain
compact representations of non-empty regions24 24 Popular implementations include

spconv for PyTorch/TensorFlow and
Minkowski Engine for general sparse
tensor operations.Example 11.4.1 (Memory Savings in Sparse Convolutions). A typical autonomous-

vehicle LiDAR scene discretized at 10cm resolution over a 100m× 100m× 10m

186 deep learning architectures for perception

volume would require:

Grid size =
100m
0.1m

× 100m
0.1m

× 10m
0.1m

= 1000× 1000× 100

Total voxels = 1000× 1000× 100 = 100 million voxel features per layer

In contrast, sparse representations store only the occupied voxels, making mem-
ory usage proportional to the number of non-empty voxels rather than total grid
size. The sparser the scene, the greater the memory savings.

3D Convolution Operations 3D Convolutional Neural Networks extend the
successful principles of 2D CNNs to volumetric data by operating directly on
3D grids of voxels. While 2D convolutions slide filters across height and width
dimensions of images, 3D convolutions add depth as a third spatial dimension,
enabling the network to capture spatial relationships to understand the 3D
scene. Specifically, a 3D convolution applies a filter of size (kx, ky, kz) across
all three spatial dimensions of the input volume. Mathematically, for an input
volume X and filter W, the 3D convolution operation produces:

Yi,j,k =
kx−1

∑
u=0

ky−1

∑
v=0

kz−1

∑
w=0

Xi+u,j+v,k+w ·Wu,v,w + b

where (i, j, k) represents the spatial position in the output volume and b is the
bias term.

Figure 11.9: A 3D convolution
filter sliding across a volumet-
ric input, showing how the
(kx, ky, kz) filter operates in all
three spatial dimensions.

Common kernel sizes include 3× 3× 3 for capturing local 3D patterns and
1× 1× 1 for channel-wise feature mixing without spatial aggregation25. The 25 Larger kernels like 5 × 5 × 5 can

capture broader spatial context but sig-
nificantly increase computational cost
due to the cubic scaling of operations.

key advantage of 3D convolutions over approaches that process 2D slices inde-
pendently is their ability to learn features that span multiple depths, such as the
full 3D shape of objects or volumetric textures. The receptive field in 3D grows
cubically with network depth, allowing deeper layers to capture increasingly
global context, though this rapid growth must be balanced against increased
computational cost.

VoxelNet One of the pioneering architectures developed for processing voxel-
based representations is VoxelNet26. The architecture addresses the challenge of 26 Proposed by Zhou and Tuzel (2018), it

has since developed into many variants,
such as Voxel R-CNN and VoxelNeXt.

principles of robot autonomy 187

processing irregular point clouds by first voxelizing them into a 3D voxel grid,
then leverages 3D convolutions that we described above to process them and
detect objects.

Figure 11.10: VoxelNet archi-
tecture showing the complete
pipeline from point cloud vox-
elization through VFE layers,
3D convolutional middle layers,
to the Region Proposal Network
for 3D object detection.

Voxel Feature Encoding (VFE) Layers A core component of VoxelNet is its Voxel
Feature Encoding layers, which process the variable number of points within
each voxel to produce fixed-size feature representations. Given a voxel contain-
ing points {p1, p2, . . . , pn}, where each point pi = (xi, yi, zi, ri) includes spatial
coordinates and optional reflectance intensity, the VFE layers apply point-wise
multi-layer perceptrons to each point independently:

fi = MLP(pi)

To capture contextual information within each voxel, VoxelNet augments
each point with the centroid of all points in the same voxel. For a voxel con-
taining n points, the centroid is computed as p̄ = 1

n ∑n
i=1 pi, and each point is

then represented as the concatenation [pi, pi − p̄], providing both absolute and
relative spatial information.

The VFE layers then aggregate features across all points in the voxel using
element-wise max pooling, ensuring permutation invariance:

v = max
i=1,...,n

fi

where v is the final voxel-level feature representation. This aggregation step
converts the variable-sized point sets within each voxel into fixed-size feature
vectors suitable for subsequent 3D convolution operations.

3D Convolutional Middle Layers After voxel feature encoding, VoxelNet applies
a series of 3D convolutional layers to build hierarchical representations of the
scene. These layers follow standard 3D CNN design principles, progressively
increasing receptive field size while extracting increasingly abstract features.

188 deep learning architectures for perception

The sparse nature of voxel occupancy makes this stage well-suited for sparse
convolution implementations to improve computational efficiency. The 3D con-
volutional layers serve multiple purposes: they aggregate information across
neighboring voxels to capture larger geometric structures, they build multi-scale
representations through progressive downsampling, and they prepare features
for the final object detection stage. The output of these layers is a dense feature
map that encodes rich 3D spatial information about the scene.

PointPillars Architecture While VoxelNet processes full 3D voxels, PointPillars
takes a different approach by using vertical pillars that extend through the en-
tire height of the scene. The key difference lies in the Pillar Feature Network
(PFN), which encodes points within each pillar and then converts the resulting
pillar features into a 2D "pseudo-image" representation. This transformation
allows PointPillars to leverage mature 2D CNN architectures for subsequent
processing, rather than computationally expensive 3D convolutions. The pillar-
based approach offers significant computational advantages by reducing the
problem from 3D to 2.5D, enabling the use of optimized 2D convolution op-
erations and existing hardware accelerations designed for image processing.
This design choice makes PointPillars particularly suitable for real-time applica-
tions where computational efficiency is crucial. A notable variant that builds on
similar principles is SECOND27, which combines voxel-based processing with 27 SECOND (Sparsely Embedded

Convolutional Detection) combines
voxel-based processing with sparse
convolution techniques for improved
efficiency.

sparse convolution techniques.

Figure 11.11: PointPillar archi-
tecture.

Object Detection with Learned Features Often, the desired use case for these
point-cloud network architectures is to detect relevant scene objects, useful
for planning a robot’s next movement or to navigate in the space. To accom-
plish this detection task, networks must transform raw point cloud data into
structured representations that can identify and localize objects such as pre-
dicting 3D bounding boxes. After processing through either VoxelNet’s VFE
layers and 3D convolutional middle layers, or PointPillars’ PFN and 2D convo-
lutional backbone, both architectures produce rich feature representations that
encode geometric patterns and spatial relationships across the scene. VoxelNet’s
features capture full 3D spatial context through volumetric processing, while
PointPillars’ features efficiently encode vertical structure information within
2D feature maps. These learned features serve as input to a Region Proposal

principles of robot autonomy 189

Network (RPN) that generates 3D bounding box proposals for object detec-
tion. The key contribution of both approaches lies in demonstrating that the
entire pipeline—from raw point cloud processing to 3D object detection—can
be trained end-to-end, allowing the networks to learn optimal feature represen-
tations specifically for the detection task rather than relying on hand-crafted
features. We will explore the details of training object detection networks and
designing appropriate loss functions in a subsequent section on object detection.

11.5 Multi-modal Fusion Approaches

Modern robotic systems, particularly autonomous vehicles, rely on multiple
sensors to achieve robust perception in diverse environmental conditions. This
creates the challenge of designing architectures to effectively combining features
from different network types: point-based features from architectures like Point-
Net or voxel-based features from networks like VoxelNet for processing LiDAR
data, and 2D CNN features for processing RGB camera images. The architec-
tural design choices for fusing these heterogeneous feature representations are
a consideration in trade-offs between system performance and computational
efficiency.

Fusion Strategies Multi-sensor fusion architectures can be categorized based on
where in the network pipeline different modalities are combined. Early fusion
architectures concatenate features from different modalities at the input or early
feature extraction stages. For example, RGB images and LiDAR point clouds
can be projected into a common bird’s-eye view representation and concate-
nated channel-wise, feeding into a unified network architecture that processes
joint representations from the earliest stages.

• Late fusion architectures maintain separate processing pipelines for each
modality, with independent networks producing separate predictions that
are combined at the output level. This design allows each branch to use spe-
cialized architectures optimized for its specific data type—2D CNNs for
images and point-based or voxel-based networks for LiDAR—but may miss
important cross-modal feature interactions during the learning process.

• Intermediate fusion architectures represent a hybrid approach, combining
features at multiple stages throughout the network hierarchy. This design
enables modality-specific feature extraction in early layers while allowing
cross-modal feature interactions in deeper layers. Features from different sen-
sor streams are aligned and fused at corresponding spatial scales, requiring
careful architectural design to handle the different feature dimensions and
spatial resolutions.

Technical Challenges Effective multi-sensor fusion architectures must address
several technical challenges. Spatial alignment between features from different

190 deep learning architectures for perception

modalities requires careful architectural design to ensure that features corre-
spond to the same physical locations in 3D space. This often involves learnable
projection and transformation layers that can handle calibration uncertainties.
Temporal synchronization presents additional architectural challenges due to
the fundamental differences in how these sensors operate. LiDAR sensors are
typically rotational and continuously scan the environment in 360 degrees,
meaning different portions of the surroundings are captured at slightly different
times during a full rotation. In contrast, cameras capture entire images instan-
taneously, creating temporal misalignment between the two data streams. This
often requires architectural components that can handle asynchronous data
streams and compensate for the temporal offset between sensor modalities.

Performance Benefits Well-designed fusion architectures leverage the comple-
mentary strengths of different feature types. Features from 2D CNNs excel at
capturing semantic and appearance information, while point-based or voxel-
based features provide precise geometric and spatial relationships. The archi-
tectural challenge lies in designing fusion modules that effectively combine
these different feature types while maintaining computational efficiency. Suc-
cessful fusion architectures typically result in improved detection accuracy and
enhanced robustness across diverse environmental conditions, making them
essential for safety-critical robotic applications.

principles of robot autonomy 191

References

[12] A. Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale”. In: International Conference on Learning
Representations. 2021.

[77] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolu-
tional Networks”. In: European Conference on Computer Vision (ECCV).
Springer, 2014, pp. 818–833.

12
Object Detection and Recognition

For a robot to safely navigate and interact with the world around them, they
need visual understanding capabilities beyond simple image classification—not
only identifying what objects are present in an image, but also determining
where they are located. Consider an autonomous vehicle navigating a busy
intersection that must detect multiple pedestrians, vehicles, and cyclists while
simultaneously understanding which pixels belong to the drivable road surface
versus sidewalks or building facades. A household robot organizing a cluttered
kitchen must not only detect individual objects like cups and plates, but also
understand their precise boundaries to enable careful grasping and placement.
An agricultural robot in an orchard must distinguish between individual fruits
on overlapping branches while understanding the 3D structure of the scene to
plan safe navigation paths.

These scenarios require three visual understanding tasks essential for robotics.
Object detection identifies what objects are present and where they are located
using bounding boxes. Semantic segmentation classifies every pixel into scene cat-
egories like “road” or “vegetation.” Instance segmentation combines both capabil-
ities, identifying individual object instances and their precise boundaries. Each
serves different robotics needs: detection for obstacle avoidance and tracking,
semantic segmentation for navigation and scene understanding, and instance
segmentation for manipulation. Furthermore, many robotics applications re-
quire reasoning about full 3D structure. Autonomous vehicles need depth and
relative positions of obstacles for path planning. Robotic arms need precise 3D
object poses for manipulation. Search and rescue robots need detailed 3D scene
understanding for navigation in complex environments. This motivates extend-
ing detection and segmentation to 3D sensor data, using the point cloud and
voxel processing architectures from the previous chapter.

In this chapter, we will explore methodological developments that tackle
these robotics perception tasks. The progression from expensive two-stage de-
tectors to real-time one-stage approaches addresses the need for low-latency
decisions in dynamic environments, while efficient 3D processing methods ad-
dress computational challenges of real-time LiDAR processing. We will demon-
strate how the CNN, PointNet, and voxel-based architectures from the previous

194 object detection and recognition

chapter can be extended to enable robust visual understanding for autonomous
robotic systems.

12.1 2D Object Detection Foundations

Object detection extends beyond image classification by not only identifying
what objects are present in an image, but also determining where they are lo-
cated. This dual requirement—classification and localization—fundamentally
shapes the architectural design of detection systems. Unlike classification net-
works that output a single prediction per image, detection networks must han-
dle varying numbers of objects at different scales and positions, requiring spe-
cialized architectures that can efficiently process these challenges.

Definition 12.1.1 (Object Detection). Given an input image I, object detection
aims to identify all instances of objects from a predefined set of classes C =

{c1, c2, . . . , cK} and localize each instance with a bounding box. Formally, the
output is a set of detections D = {(bi, ci, si)}N

i=1 where bi = (xi, yi, wi, hi)

represents the bounding box coordinates, ci ∈ C is the predicted class, and
si ∈ [0, 1] is the confidence score.

The evolution of object detection architectures can be broadly categorized
into two paradigms: two-stage detectors that separate object localization from
classification, and one-stage detectors that perform both tasks simultaneously.
Additionally, the choice between anchor-based and anchor-free methods rep-
resents a fundamental design decision that affects both training dynamics and
inference efficiency. Understanding these foundational concepts provides the
framework for extending detection principles to 3D scenarios and multi-modal
sensor fusion, which we will explore in subsequent sections.

12.1.1 Two-Stage Detection: R-CNN to Fast R-CNN

“mention this in context of 2-stage detectors" *** de-emphasize anything prior
faster rcnn

The two-stage detection paradigm emerged as a natural approach to the ob-
ject detection problem by decomposing it into two sequential sub-problems: first
generating a set of object proposals that likely contain objects, then classifying
these proposals while refining their locations. This divide-and-conquer strat-
egy proved highly effective, establishing the foundation for many subsequent
detection architectures.

R-CNN: Establishing the Two-Stage Paradigm The original R-CNN (Regions
with CNN features) architecture1 established the two-stage paradigm through 1 Proposed by Girshick et al. (2014),

R-CNN demonstrated that CNN fea-
tures could dramatically improve object
detection performance when com-
bined with traditional region proposal
methods.

a three-step process that combined classical computer vision techniques with
modern deep learning. The architecture begins with selective search2, which

2 Selective search is a graph-based
segmentation algorithm that generates
object proposals by hierarchically
grouping superpixels based on color,
texture, size, and shape compatibility.

generates approximately 2,000 region proposals per image by identifying re-
gions likely to contain objects based on low-level visual cues.

principles of robot autonomy 195

Figure 12.1: Selective search
hierarchical grouping process.
Starting from initial superpixel
segmentation (left), regions are
progressively merged based on
color, texture, size, and shape
compatibility, ultimately gener-
ating diverse object proposals
of varying scales and locations
(right).Each proposed region is then warped to a fixed size of 227× 227 pixels and

processed independently through a pre-trained CNN (originally AlexNet) to
extract a 4096-dimensional feature vector. This feature extraction step leverages
the powerful representations learned by CNNs on large-scale image classifica-
tion datasets, transferring this knowledge to the detection task. Finally, these
CNN features are fed to class-specific Support Vector Machine (SVM) classifiers
for object classification and linear regressors for bounding box refinement.

Mathematically, for a region proposal r with extracted CNN features ϕ(r), the
classification score for class c is computed as:

sc(r) = wT
c ϕ(r) + bc

where wc and bc are the learned SVM parameters for class c. The bounding
box regression predicts corrections (∆x, ∆y, ∆w, ∆h) to transform the proposal
coordinates (x, y, w, h) to better align with the ground truth:

∆x = wT
x ϕ(r) + bx

∆y = wT
y ϕ(r) + by

∆w = wT
wϕ(r) + bw

∆h = wT
h ϕ(r) + bh

While R-CNN achieved breakthrough detection performance on benchmark
datasets, it suffered from significant computational inefficiencies and train-
ing complexity. Each of the 2,000 proposals required a separate forward pass
through the CNN, making both training and inference extremely slow—processing
a single image could take minutes. The multi-stage training process required
pre-training the CNN on ImageNet, training SVMs for classification, and train-
ing linear regressors for bounding box refinement, making the pipeline complex
and difficult to optimize end-to-end.

Fast R-CNN: Shared Computation Breakthrough Fast R-CNN3 addressed these 3 Introduced by Girshick (2015), Fast
R-CNN addressed the computational
bottlenecks of R-CNN while main-
taining the two-stage paradigm and
improving detection accuracy.

limitations through a key architectural innovation: shared computation across
all proposals. Instead of processing each proposal independently through the
CNN, Fast R-CNN processes the entire input image once through a convo-
lutional backbone to generate a feature map, then extracts proposal-specific
features from this shared representation.

196 object detection and recognition

The central innovation is the Region of Interest (RoI) pooling layer, which
extracts fixed-size feature representations from variable-sized proposal regions
on the shared feature map. For a proposal with coordinates (x, y, w, h) on a
feature map F with spatial dimensions H ×W, RoI pooling divides the proposal
region into a regular k× k grid (typically 7× 7) and applies max pooling within
each grid cell:

Figure 12.2: RoI pooling mech-
anism. A region of interest
proposal of arbitrary size (left)
is used to apply max pooling
within the feature map (left)
to produce a fixed-size feature
representation per region (top)
for subsequent classification
and regression layers.

RoIi,j = max
(x′ ,y′)∈bini,j

Fx′ ,y′

where bini,j represents the spatial extent of the (i, j)-th grid cell. This operation
ensures that regardless of the input proposal size, the output is always a fixed
k× k× d feature tensor, where d is the number of feature channels.

Fast R-CNN also unified the training process through a multi-task loss func-
tion that jointly optimizes classification and bounding box regression:

L = Lcls(p, u) + λ[u ≥ 1]Lbbox(tu, v)

where Lcls(p, u) = − log pu is the log loss for true class u with predicted class
probabilities p, and Lbbox is the smooth L1 loss for bounding box regression.
The indicator function [u ≥ 1] ensures that bounding box loss is only computed
for positive examples (background class has u = 0), and λ balances the two loss
terms.

This architectural change provided substantial improvements in both compu-
tational efficiency and detection accuracy. By sharing CNN computation across
all proposals, Fast R-CNN reduced training time by an order of magnitude
while achieving higher mean Average Precision (mAP) on standard bench-
marks. The end-to-end training also eliminated the complex multi-stage opti-

principles of robot autonomy 197

mization procedure, making the system more practical for real-world deploy-
ment. However, Fast R-CNN still relied on external region proposal algorithms
like selective search, which remained a computational bottleneck and prevented
the entire detection pipeline from being truly end-to-end learnable. This limi-
tation motivated the development of learnable region proposal methods, which
we will explore in the next section.

12.1.2 Learnable Proposals: RPN and Faster R-CNN

While Fast R-CNN significantly improved computational efficiency through
shared CNN computation, it still relied on external region proposal algorithms
like selective search. These traditional methods suffered from several funda-
mental limitations: they were computationally expensive, requiring seconds
per image; they were not learned from data and thus could not adapt to spe-
cific datasets or tasks; and they created a bottleneck that prevented the entire
detection pipeline from being optimized end-to-end. The Region Proposal Net-
work (RPN) innovation addressed these limitations by making region proposal
generation a learnable component within the detection framework.

Limitations of Selective Search Selective search and similar traditional proposal
methods operate using hand-crafted features and heuristics that remain fixed
regardless of the detection task or dataset. These algorithms typically generate
thousands of proposals per image using expensive graph-based operations,
with processing times often exceeding the CNN inference itself. More critically,
since these methods are not learnable, they cannot benefit from the supervision
available during detection training—they cannot learn which types of regions
are most likely to contain objects for a specific application domain.

Region Proposal Network Innovation The Region Proposal Network represents
a paradigm shift by treating proposal generation as a learned prediction task.
The RPN is essentially a fully convolutional network that slides a small network
over the convolutional feature map produced by the backbone CNN. At each
sliding window position, the RPN simultaneously predicts multiple region
proposals using a set of reference boxes called anchors.

Anchor Box Design Principles Anchors serve as reference templates that cover
different scales and aspect ratios at each spatial location in the feature map. For
a feature map of size H ×W, the RPN generates H ×W × k potential proposals,
where k is the number of anchor templates per location. Common anchor de-
signs use 3 scales (e.g., 1282, 2562, 5122 pixels) and 3 aspect ratios (e.g., 1:1, 1:2,
2:1), resulting in k = 9 anchors per location.

Mathematically, for an anchor centered at position (xa, ya) with width wa

and height ha, the RPN predicts refinements (∆x, ∆y, ∆w, ∆h) to produce a final

198 object detection and recognition

proposal:

x = ∆x · wa + xa

y = ∆y · ha + ya

w = wa · exp(∆w)

h = ha · exp(∆h)

The exponential transformation for width and height ensures positive values
and provides scale-invariant parameterization.

Objectness Scoring Unlike traditional proposal methods that use complex
heuristics, the RPN performs binary classification to determine "objectness"—whether
each anchor location contains an object of any class versus background. This ob-
jectness score p∗ is simpler than full multi-class classification but captures the
essential information needed for proposal generation. The RPN learns to dis-
tinguish object-like regions from background using the same convolutional
features that will later be used for detailed classification.

RPN Loss Function The RPN is trained using a multi-task loss that combines
objectness classification and bounding box regression:

LRPN =
1

Ncls
∑

i
Lcls(pi, p∗i) + λ

1
Nbox

∑
i

p∗i Lbox(ti, t∗i)

where Lcls is the log loss for binary classification, Lbox is the smooth L1 loss
for box regression, Ncls and Nbox are normalization terms, and λ balances the
two losses. The box regression loss is only computed for positive anchors (those
with p∗i = 1), indicated by the multiplication with p∗i .

During training, anchors are assigned positive labels if they have Intersection
over Union (IoU) > 0.7 with any ground truth box, or if they are the highest IoU
anchor for a ground truth box. Anchors with IoU < 0.3 are assigned negative la-
bels, while those with intermediate IoU values are ignored to avoid ambiguous
supervision.

Faster R-CNN: Integration with Fast R-CNN Faster R-CNN combines the RPN
with Fast R-CNN into a single, unified network that shares convolutional fea-
tures between proposal generation and detection. The architecture consists
of a shared CNN backbone (e.g., VGG-16 or ResNet), followed by two sibling
branches: the RPN for generating proposals and the Fast R-CNN detection head
for classifying proposals and refining their locations.

The shared backbone is crucial for computational efficiency—rather than run-
ning separate CNNs for proposal generation and detection, both tasks operate
on the same feature representation. This sharing also enables the network to
learn features that are beneficial for both tasks simultaneously.

principles of robot autonomy 199

Training Strategies Training Faster R-CNN requires careful coordination be-
tween the RPN and detection components. Initial approaches alternated be-
tween training the RPN and the detection network. First, the RPN is trained
using ImageNet-pretrained features. Then, the detection network is trained us-
ing proposals from the trained RPN, fine-tuning the shared convolutional layers.
This process can be repeated, though diminishing returns are typically observed
after the first iteration.

Today, most training of both components is done simultaneously, using a
combined loss function:

Ltotal = LRPN + LFast R-CNN

Joint training is more efficient and often achieves better performance, as it
allows the RPN and detection network to adapt to each other during learning.

Non-Maximum Suppression and Post-Processing After the RPN generates pro-
posals, Non-Maximum Suppression (NMS) removes redundant detections. The
algorithm sorts proposals by objectness score and iteratively removes proposals
that have high IoU (typically > 0.7) with higher-scored proposals. This reduces
the number of proposals fed to the detection stage from thousands to hundreds,
improving computational efficiency while maintaining detection quality.

The complete Faster R-CNN pipeline processes an image through the shared
backbone, generates scored proposals via RPN with NMS post-processing,
extracts RoI features for the top proposals, and produces final classifications and
refined bounding boxes. This end-to-end learnable system achieved significant
improvements in both speed and accuracy over previous two-stage methods,
establishing the foundation for modern object detection architectures.

12.1.3 One-Stage Detection: YOLO

The Region Proposal Network represented a major breakthrough by making
proposal generation learnable, but it still required a two-stage pipeline where
proposals were generated first and then classified separately. This sequential
approach, while effective, created computational bottlenecks that limited real-
time performance in robotics applications. As autonomous vehicles, drones, and
mobile robots demanded faster detection systems for dynamic environments,
a fundamental question emerged: could object detection be reformulated to
predict bounding boxes and classes directly from image features in a single
forward pass?

You Only Look Once (YOLO)4 provided a radical answer to this question. 4 Introduced by Redmon et al. (2016),
YOLO revolutionized object detection
by demonstrating that competitive de-
tection performance could be achieved
through direct single-stage prediction,
enabling real-time performance for
robotics applications.

Rather than decomposing detection into proposal generation followed by clas-
sification, YOLO treats object detection as a single regression problem, directly
predicting bounding box coordinates and class probabilities from image pixels
in one evaluation of the network. This paradigm shift eliminated the computa-
tional overhead of generating and processing thousands of proposals, enabling

200 object detection and recognition

genuine real-time object detection suitable for robotics systems operating in
dynamic environments.

Core YOLO Innovation: Grid-Based Direct Detection YOLO’s central innovation
lies in its spatial decomposition of the detection problem through a grid-based
approach. The method divides the input image into an S × S grid (typically
7 × 7 for the original YOLO), where each grid cell becomes responsible for
detecting objects whose center points fall within that cell’s spatial region. This
responsibility assignment creates a natural spatial organization that eliminates
the need for separate proposal generation.

Each grid cell simultaneously predicts multiple bounding boxes along with
their associated confidence scores and class probabilities. The key insight is
that this grid-based spatial division provides sufficient spatial coverage while
maintaining computational tractability—rather than evaluating thousands of
potential object locations as in proposal-based methods, YOLO evaluates a fixed
number of predictions per grid cell, resulting in a manageable total number
of predictions regardless of scene complexity. The elimination of the proposal
generation stage represents more than just a computational optimization; it fun-
damentally changes how the network approaches object detection. Rather than
learning to generate good proposals and then classify them, the network must
learn to directly map from image features to final detection outputs. This end-
to-end learning enables the network to optimize the entire detection pipeline
jointly, potentially leading to better coordination between localization and classi-
fication components.

YOLO Architecture and Predictions The YOLO architecture consists of a single
CNN backbone followed by fully connected layers that produce the final detec-
tion tensor. The original implementation used a modified GoogLeNet architec-
ture as the backbone, processing input images of size 448× 448 pixels through
convolutional layers that progressively reduce spatial resolution while increas-
ing feature depth. The final convolutional features are flattened and processed
through fully connected layers to produce a structured output tensor.

The network’s output is a tensor of size S× S× (B× 5 + C), where S is the
grid size, B is the number of bounding boxes predicted per cell, and C is the
number of object classes. For the original YOLO trained on PASCAL VOC, this
results in a 7× 7× 30 tensor, with B = 2 bounding boxes and C = 20 classes.
Each bounding box prediction consists of five values: (x, y, w, h, confidence),
where (x, y) represents the box center relative to the grid cell boundaries, (w, h)
represents the box dimensions relative to the entire image, and confidence rep-
resents the model’s certainty that the box contains an object. The class predic-
tions are formulated as conditional probabilities P(Classi|Object), representing
the probability of each class given that an object is present in the cell. This con-
ditional formulation is crucial—each grid cell predicts only one set of class
probabilities regardless of the number of bounding boxes, reflecting the as-

principles of robot autonomy 201

sumption that each cell is responsible for at most one object class.
The final detection confidence for each bounding box is computed by mul-

tiplying the conditional class probabilities with the bounding box confidence
scores:

Detection Confidence = P(Classi|Object)× P(Object)× IoU(pred, truth)

This formulation ensures that high detection scores require both confident ob-
ject presence and accurate localization.

Loss Function and Training YOLO’s loss function addresses the multi-task na-
ture of the detection problem by combining coordinate regression, confidence
prediction, and classification into a unified objective. The loss function consists
of several components with different weights to balance their relative impor-
tance:

L = λcoord

S2

∑
i=0

B

∑
j=0

1ijobj[(xi − x̂i)2 + (yi − ŷi)2]︸ ︷︷ ︸
bounding box center coordinates

+ λcoord ∑ i = 0S2
B

∑
j=0

1ijobj[(
√

wi −
√

ŵi)2 + (
√

hi −
√

ĥi)2]︸ ︷︷ ︸
bounding box dimensions

+ ∑ i = 0S2
∑ j = 0B1ijobj(Ci − Ĉi)2︸ ︷︷ ︸

confidence for cells with objects

+ λnoobj
S2

∑
i=0

B

∑
j=0

1ijnoobj(Ci − Ĉi)2

︸ ︷︷ ︸
confidence for cells without objects

+ ∑ i = 0S2
1iobj ∑ c ∈ classes(pi(c)− p̂i(c))2︸ ︷︷ ︸

class probabilities

The loss function uses different weights for different components: λcoord = 5
increases the importance of coordinate predictions, while λnoobj = 0.5 decreases
the weight of confidence predictions for cells without objects. The square root
transformation for width and height helps the loss function treat errors in small
and large boxes more equally, since a small absolute error in a small box repre-
sents a larger relative error than the same absolute error in a large box.

The indicator function 1
obj
ij denotes whether cell i contains an object and

bounding box j is responsible for that prediction (determined by which pre-
dicted box has the highest IoU with the ground truth). This responsibility as-
signment is crucial for training stability, as it ensures each ground truth object is
associated with exactly one predicted bounding box. Training YOLO follows a
two-stage approach: the convolutional layers are first pre-trained on ImageNet
for classification, then the entire network is fine-tuned on detection data. The

202 object detection and recognition

classification pre-training provides the network with strong feature representa-
tions that are then adapted for the detection task. During detection training, the
learning rate is carefully adjusted to balance the different loss components and
ensure stable convergence.

Speed vs. Accuracy Trade-offs and Robotics Impact YOLO’s architectural design
prioritizes computational efficiency, achieving detection speeds that were un-
precedented at the time of its introduction. The original YOLO processes images
at 45 frames per second (FPS) on contemporary GPU hardware, while a faster
variant (Fast YOLO) achieved 155 FPS by using a smaller network architecture.
These speeds represent order-of-magnitude improvements over contemporary
two-stage methods like Fast R-CNN, which operated at approximately 7 FPS.
However, this speed comes with accuracy trade-offs. YOLO’s grid-based ap-
proach struggles with small objects, since multiple small objects within the same
grid cell cannot be detected independently. The method also has difficulty with
objects that appear in unusual aspect ratios, as the fixed number of bounding
box predictors per cell limits the diversity of detectable shapes. Additionally,
the coarse spatial quantization imposed by the grid structure can lead to less
precise localization compared to methods that can place proposals at arbitrary
locations.

For robotics applications, these trade-offs often represent acceptable compro-
mises. Autonomous vehicles operating in real-time require detection systems
that can process sensor data fast enough to support control decisions, even if
absolute detection accuracy is somewhat reduced. The "good enough" detection
philosophy embodied by YOLO aligns well with robotics applications where
timely decisions often matter more than perfect perception. The impact of
YOLO on the robotics field extends beyond its specific technical contributions.
By demonstrating that real-time object detection was achievable with modest
computational resources, YOLO democratized object detection for resource-
constrained robotics platforms. Mobile robots, drones, and embedded systems
could now incorporate sophisticated visual understanding capabilities without
requiring expensive computational hardware.

The evolution of YOLO through subsequent versions (YOLOv2, YOLOv3,
YOLOv4, YOLOv5, and beyond) has addressed many of the original accuracy
limitations while maintaining the core computational advantages. Modern
YOLO variants incorporate multi-scale feature processing, improved loss func-
tions, and architectural refinements that close much of the accuracy gap with
two-stage methods while preserving real-time performance. This progression
demonstrates the enduring value of the single-stage detection paradigm for
robotics applications where speed and efficiency are paramount.

principles of robot autonomy 203

12.1.4 Transformer-based Object Detection

Transformers have recently been adapted to tackle object detection, and their
performance shows several benefits over CNN-based models. Detection Trans-
formers (DETR)5 propose to formulate the object detection problem as a direct 5 Nicolas Carion et al. “End-to-End

Object Detection with Transformers”.
In: Computer Vision – ECCV 2020.
Springer International Publishing, 2020,
pp. 213–229

set prediction problem, largely streamlining the detection pipeline through its
end-to-end structure. In its most basic form, DETR is an end-to-end Transformer
model that takes in images as inputs and predicts a fixed set of potential bound-
ing boxes. DETR removes many hand-designed components, including "region
proposal" and "non-maximum suppression" that are commonly used in CNN-
based models.

Figure 12.3: Detection Trans-
formers (DETR) from Carion,
Massa, et al. (2020)

Specifically, DETR uses a conventional CNN backbone to learn 2D feature
maps from an input image, as we show on the left side of Figure 12.4. The
model then converts the 2D feature maps into a sequence of feature tokens,
similarly to Vision Transformers. These tokenized features are further fed into
a Transformer encoder, comprised of a stack of self-attention mechanisms and
multi-layer perceptrons, for further feature encoding. The encoded sequence
is processed by a Transformer decoder that relates the feature sequence with a
set of "learnable object queries". These object queries encode the distribution of
object information, including size, location, and category, over an image.

Note that Transformer decoders have some key differences from encoders.
For example, they can use what we refer to as cross-attention layers and masked
attention layers. We use cross-attention layers to allow a sequence to get con-
textual information from another sequence, unlike self-attention layers which
gather contextual information from within a single sequence. In the context of
DETR, this allows the decoder to relate the encoder’s feature embeddings to the
object queries, which are two different input sets.

Finally, each object query, after absorbing image features, is processed by
shared fully connected layers to predict class labels, bounding box centers and
bounding box sizes. A "no object" label is assigned to queries without true ob-
jects detected, allowing the model to handle a variable number of objects in
an image. In contrast to CNN-based object detectors, Transformer-based ob-
ject detectors do not have one-to-one matching between the prediction set and
the ground-truth set. Therefore, a set-based loss is used to produce an optimal
bipartite matching between predicted and ground-truth objects, followed by
optimizing object-centric (bounding box) losses.

204 object detection and recognition

Figure 12.4: Detection Trans-
formers (DETR) architecture,
from Carion, Massa, et al.
(2020)

12.2 3D Object Detection

While 2D object detection provides valuable information about what objects are
present and their approximate locations in images, many robotics applications
require understanding the full 3D structure and pose of objects in the physical
world. Consider a robotic arm performing pick-and-place operations—knowing
that a cup appears in a specific region of an image is insufficient for grasping;
the robot needs the cup’s precise 3D location, orientation, and dimensions to
plan a successful grasp trajectory. Similarly, autonomous vehicles must un-
derstand the 3D positions and velocities of surrounding cars, pedestrians, and
obstacles to make safe navigation decisions in real-world coordinates rather
than image pixels. The transition from 2D to 3D detection introduces changes
in problem formulation, data representation, and evaluation metrics while pre-
serving many of the core architectural principles developed for 2D detection.
Understanding these extensions provides the foundation for building robust 3D
detection systems using the point cloud and voxel processing architectures from
the previous chapter.

12.2.1 Extending Object Detection to 3D

3D object detection extends the 2D formulation by instead predicting 3D bound-
ing boxes to represent objects in three-dimensional space. While 2D detection
outputs bounding boxes parameterized by (x, y, w, h) in image coordinates, 3D
detection requires additional parameters to specify the object’s full pose and
extent.

Definition 12.2.1 (3D Object Detection). Given 3D sensor data (point cloud,
voxel grid, or RGB-D), 3D object detection aims to identify all instances of
objects from a predefined set of classes and localize each instance with a 3D
bounding box. The output is a set of 3D detections D3D = {(b3D

i , ci, si)}N
i=1

where b3D
i = (x, y, z, l, w, h, θ) represents the 3D bounding box with center

coordinates (x, y, z), dimensions (l, w, h) for length, width, and height, and ori-
entation θ.

principles of robot autonomy 205

Figure 12.5: 3D Object Detec-
tion. A self-driving scene with
3D object detections on LiDAR
point cloud inputs and camera
inputs.

Extending Anchor Design to 3D Space For 3D anchor design, each anchor is
parameterized by seven values: (xa, ya, za, la, wa, ha, θa) representing the center
coordinates, dimensions, and orientation. Common 3D anchor designs use
aspect ratios appropriate for the target object classes, and discrete orientation
bins (e.g., 0°, 90°, 180°) to handle rotation invariance.

The anchor refinement process follows similar principles to 2D detection,
with the network predicting corrections (∆x, ∆y, ∆z, ∆l, ∆w, ∆h, ∆θ) to transform
anchor parameters into final detections:

x = ∆x · la + xa

y = ∆y · wa + ya

z = ∆z · ha + za

l = la · exp(∆l)

w = wa · exp(∆w)

h = ha · exp(∆h)

θ = θa + ∆θ

Similar to 2D setting, the exponential transformation ensures positive dimen-
sions, while orientation is handled through additive corrections with appropri-
ate normalization to handle angle wraparound.

Two-Stage vs. One-Stage Paradigms in 3D The two-stage and one-stage detection
paradigms from 2D systems transfer directly to 3D detection, with each ap-
proach offering distinct advantages for different 3D data modalities and appli-
cations. Two-stage 3D detectors follow the proposal-then-classification paradigm,
first generating 3D object proposals from point clouds or voxel grids, then re-

206 object detection and recognition

fining these proposals through dedicated classification and regression heads.
This approach works particularly well with point-based representations, where
the first stage can identify promising object centers using techniques like Hough
voting, and the second stage can perform detailed classification using local
point features. One-stage 3D detectors perform classification and localization
simultaneously, making them better suited for real-time robotics applications
where latency is critical. These methods work well with regular voxel or pil-
lar representations that enable efficient convolutional processing across the
entire 3D space. The choice between paradigms often depends on the input
data modality: point-based methods naturally lend themselves to two-stage ap-
proaches due to the irregular nature of point clouds, while voxel-based methods
can efficiently implement one-stage detection using 3D CNNs.

Non-Maximum Suppression in 3D Non-Maximum Suppression extends to 3D
by replacing 2D IoU calculations with 3D IoU or Bird’s Eye View (BEV) IoU
metrics. 3D IoU computes the overlap between two 3D bounding boxes in full
3D space, accounting for differences in position, size, and orientation:

IoU3D(b1, b2) =
Volume(b1 ∩ b2)

Volume(b1 ∪ b2)

Computing 3D IoU requires determining the intersection volume between two
oriented 3D boxes, which is more complex than the 2D case but essential for
accurate duplicate removal.

For autonomous driving applications, BEV IoU is often preferred as it focuses
on the ground plane where most objects interact:

IoUBEV(b1, b2) =
Area(bBEV

1 ∩ bBEV
2)

Area(bBEV
1 ∪ bBEV

2)

where bBEV represents the projection of the 3D bounding box onto the ground
plane. BEV IoU is computationally simpler and often more relevant for naviga-
tion tasks.

Evaluation Metrics for 3D Detection 3D object detection uses specialized metrics
that account for spatial dimensions and orientation accuracy. The standard met-
ric is 3D Average Precision (AP) computed using 3D IoU thresholds (typically
0.5 and 0.7). For autonomous driving, evaluation often focuses on Bird’s Eye
View (BEV) metrics that emphasize horizontal plane accuracy, with benchmarks
like KITTI providing difficulty-based analysis. Orientation accuracy is measured
through angular error between predicted and ground truth orientations, with
some metrics requiring joint spatial and angular tolerance for correct detections.

12.2.2 3D Detection from Point Clouds and Voxel Representations

Building effective 3D object detection systems requires leveraging the special-
ized architectures for 3D data processing developed in the previous chapter.

principles of robot autonomy 207

The choice between point-based and voxel-based representations fundamen-
tally shapes the detection architecture, with each approach offering distinct
advantages for different robotics applications. Point-based methods preserve
the geometric precision of the original sensor data and handle irregular point
distributions naturally, making them well-suited for applications requiring pre-
cise object localization. Voxel-based methods trade some geometric precision for
computational efficiency by imposing regular grid structures that enable opti-
mized convolutional operations, making them preferred for real-time robotics
applications.

Rather than being mutually exclusive, these representations often comple-
ment each other within detection pipelines. Many successful 3D detection
systems combine the efficiency of voxel processing for initial feature extrac-
tion with the precision of point-based refinement for final object localization.
Understanding how different detection paradigms—two-stage, one-stage, and
transformer-based—can be adapted to work with these 3D representations pro-
vides the foundation for building robust detection systems.

Leveraging 3D Feature Representations The 3D detection architectures we will
explore build directly upon the feature extraction capabilities of PointNet, Vox-
elNet, and PointPillars discussed in the previous chapter. These architectures
provide learned feature representations that encode geometric patterns, spatial
relationships, and semantic information from 3D sensor data. The key insight
is that these features can serve as input to detection heads that predict object
classifications and 3D bounding box parameters.

Point-based representations excel at preserving fine-grained geometric de-
tails and handling the irregular structure of sensor data. PointNet++ features
capture multi-scale geometric patterns through hierarchical set abstraction, en-
abling detection of objects at different scales and levels of detail. These features
are particularly valuable for detecting small objects or distinguishing between
closely spaced instances where geometric precision is critical. Voxel-based rep-
resentations provide computational advantages through regular grid structures
that enable efficient 3D convolutions and parallel processing. VoxelNet fea-
tures encode local geometric patterns within voxels while maintaining spatial
relationships across the scene. PointPillars features offer a hybrid approach, en-
coding vertical structure within pillars while enabling efficient 2D processing for
large-scale scenes. The choice between these representations often depends on
the computational constraints and accuracy requirements of the specific robotics
application.

12.2.3 Two-Stage 3D Detection: Extending Faster R-CNN

The two-stage detection paradigm extends naturally to 3D by first generating
object proposals in 3D space, then refining these proposals through dedicated
classification and regression networks. This approach works particularly well

208 object detection and recognition

when combined with the hierarchical feature representations from PointNet++
or the structured features from VoxelNet.

Figure 12.6: PointRCNN ar-
chitecture showing bottom-up
3D proposal generation from
point-wise features, followed by
canonical coordinate refinement
and final detection heads.

PointRCNN: Point-based Two-Stage Detection PointRCNN demonstrates how
the Faster R-CNN paradigm can be adapted to work directly with point cloud
data using PointNet++ features. The architecture follows a bottom-up approach
where object proposals are generated directly from point-wise features rather
than through dense sliding window approaches used in image detection.

The first stage leverages PointNet++ hierarchical features to perform point-
wise binary classification, identifying points that likely belong to foreground
objects versus background. Rather than generating proposals at regular grid
locations, PointRCNN generates 3D proposals centered at high-confidence fore-
ground points. This approach is computationally efficient because it only con-
siders a subset of points for proposal generation, and it preserves the geometric
precision of the original point cloud. For each proposal, the second stage ex-
tracts local point features within the proposed 3D region and applies canonical
coordinate transformation to normalize the local geometry. This transformation
aligns the object coordinate system with a canonical orientation, making the
subsequent classification and regression tasks more robust to object orientation
variations. The canonical transformation is particularly important for 3D detec-
tion because objects can appear in arbitrary orientations in the sensor coordinate
system.

The mathematical formulation for canonical transformation involves rotating
and translating the local point coordinates so that the object’s principal axes
align with canonical directions:

pcanonical = R−1(plocal − t)

where R is the estimated object rotation and t is the estimated object center.

principles of robot autonomy 209

This transformation enables the network to learn object-centric features that are
invariant to the object’s pose in the world coordinate system.

VoxelNet: Voxel-based Two-Stage Detection VoxelNet adapts the two-stage paradigm
to work with voxel-based representations by integrating Voxel Feature Encod-
ing with Region Proposal Network concepts. The architecture processes point
clouds through VFE layers to generate voxel-wise features, then applies 3D
convolutional layers to build hierarchical representations across the voxelized
space. The proposal generation stage adapts the RPN concept to 3D by slid-
ing 3D anchor templates across the feature volume. At each spatial location in
the 3D feature map, the network predicts objectness scores and 3D bounding
box refinements for multiple anchor templates covering different object sizes
and orientations. The 3D RPN loss combines objectness classification with 3D
bounding box regression:

L3D-RPN =
1

Ncls
∑

i
Lcls(pi, p∗i) + λ

1
Nbox

∑
i

p∗i L
3D-box(bi, b∗i)

where L
3D-box incorporates losses for all seven parameters of the 3D bounding

box: center coordinates, dimensions, and orientation.
The second stage performs 3D RoI pooling to extract fixed-size features for

each proposal, followed by classification and bounding box refinement. The
3D RoI pooling operation extends the 2D concept by pooling features from 3D
regions of the feature volume, maintaining spatial relationships in all three
dimensions.

12.2.4 One-Stage 3D Detection: Direct Prediction

One-stage 3D detection methods perform object classification and localization
simultaneously, eliminating the separate proposal generation stage. These ap-
proaches are particularly well-suited for real-time robotics applications where
detection latency must be minimized.

CenterPoint: Treating 3D Objects as Points CenterPoint represents objects as
points in Bird’s Eye View (BEV) space and performs detection through keypoint
estimation, similar to 2D anchor-free methods like CenterNet. The approach
builds on PointPillars pillar-based representation to efficiently process large-
scale point clouds while maintaining real-time performance.

The key insight is that 3D objects can be effectively represented by their cen-
ter points when projected into BEV space, particularly for autonomous driving
scenarios where objects primarily move on the ground plane. CenterPoint pre-
dicts a heatmap in BEV coordinates where peaks correspond to object centers,
along with regression maps that predict 3D bounding box parameters for each
detected center. The detection pipeline processes point clouds through PointPil-
lars to generate BEV feature maps, then applies 2D convolutional networks to

210 object detection and recognition

predict center heatmaps and regression targets:

Yheatmap = σ(Conv2D(FBEV))

Yregression = Conv2D(FBEV)

where FBEV represents the BEV feature map from PointPillars processing, and σ

is the sigmoid activation for heatmap prediction. The regression targets include
3D center offsets, object dimensions, and orientation angles.

The loss function combines center point detection with regression objectives:

LCenterPoint = Lheatmap + λregLregression

where Lheatmap uses focal loss to handle the extreme imbalance between center
points and background, and Lregression uses smooth L1 loss for the continuous
regression targets. CenterPoint extends beyond basic detection by incorporating
velocity estimation for tracking applications. By processing consecutive frames,
the network can predict object velocities directly as part of the regression tar-
gets, enabling seamless integration with multi-object tracking systems essential
for autonomous navigation.

12.2.5 Transformer-based 3D Detection

Transformer architectures have been successfully adapted to 3D detection by
treating object detection as a set prediction problem, eliminating the need for
hand-designed anchors and complex post-processing steps like non-maximum
suppression.

3DETR: Set-to-Set Prediction in 3D 3DETR extends the DETR paradigm to 3D
object detection by using transformer architectures to directly predict sets of 3D
bounding boxes from point cloud or voxel features. The approach uses learn-
able object queries that attend to 3D scene features through cross-attention
mechanisms, enabling end-to-end learning from raw 3D data to final detections.
The architecture processes 3D input data through feature extraction networks
(PointNet++ for point clouds or 3D CNNs for voxel grids) to generate scene
feature representations. These features are then processed by a transformer en-
coder to build contextual representations that capture long-range dependencies
across the 3D scene. The transformer decoder uses a fixed set of learnable object
queries to attend to the encoded scene features and predict object detections.

Each object query learns to specialize in detecting objects with particular
characteristics or in specific spatial regions. The cross-attention mechanism
allows queries to gather relevant information from across the entire scene,
enabling detection of partially occluded objects or objects that extend across
multiple local regions. The self-attention within the decoder enables queries
to coordinate with each other, reducing duplicate detections without explicit
post-processing. The final prediction heads convert each object query’s repre-

principles of robot autonomy 211

sentation into 3D bounding box parameters and class predictions:

bi = MLPbox(qi)

ci = MLPclass(qi)

where qi is the i-th object query after transformer processing. The training uses
Hungarian matching to establish optimal assignment between predicted and
ground truth objects, followed by standard detection losses.

The set-based prediction eliminates the need for anchor design, anchor as-
signment strategies, and non-maximum suppression, simplifying the detection
pipeline while achieving competitive performance. This approach is particularly
attractive for complex 3D scenes where traditional anchor-based methods strug-
gle with the high-dimensional anchor space and complex object interactions.

12.3 Semantic and Instance Segmentation

Segmentation extends object detection by providing pixel-level or point-level
understanding of scenes, enabling robots to understand not just where objects
are located, but precisely which pixels belong to each object or scene category.
While object detection provides coarse spatial understanding through bounding
boxes, segmentation offers fine-grained spatial reasoning essential for tasks like
autonomous navigation on complex terrain, precise robotic manipulation, and
detailed scene understanding.

Figure 12.7: An input image
and the corresponding semantic
and instance segmentation.

12.3.1 Semantic Segmentation

Semantic segmentation extends image understanding beyond object detection
by classifying every pixel in an image into predefined semantic categories, pro-
viding dense spatial understanding of the scene. Unlike object detection which
outputs sparse bounding boxes, semantic segmentation produces pixel-level
predictions that preserve the precise boundaries and spatial extent of different
scene elements. This fine-grained understanding is essential for robotics appli-
cations where precise spatial reasoning is required.

Problem Definition and Robotics Applications Semantic segmentation performs
pixel-level classification without distinguishing between different instances of

212 object detection and recognition

the same class. For an input image I of size H×W, the output is a segmentation
map S of the same spatial dimensions, where each pixel (i, j) is assigned a class
label Si,j ∈ C from the predefined set of semantic categories. For robotics sys-
tems, autonomous vehicles use segmentation to identify drivable road surfaces,
distinguish between different types of terrain, and understand scene layout for
path planning. Mobile robots navigating indoor environments use segmentation
to identify floors, walls, furniture, and obstacles, enabling more sophisticated
spatial reasoning for navigation planning. In each case, the pixel-level precision
enables robots to make more informed decisions about how to interact with
their environment.

Fully Convolutional Networks (FCNs) Semantic segmentation can be viewed as
dense classification where standard CNN architectures are adapted to produce
spatial output maps rather than single classification scores. Fully Convolutional
Networks (FCNs) build on the convolutional feature extraction capabilities of
CNNs while replacing the fully connected classification layers with convolu-
tional layers that preserve spatial structure. These models replacing the fully
connected layers typically used for classification with convolutional layers that
can accept images of arbitrary size and produce correspondingly sized output
maps. For a CNN backbone that produces feature maps of size H/32×W/32
(due to pooling operations), FCN applies 1× 1 convolutions to produce class
score maps, then upsamples these maps back to the original image resolution.
The upsampling process uses transposed convolutions (also called deconvolu-
tions) to increase spatial resolution:

yi,j = ∑
m,n

x⌊i/s⌋+m,⌊j/s⌋+n · wm,n

where s is the upsampling stride and w represents the learned transposed con-
volution weights. This operation is the mathematical inverse of convolution
with stride s, enabling learnable upsampling that can recover spatial details.

FCN introduces skip connections that combine features from different layers
of the encoder to recover fine-grained spatial information lost during down-
sampling. These connections add feature maps from earlier layers (with higher
spatial resolution) to upsampled feature maps from deeper layers (with richer
semantic information):

Ffused = Upsample(Fdeep) + Fshallow

This fusion enables the network to combine high-level semantic understanding
with low-level spatial precision, crucial for accurate boundary delineation in
robotics applications.

U-Net and Encoder-Decoder Architectures U-Net represents a systematic ap-
proach to encoder-decoder architectures that has become foundational for se-
mantic segmentation across many domains. The U-Net architecture consists of

principles of robot autonomy 213

Figure 12.8: U-Net architec-
ture showing the symmetric
encoder-decoder design with
skip connections at multiple
scales, enabling combination of
high-resolution spatial informa-
tion with high-level semantic
features.

a contracting path (encoder) that progressively reduces spatial resolution while
increasing feature depth, followed by an expansive path (decoder) that grad-
ually recovers spatial resolution while combining features across scales. For
each decoder layer, skip connections concatenate features from corresponding
encoder layer:

F(i)
decoder = UpConv(F(i−1)

decoder)⊕ F(i)
encoder

where ⊕ denotes concatenation and UpConv represents upsampling convolu-
tion operations. These skip connections preserve fine-grained spatial details that
would otherwise be lost during the encoding process.

The symmetric design ensures that the decoder has access to features at mul-
tiple scales, enabling accurate segmentation of both large objects (captured by
deep, low-resolution features) and fine details (preserved through skip con-
nections from high-resolution features). This multi-scale feature combination
is particularly important for robotics applications where accurate boundary
detection affects safety and task performance.

Training Loss: Classification Cross-Entropy Per Pixel Semantic segmentation net-
works are trained using pixel-wise classification loss, treating each pixel as an
independent classification problem. The standard loss function is cross-entropy
computed across all pixels:

Lseg = − 1
HW

H

∑
i=1

W

∑
j=1

C

∑
c=1

yi,j,c log(ŷi,j,c)

where yi,j,c is the ground truth one-hot encoding for pixel (i, j) and class c, and
ŷi,j,c is the predicted probability. This formulation treats each pixel indepen-
dently, enabling efficient batch processing and straightforward optimization.

However, pixel-wise cross-entropy can struggle with class imbalance, which
is common in robotics scenarios where background pixels often dominate the
scene. Various modifications address this challenge, including weighted cross-
entropy that assigns different weights to different classes based on their fre-
quency, and focal loss that emphasizes hard examples by down-weighting well-
classified pixels.

214 object detection and recognition

12.3.2 Instance Segmentation

Instance segmentation combines object detection and semantic segmentation
by identifying individual object instances and their precise pixel-level bound-
aries. Unlike semantic segmentation which treats all objects of the same class
identically, instance segmentation distinguishes between separate instances—for
example, identifying three individual cars rather than just "car pixels." This
capability is critical for robotics applications where understanding individual
objects enables targeted interaction and manipulation.

Problem Definition and Distinction from Semantic Segmentation Instance segmen-
tation extends semantic segmentation by assigning unique instance identifiers
to pixels belonging to distinct objects. For an input image, the output includes
both semantic labels and instance masks, where each instance mask Mk defines
the pixel-level extent of the k-th detected object instance. The key distinction is
that semantic segmentation answers "what is this pixel?" while instance segmen-
tation answers "what is this pixel and which specific object does it belong to?"
For a robotic arm grasping objects from a bin, semantic segmentation might
identify all pixels as "tool," but instance segmentation identifies individual
wrenches, screwdrivers, and hammers, enabling the robot to select and grasp
specific items.

Figure 12.9: Mask R-CNN ar-
chitecture showing the addition
of a mask prediction branch
to Faster R-CNN, with RoI
Align replacing RoI pooling for
improved spatial alignment.

Mask R-CNN: Extending Detection with Segmentation Mask R-CNN extends
Faster R-CNN by adding a segmentation branch that predicts pixel-level masks
for each detected object. The architecture maintains the two-stage paradigm: the
RPN generates object proposals, and the detection head performs classification,
bounding box regression, and mask prediction. The key innovation is RoI Align,
which replaces RoI pooling to address spatial misalignment issues. While RoI
pooling quantizes proposal coordinates to discrete feature map positions, RoI
Align uses bilinear interpolation to sample features at exact locations:

Faligned(x, y) = ∑
i,j

I(i, j) ·max(0, 1− |x− i|) ·max(0, 1− |y− j|)

principles of robot autonomy 215

This precise alignment is essential for accurate mask prediction, as small spatial
misalignments can significantly degrade segmentation quality.

The mask prediction branch applies a small FCN to each RoI-aligned fea-
ture to produce a binary mask for the predicted object class. The mask loss is
computed only for the predicted class to avoid competition between classes:

Lmask = − 1
m2 ∑

i,j
[yi,j log(ŷk∗

i,j) + (1− yi,j) log(1− ŷk∗
i,j)]

where k∗ is the predicted class, yi,j is the ground truth mask, and ŷk∗
i,j is the

predicted mask for class k∗.

Panoptic Segmentation Panoptic segmentation unifies semantic and instance
segmentation by providing complete scene understanding. The task divides se-
mantic categories into "things" (countable objects like cars, people) and "stuff"
(amorphous regions like sky, road), performing instance segmentation for things
and semantic segmentation for stuff. For robotics applications, panoptic seg-
mentation provides comprehensive scene understanding. An autonomous vehi-
cle can simultaneously understand the road surface (stuff), individual vehicles
and pedestrians (thing instances), and background elements like buildings and
vegetation (stuff), enabling holistic reasoning about the driving environment.

Bottom-Up Approaches Bottom-up instance segmentation methods first perform
pixel-level feature learning, then group pixels into instances based on learned
embeddings. These approaches contrast with top-down methods like Mask
R-CNN that first detect objects then segment them. Associative embedding
learns pixel-level features where pixels belonging to the same instance have
similar embedding vectors, while pixels from different instances have dissimilar
embeddings. Instance masks are then generated by clustering pixels in the
embedding space:

d(ei, ej) = ||ei − ej||2

where ei and ej are embedding vectors for pixels i and j. Pixels with distances
below a threshold are grouped into the same instance.

These methods can handle arbitrary numbers of instances without prede-
fined proposals but require robust clustering algorithms to separate instances
reliably. They are particularly useful for robotics scenarios with dense object
arrangements where proposal-based methods might struggle.

12.3.3 3D Segmentation

3D segmentation extends pixel-level understanding to volumetric data, provid-
ing precise spatial reasoning for robotics applications that require detailed 3D
scene understanding. While 2D segmentation enables robots to understand im-
age content, 3D segmentation allows reasoning about the full spatial extent and

216 object detection and recognition

structure of objects in the physical world. This capability is essential for manip-
ulation tasks requiring grasp planning, navigation in complex 3D environments,
and understanding object affordances based on geometric structure.

Point Cloud Segmentation Point cloud segmentation assigns semantic labels
or instance identifiers to individual points in 3D space. The formulation ex-
tends 2D segmentation concepts to irregular point data, where each point
pi = (xi, yi, zi) receives a label li ∈ C for semantic segmentation or instance
identifier Ii for instance segmentation. Semantic segmentation of point clouds
using PointNet++ leverages the hierarchical set abstraction layers from the pre-
vious chapter. The architecture processes points through multiple scales of local
feature extraction and aggregation, then applies classification heads to predict
semantic labels for each point:

li = MLPseg(f
(L)
i)

where f(L)
i represents the final point-wise feature after L layers of hierarchical

processing. The multi-scale feature extraction enables accurate segmentation of
objects at different sizes and levels of detail.

Instance segmentation in point clouds requires additional mechanisms to group
points into distinct object instances. Methods like PointGroup combine semantic
segmentation with learned offset vectors that point toward instance centers,
enabling clustering of points belonging to the same object. The training loss
combines semantic classification with offset regression:

Lpoint-instance = Lsemantic + λLoffset + γLclustering

where Loffset encourages points to predict vectors pointing toward their instance
centers, and Lclustering promotes tight clustering within instances and separation
between instances.

Figure 12.10: 3D voxel-based
segmentation showing example
from the Occ3D dataset, for
self-driving scenes. This task
specifies what object is in each
of the 3D locations.

Voxel-based Segmentation Voxel-based segmentation processes regular 3D grids
where each voxel represents a volumetric unit in 3D space. The formulation
treats segmentation as 3D dense classification, where each voxel vi,j,k receives
a semantic label or occupancy prediction. Occupancy grids represent a funda-
mental approach where each voxel indicates whether that region of space is

principles of robot autonomy 217

occupied by an object. This binary classification provides essential information
for navigation and collision avoidance:

oi,j,k = σ(MLP(fi,j,k))

where oi,j,k ∈ [0, 1] represents the occupancy probability for voxel (i, j, k).
3D U-Net architectures extend the encoder-decoder paradigm to volumetric

data for detailed semantic segmentation. The architecture applies 3D convolu-
tions throughout the encoding and decoding paths, with 3D skip connections
preserving spatial details:

F(i)
decoder = UpConv3D(F(i−1)

decoder)⊕ F(i)
encoder

The 3D convolutions capture volumetric patterns and spatial relationships es-
sential for accurate 3D segmentation, while skip connections ensure fine-grained
geometric details are preserved in the final predictions.

12.3.4 Robotics-Specific Applications

Segmentation enables several critical robotics capabilities that require detailed
geometric understanding of objects and environments. We explore a few exam-
ples below.

Example 12.3.1. Grasp point prediction through part segmentation identifies
functional regions of objects that are suitable for robotic grasping. By segment-
ing objects into semantic parts (handles, graspable surfaces, fragile regions),
robots can plan grasps that are both mechanically sound and functionally ap-
propriate. For example, segmenting a mug into handle, rim, and body regions
enables the robot to choose appropriate grasp locations based on the intended
manipulation task.

Example 12.3.2. Terrain traversability analysis uses 3D segmentation to clas-
sify different terrain types and their suitability for robot navigation. Outdoor
mobile robots use segmentation to distinguish between solid ground, obstacles,
vegetation, and hazardous terrain, enabling safe path planning in complex out-
door environments. The 3D understanding allows reasoning about terrain slope,
roughness, and stability that would be impossible with 2D analysis alone.

Example 12.3.3. Object affordance understanding through part-based analysis
enables robots to reason about how objects can be used based on their geomet-
ric structure. By segmenting objects into functional parts and understanding
the spatial relationships between parts, robots can infer possible interactions
and manipulation strategies. A segmented chair with identified seat, backrest,
and legs enables the robot to understand both the object’s function and how to
manipulate it safely.

These applications demonstrate how 3D segmentation provides the detailed
spatial understanding necessary for robots to interact effectively with complex
3D environments, going beyond simple object detection to enable sophisticated
reasoning about object structure, function, and manipulation possibilities.

218 object detection and recognition

12.4 Exercise: Exploring YOLO Object Detector

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

YOLO Model Analysis

Using the provided Jupyter notebook yolo_exploration.ipynb, load a pre-
trained YOLOv5 model and analyze its performance on the provideds sample
images. Inspect the prediction outputs at various score thresholds and measure
inference timing to understand the speed advantages that make YOLO suitable
for real-time robotics applications.

principles of robot autonomy 219

References

[8] Nicolas Carion et al. “End-to-End Object Detection with Transformers”.
In: Computer Vision – ECCV 2020. Springer International Publishing, 2020,
pp. 213–229.

Part III

Robot Localization

13
Introduction to Localization and Filtering

We have already discussed the robot motion planning problem and surveyed
common algorithms for it, ranging from optimal control to sampling-based
methods. All of these approaches implicitly assume access to the robot’s current
state, for initializing trajectory optimization or for closing the loop in feedback
control. In practice, however, this state cannot be read directly; it must be esti-
mate from noisy, partial sensor data.

Robot perception, as introduced in previous chapters, tackles the challenge of
extracting semantic and geometric information from raw sensor streams. Such
methods are indispensable for local, instantaneous awareness. For instance, de-
tecting nearby obstacles with a laser scanner or identifying objects in view with
a camera. Yet this information is inherently local and relative to the robot’s cur-
rent position. It suffices for collision avoidance, but not for the global reasoning
required by full planning and control schemes.

This gap is addressed by robot localization and mapping, one of the core com-
ponents of the “think” stage in the classical “see-think-act” cycle. The goal is to
synthesize local sensor data into a coherent global estimate of the robot’s state,
and, in mapping, of the surrounding environment. In this chapter, we focus on
localization: the ability to infer the robot’s current state with respect to a global
frame or map 1. For instance, before a robot can navigate to a target room on 1 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005,
R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

the floor plan shown in Figure 13.1, it must first establish where in the building
it is located.

Figure 13.1: Localization is
crucial for autonomy: to move
from A to B, the robot must
know which room it occupies,
and that the only path to B
runs through the hallway. In-
ferring such global information
from local range measurements
requires specialized algorithms.

224 introduction to localization and filtering

A central challenge in localization is uncertainty. Sensor data is noisy, incom-
plete, and sometimes ambiguous. To handle this, localization is cast in a proba-
bilistic framework: instead of maintaining a single guess of the robot’s state, we
maintain a belief distribution over possible states. This representation allows both
point estimates and measures of uncertainty to be extracted. Such uncertainty
quantification is vital for downstream tasks: a planner may avoid high-risk tra-
jectories under localization uncertainty, or even select actions that deliberately
reduce uncertainty through information gathering.

The rest of this chapter introduces the probabilistic foundations underlying
localization and filtering: random variables, probabilistic distributions, con-
ditional probabilities, Bayes’ rule, and Markov models. We then present the
canonical recursive estimator, the Bayes filter, which formalizes how ot maintain
and update a belief distribution as controls are applied and new measurements
arrive.

13.1 Preliminary Concepts in Probability

To reason systematically about uncertainty in robotics, we rely on basic tools
from probability theory. These tools provide the language to model noisy sen-
sor measurements, uncertain robot states, and stochastic environments. In this
section we review the key building blocks:random variables, probability distri-
butions, conditional probabilities, and Bayes’ rule—that form the foundation for
probabilistic filtering algorithms such as the Bayes filter.

13.1.1 Random Variables

Uncertain quantities in robotics, such as sensor measurements, robot states,
or environmental properties—are modeled as random variables. Depending on
the domain of possible values, random variables are classified as discrete or
continuous.

Definition 13.1.1 (Discrete Random Variable). A discrete random variable X takes
values from a countable set. The probability that X takes on a specific value x is
denoted by p(X = x), or more compactly p(x). The function p(x) is called the
probability mass function (PMF), and it must satisfy

∑
x

p(x) = 1,

where the sum is over all possible values of X.

Definition 13.1.2 (Continuous Random Variable). A continuous random variable X
takes values in an uncountable set, typically a subset of Rn. Its distribution is
characterized by a probability density function (PDF) p(x),2 which satisfies 2 For continuous variables the proba-

bility of any single value is zero; only
intervals have nonzero probability
mass.

∫ ∞

−∞
p(x) dx = 1.

principles of robot autonomy 225

The probability that X lies in the interval [a, b] is

P(a ≤ X ≤ b) =
∫ b

a
p(x) dx.

Example 13.1.1 (Discrete vs. Continuous Random Variables). A coin flip is a
discrete random variable: X ∈ {heads, tails}, with PMF

p(heads) = 1
2 , p(tails) = 1

2 .

In robotics, the robot’s pose x ∈ SE(2) or SE(3) is typically modeled as a contin-
uous random variable, since it can take on infinitely many values.

13.1.2 Probability Distributions

We will often refer to the probability mass function for discrete random vari-
ables and probability density function for continuous random variables as
simply probability distributions. There are many ways to parameterize a proba-
bility distribution, such as a discrete set of probability masses or as a continuous
function defined by some number of parameters. One of the most common
continuous probability distributions is the Gaussian distribution3, which is pa- 3 The Gaussian distribution is also

known as the Normal distribution.rameterized by a mean and variance.
Some probability distribution representations are more expressive than oth-

ers, but there is usually a trade-off with computational complexity of the algo-
rithms that use the representation.

13.1.3 Joint Distributions, Independence, and Conditioning

Many robotics problems involve more than one uncertain quantity at a time.
For example, a robot might simultaneously reason about its pose, the position
of an obstacle, and a sensor reading. In such cases, it is useful to describe the
probabilities of multiple random variables together using a joint distribution.

Definition 13.1.3 (Joint Distribution). The joint distribution of two random vari-
ables X and Y specifies the probability that both take on specific values simulta-
neously. It is denoted by p(X = x, Y = y), or more compactly p(x, y).

Independence. Random variables can be related to each other in important
ways. For example, the random variables X = “today is cloudy” and Y =

“today it is raining” are correlated: if there are no clouds, it is unlikely to rain.
By contrast, two random variables are probabilistically independent if the value of
one does not provide any information about the other.

Definition 13.1.4 (Probabilistic Independence). Two random variables X and Y
are probabilistically independent if and only if

p(x, y) = p(x) p(y). (13.1)

226 introduction to localization and filtering

Example 13.1.2 (Independent Sensor Measurements). Suppose a robot uses a
proximity sensor and a temperature sensor, modeled by random variables X
and Y. Let X ∈ {close, medium, far} and Y ∈ {low, med, high}, with p(X =

close) = 1/3 and p(Y = med) = 1/5. If the two sensors are independent, the
joint probability of observing “close” and “med” is

p(X = close, Y = med) = 1
3 ·

1
5 = 1

15 .

Conditional probability. Another key concept is the probability of one random
variable given that another has already been observed.

Definition 13.1.5 (Conditional Probability). The conditional probability of a ran-
dom variable X taking value x, given that Y took value y, is

p(x | y) :=
p(x, y)
p(y)

. (13.2)

Conditional probabilities allow us to update beliefs when new information
becomes available. If X and Y are independent, then p(x | y) = p(x): knowing Y
provides no additional information about X.

Example 13.1.3 (Sensor Conditional Probabilities). Building on Example 13.1.2,
consider an obstacle detection variable Z ∈ {detected, not detected}. Assume
that the detection probability depends on the proximity sensor value:

p(Z = detected | X = close) = 5
6 , p(Z = detected | X = medium) = 1

3 , p(Z = detected | X = far) = 1
5 .

If p(X = close) = 1/3, then the probability that the robot both detects an
obstacle and registers “close” is

p(Z = detected, X = close) = p(Z = detected | X = close) p(X = close) = 5
18 .

Conditional independence. Finally, independence can also hold given the outcome
of another variable. This arises frequently in robotics when different sensor
readings become independent once the true state is specified.

Definition 13.1.6 (Conditional Independence). Two random variables X and Y
are conditionally independent4 given a third random variable Z if and only if 4 Note that conditional independence

does not imply unconditional indepen-
dence, and vice versa.p(x, y | z) = p(x | z) p(y | z). (13.3)

Example 13.1.4 (Conditional Independence in Robotics). A mobile robot equipped
with two wheel encoders produces measurements of traveled distance: one
from the left wheel (X) and one from the right wheel (Y). At first glance, these
two measurements may seem correlated, since the robot’s motion affects both.
However, if we condition on the underlying hidden variable Z = “true distance
traveled,” the two encoder readings are independent:

p(x, y | z) = p(x | z) p(y | z).

That is, once the actual distance traveled is fixed, the left and right encoders
provide independent noisy measurements of that same quantity. This is a typi-
cal use of conditional independence in probabilistic sensor models.

principles of robot autonomy 227

13.1.4 Law of Total Probability

The law of total probability links marginal, joint, and conditional probabilities. It
provides a systematic way to compute the probability of one random variable by
accounting for all possible outcomes of another.

Definition 13.1.7 (Law of Total Probability). For discrete random variables X
and Y:

p(x) = ∑
y

p(x, y) = ∑
y

p(x | y) p(y).

For continuous random variables:

p(x) =
∫

p(x, y) dy =
∫

p(x | y) p(y) dy.

In words: the probability of X = x is obtained by summing (or integrating) over
all possible values of Y, weighting the conditional probability p(x | y) by how
likely each y is.

This process is known as marginalization, and p(x) is called the marginal proba-
bility of X.

Example 13.1.5 (Robot Localization via Marginalization). Suppose a robot’s
position X depends on which hallway Y it is currently in. The probability of
being at a particular location x can be computed by considering every possible
hallway y:

p(x) = ∑
y

p(x | y) p(y).

In practice, this means we marginalize over the possible hallways, combining
both the likelihood of being in each hallway and the probability of observing x
given that hallway.

13.1.5 Bayes’ Rule

The joint probability, p(x, y), between two random variables, X and Y, is related
to the conditional probabilities, p(x | y) and p(y | x), from the definition
of a conditional probability in Equation (13.2). Since we can express the joint
probability using either conditional probability, we have:

p(x, y) = p(x | y)p(y) = p(y | x)p(x).

This relationship is commonly referred to as Bayes’ rule5: 5 Sometimes also referred to as Bayes’
theorem.

Definition 13.1.8 (Bayes’ Rule). For discrete random variables, X and Y, Bayes’
rule states that:

p(x | y) =
p(y | x)p(x)

p(y)
. (13.4)

Bayes’ rule is useful because it provides a relationship between the “inverse”
conditional probabilities, p(x | y) and p(y | x). This is particularly important for
probabilistic inference problems where we need to infer the value of one random

228 introduction to localization and filtering

variable from another. For example, suppose we have a good initial guess of the
probability distribution6, p(x), for a random variable, X. Given new information 6 When we have an estimate of the

probability distribution p(x) before
any new information is used to up-
date it, we will refer to it as the prior
probability.

about the outcome of a second random variable, Y, that is related to X, we can
use Bayes’ rule to update our belief about the probability distribution of X by
computing p(x | y)7. Bayes’ rule also extends to cases with additional random 7 This new distribution, which we

obtained by updating the prior distri-
bution p(x) with the new information
about Y, is commonly referred to as the
posterior probability.

variables. For example, with three random variables, X, Y, and Z, Bayes’ rule is:

p(x | y, z) =
p(y | x, z)p(x | z)

p(y | z)
.

Example 13.1.6 (Bayes’ Rule). Consider a scenario where a robot is trying to
figure out if it is in room A or room B inside of a building. The robot has an
initial guess that the probability it is in room A is p(A) = 3

4 , and the robot has
a camera that can be used to improve the estimate. Suppose that a single image,
I, is captured and the features extracted from the image are compared to the
known room features which gives the conditional probabilities:

p(I | A) =
3
4

, p(I | B) =
1
2

.

We can use Bayes’ rule to compute the posterior probability:

p(A | I) =
p(I | A)p(A)

p(I)
,

where we use the law of total probability to compute:

p(I) = p(I, A) + p(I, B) = p(I | A)p(A) + p(I | B)p(B),

and using p(B) = 1− p(A).

13.1.6 Expectation and Covariance

Probability distributions describe uncertainty in full detail by assigning proba-
bilities to every possible outcome of a random variable. In practice, however, we
often summarize a distribution using more compact statistics. Two of the most
commonly used summaries are the expected value and the covariance.

Definition 13.1.9 (Expected Value). The expected value8 of a random variable X is 8 Also referred to as the mean or the first
moment of a distribution.denoted by E [X]. For discrete random variables:

E [X] = ∑
x

x p(x),

where the sum is over all outcomes of X. For continuous random variables:

E [X] =
∫

x p(x) dx.

The expectation can be interpreted as the long-run average outcome over in-
finitely many samples. It also has a useful property of linearity:

E [aX + b] = aE [X] + b,

for any a, b ∈ R. For vector-valued random variables, E [X] is simply the vector
of expectations of each component.

principles of robot autonomy 229

Definition 13.1.10 (Covariance). The covariance between two random variables X
and Y is denoted cov(X, Y) and defined as

cov(X, Y) = E
[
(X−E [X])(Y−E [Y])⊤

]
= E

[
XY⊤

]
−E [X] E [Y]⊤ .

Covariance describes how two random variables vary together. cov(X, Y) >

0: large values of X tend to coincide with large values of Y, and small with
small. cov(X, Y) < 0: large values of X tend to coincide with small values of Y
(and vice versa). cov(X, Y) = 0: the variables show no linear relationship (e.g.,
independent variables).

Example 13.1.7 (Robot Motion Uncertainty). Suppose X is the forward displace-
ment of a robot and Y is its lateral displacement during one motion step. If the
wheels slip more when the robot moves farther forward, then X and Y will have
a positive covariance. If forward motion tends to reduce sideways drift, the co-
variance will be negative. If the two types of motion noise are unrelated, the
covariance will be close to zero.

13.2 Markov Models

In Chapter 1, we modeled robot motion using kinematics and dynamics, ob-
taining a set of first-order differential equations (see Equation (1.1)) that deter-
ministically describe how the state x evolves in time given the current state and
control input u. In this section, we generalize this view to a probabilistic setting
by introducing Markov models, which describe how the state evolves under un-
certainty. Markov models are fundamental to robotics, appearing in localization,
mapping, planning, and decision-making under uncertainty.

State, controls, and measurements. As in Chapter 1, the state x ∈ Rn collects
all variables relevant to the task at hand. In motion planning and control, this
typically includes the robot’s physical state (pose, velocity, etc.), while in lo-
calization or higher-level planning it may also include environment variables
such as landmark positions or object features. We work in discrete time, writ-
ing xt for the state at time t. We also use the shorthand xt1 :tn := xt1 , xt2 , . . . , xtn

for sequences of states, with analogous notation for control inputs ut1 :tn and
measurements zt1 :tn .9 9 Measurements can come from any of

the sensors introduced earlier, such as
cameras, lidar, or inertial units.

Unlike deterministic dynamics, Markov models specify probability distribu-
tions over possible states and observations. In full generality, the state evolution
is modeled as

p(xt | x0:t−1, z1:t−1, u1:t), (13.5)

the distribution of the current state xt conditioned on the entire history of past
states, controls, and measurements. Following the convention used through-
out this chapter, the robot first executes the control ut, then receives the mea-
surement zt based on the resulting state xt. The corresponding probabilistic

230 introduction to localization and filtering

measurement model is

p(zt | x0:t, z1:t−1, u1:t). (13.6)

The Markov property. In many applications, we define the state xt to be complete,
meaning it contains all the information necessary to predict future states. For-
mally, this assumption implies that past states and measurements provide no
additional predictive power beyond xt−1 and ut. This is known as the Markov
property, under which the models simplify to

p(xt | xt−1, ut), (13.7)

for the state transition, and

p(zt | xt), (13.8)

for the measurement model.

Markov models in robotics A Markov model thus consists of a state transition dis-
tribution (13.7) and a measurement distribution (13.8). Intuitively, the transition
model captures process uncertainty (e.g., wheel slip when applying a control),
while the measurement model captures sensor noise (e.g., rangefinder variabil-
ity). Together, these models form the backbone of probabilistic state estimation
(Figure 13.2).

Figure 13.2: Graphical represen-
tation of a Markov model. At
each time step, the control ut

influences the new state xt, and
the resulting state generates a
measurement zt.

Markov models are sometimes referred to as partially observable Markov mod-
els, since the state is not necessarily fully observable from measurements. If
there are no controls, i.e., no ut, the model reduces to a hidden Markov model
(HMM), where the term “hidden” reflects that the underlying state xt cannot be
observed directly.

13.3 Bayes Filter

Robot localization is a classic instance of a filtering problem10 where our goal is 10 Localization is one instance of the
more general filtering problem referred
to as state estimation.

to compute a probability distribution over the current state, xt, given the history
of control inputs, u1:t, and measurements, z1:t. One of the canonical approaches
to this filtering problem is known as the Bayes filter or recursive Bayesian estima-
tion. The Bayes filter leverages a Markov model to recursively update a belief

principles of robot autonomy 231

distribution, which is a probability distribution over xt. Mathematically, we de-
note the belief distribution as bel(xt) and define it as:

bel(xt) := p(xt | z1:t, u1:t). (13.9)

In other words, the belief, bel(xt), is a posterior probability distribution over
the state conditioned on the available history information. We also define a
distribution called the prediction distribution as:

bel(xt) := p(xt | z1:t−1, u1:t), (13.10)

which does not include the most recent measurement, zt. We call the process
of using the new measurement, zt, to compute the belief, bel(xt), from the pre-
dicted belief, bel(xt), a correction or measurement update. The Bayes filter consists
of a prediction step for computing bel(xt) from the prior belief followed by a
correction step for computing bel(xt) given the new measurement, zt.

13.3.1 Algorithm

The recursive structure of the Bayes filter is summarized in Algorithm 13.1.
The inputs for each step are the belief from the previous state11 and the current 11 In practice, we typically initialize the

prior distribution, bel(x0), using a best
guess or simply a uniform distribution.

control input and measurement. For each state, xt, this algorithms performs a
prediction step to compute bel(xt) and then a correction step based on the mea-
surement, zt. The prediction step is essentially just using the state transition
model from Equation (13.7) to predict what might happen to each state for the
given control, ut. The correction step then modifies the prediction to account for
the measurement that was actually observed in the real world.

Algorithm 13.1: Bayes Filter

Data: bel(xt−1), ut, zt

Result: bel(xt)

foreach xt do
// Prediction (motion update)

bel(xt) =
∫

p(xt | xt−1, ut) bel(xt−1) dxt−1

// Correction (measurement update)

bel(xt) = η p(zt | xt) bel(xt)

return bel(xt)

Here η is a normalization constant ensuring bel(xt) integrates (or sums)
to one.12 Conceptually, the filter performs a predict-correct cycle: it forecasts 12 In practice, η = 1/p(zt | z1:t−1, u1:t)

comes directly from Bayes’ rule.possible states using the motion model, then sharpens or shifts this forecast
based on the new sensor reading.

232 introduction to localization and filtering

13.3.2 Derivation

We begin deriving the Bayes filter by expanding the definition of the belief
distribution from Equation (13.9) using Bayes’ rule:

bel(xt) := p(xt | z1:t, u1:t)

= ηp(zt | xt, z1:t−1, u1:t)p(xt | z1:t−1, u1:t),

where η is the normalization constant:

η =
1

p(zt | z1:t−1, u1:t)
.

We then leverage the Markov assumption to simplify p(zt | xt, z1:t−1, u1:t) =

p(zt | xt) and, combined with the definition of the prediction belief, we have:

bel(xt) = ηp(zt | xt)bel(xt),

which is the measurement update step of the Bayes filter algorithm. For the
prediction step, we start from the definition of the prediction belief and leverage
the law of total probability to marginalize out the previous state, xt−1:

bel(xt) := p(xt | z1:t−1, u1:t),

=
∫

p(xt | xt−1, z1:t−1, u1:t)p(xt−1 | z1:t−1, u1:t)dxt−1.

Using the Markov assumption again, we can simplify p(xt | xt−1, z1:t−1, u1:t) =

p(xt | xt−1, ut), and from the structure of the Markov model in Figure 13.2, the
control, ut, does not have any influence on the previous state, xt−1, so we can
also simplify the prior distribution p(xt−1 | z1:t−1, u1:t) = p(xt−1 | z1:t−1, u1:t−1).
Using these simplifications, we can compute the prediction belief as:

bel(xt) =
∫

p(xt | xt−1, ut)bel(xt−1)dxt−1,

since by definition bel(xt−1) = p(xt−1 | z1:t−1, u1:t−1).

13.3.3 Discrete Bayes Filter

When the state space is finite, we represent the belief as a probability mass
function over states {xk}. Let pk,t denote the probability of being in state xk at
time t.

We can apply a discrete version of the Bayes filter to problems where the
state space is finite and we represent the belief, bel(xt), by a probability mass
function rather than a probability density function. The probability mass func-
tion that defines the belief is a finite collection of probabilities, {pk,t}, where pk,t

is the probability associated with state k at timestep t. We define the discrete
Bayes filter algorithm in Algorithm 13.2. Note that it follows the same proce-
dure as the continuous Bayes filter in Algorithm 13.1, but with summations
replacing the integrals.

principles of robot autonomy 233

Algorithm 13.2: Discrete Bayes Filter

Data: {pk,t−1}, ut, zt

Result: {pk,t}
foreach k do

pk,t = ∑i p(xt | ut, xi)pi,t−1

pk,t = ηp(zt | xk)pk,t
return pk,t

13.3.4 Practical Considerations

The Bayes filter provides a general, principled foundation for state estimation,
but direct application can be challenging:

• Continuous state spaces: the integrals in the prediction step are often in-
tractable.

• Discrete state spaces: the summations are exact but quickly become compu-
tationally expensive as the number of states grows.

Despite these challenges, the Bayes filter serves as the starting point for practical
algorithms. Specialized filters such as the Kalman filter, extended Kalman filter
(EKF), unscented Kalman filter (UKF), and particle filter all derive from this
framework by making approximations or exploiting structure.

Example 13.3.1 (1D Robot on a Line). Consider a robot moving along a straight
hallway represented by a one-dimensional line. The hidden state xt is the
robot’s position along this line. At each time step t the robot receives:

• a control input ut, representing a commanded forward displacement, and

• a measurement zt, representing the noisy distance to the nearest wall detected
by a range sensor.

Prediction. Suppose the robot starts at xt−1 = 2 m with a belief concentrated
around that position. It issues a command ut = +1 m forward. Because of
wheel slip and actuator noise, the actual displacement may vary, e.g., ∆x ∼
N (1, 0.12). The prediction step therefore spreads the belief forward, producing
bel(xt) centered at 3 m but with increased variance.

Correction. At the same step, the robot’s range sensor reports zt = 2.9 m to the
wall. The sensor is noisy, modeled by p(zt | xt) = N (zt; true distance(xt), 0.052).
If the predicted belief places probability mass around xt = 3 m, this measure-
ment is highly consistent and the correction step sharpens the belief around 3 m.
If instead the prediction had significant mass at xt = 5 m, the measurement
likelihood would downweight those hypotheses.

234 introduction to localization and filtering

Recursive operation. Over time, the filter alternates prediction (broadening due
to motion uncertainty) and correction (sharpening when distinctive sensor infor-
mation arrives). If the hallway contains identical-looking sections, the belief may
remain multimodal until the robot observes a unique feature (e.g., the hallway’s
end), at which point the Bayes filter collapses the ambiguity and localizes the
robot with high confidence.

principles of robot autonomy 235

References

[64] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

[72] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

14
Approximate Filters for State Estimation

In Chapter 13 we introduced the Bayes filter as the canonical framework for
state estimation: a recursive procedure that alternates between prediction, using
a probabilistic state transition model, and correction, using a probabilistic mea-
surement model. While conceptually elegant, the Bayes filter is rarely tractable
to implement in its full generality. The integrals in the prediction step and the
normalization in the correction step can be computationally intractable for con-
tinuous, high-dimensional systems, and exact enumeration is impossible except
in very small discrete domains.

To make the Bayes filter practically useful, we therefore need to approximate
the belief distribution. Over the years, two broad families of approximations
have emerged:

• Parametric filters: These assume that the belief distribution belongs to a spe-
cific parametric family (most commonly Gaussian), characterized by a fixed
set of parameters such as mean and covariance 1. Exploiting the structure of 1 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005the chosen family allows for efficient recursive updates. The Kalman filter
and its variants (e.g., EKF, UKF) are prime examples.

• Non-parametric filters: These make no strong assumptions on the form of
the belief distribution. Instead, they approximate it directly, either by dis-
cretization (histogram filters) or by sampling (particle filters). This flexibility
allows non-parametric filters to represent multimodal and highly nonlinear
beliefs, at the expense of higher computational cost.

Viewed together, parametric and non-parametric filters represent two ends
of a spectrum. Parametric filters trade representational flexibility for computa-
tional efficiency, while non-parametric filters trade efficiency for expressiveness.
In robotics practice, both families play a critical role: parametric filters often
suffice when the problem structure is close to Gaussian and unimodal, while
non-parametric filters are indispensable when ambiguity, multimodality, or
strong nonlinearities are present.

In the remainder of this chapter, we develop both approaches within a uni-
fied narrative. We begin with parametric filters, introducing the Kalman filter

238 approximate filters for state estimation

family and highlighting how Gaussian assumptions simplify the Bayes filter
equations. We then turn to non-parametric filters, where we relax these assump-
tions and represent beliefs more directly through discretization or sampling. By
presenting them side-by-side, we will emphasize their shared foundation in the
Bayes filter and their complementary strengths for real-world state estimation.

14.1 The Gaussian Distribution

The Gaussian (or normal) distribution is one of the most widely used probability
distributions in science and engineering, and plays a central role in robotics
state estimation. Its importance arises not only from its frequent appearance in
natural noise processes, but also from its favorable mathematical properties that
make recursive filtering tractable.

Univariate case. The probability density function (PDF) of a one-dimensional2 2 We refer to a one-dimensional
Gaussian as univariate and to higher-
dimensional cases as multivariate.

Gaussian random variable X with mean µ and variance σ2 is

p(x) =
1√

2πσ2
exp

(
− 1

2
(x−µ)2

σ2

)
. (14.1)

We write this compactly as X ∼ N (µ, σ2).

Multivariate case. For an n-dimensional random vector x ∈ Rn with mean µ ∈
Rn and covariance matrix Σ ∈ Rn×n, the multivariate Gaussian distribution is
defined by

p(x) =
1√

det(2πΣ)
exp

(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)

, (14.2)

denoted x ∼ N (µ, Σ). The covariance Σ captures both the spread of each com-
ponent of x and their pairwise correlations.

The Gaussian distribution exhibits several important mathematical properties
related to affine transformations, addition, and multiplication, which make it
particularly attractive for use in filtering algorithms.

Affine transformations: The first useful property of the Gaussian distribution is
that an affine transformation of a Gaussian random variable is also a Gaussian
random variable. If the random vector X has a multivariate Gaussian distribu-
tion with mean µ and covariance Σ, then the random variable Y computed from
an affine transformation:

Y = AX + b,

also has a multivariate Gaussian distribution with mean Aµ + b and covariance
AΣA⊤. In other words, if X ∼ N (µ, Σ), then Y ∼ N (Aµ + b, AΣA⊤).

principles of robot autonomy 239

Sum: The next useful property of Gaussians is that the sum of two indepen-
dent Gaussian random variables is also a Gaussian random variable. Suppose
X1 and X2 have multivariate Gaussian distributions with means µ1 and µ2 and
covariances Σ1 and Σ2. Then, the random variable Y computed by the sum:

Y = X1 + X2,

also has a multivariate Gaussian distribution with mean µ1 + µ2 and covariance
Σ1 + Σ2. In other words, if X1 ∼ N (µ1, Σ1) and X2 ∼ N (µ2, Σ2), then Y ∼
N (µ1 + µ2, Σ1 + Σ2).

Product: The product of two Gaussian probability density functions is also
a Gaussian probability density function. Consider two Gaussian probability
density functions:

p1(x) =
1√

det(2πΣ1)
exp

(
− 1

2
(x− µ1)

⊤Σ−1
1 (x− µ1)

)
p2(x) =

1√
det(2πΣ2)

exp
(
− 1

2
(x− µ2)

⊤Σ−1
2 (x− µ2)

)
.

Their product is:

p(x) = p1(x) · p2(x)

=
exp

(
− 1

2 (x− µ1)
⊤Σ−1

1 (x− µ1)− 1
2 (x− µ2)

⊤Σ−1
2 (x− µ2)

)
2πd

√
det(Σ1)

√
det(Σ2)

=
exp

(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)
exp

(
− 1

2 (µ
⊤
1 Σ−1

1 µ1 + µ⊤2 Σ−1
2 µ2 − µ⊤Σ−1µ)

)
2πd

√
det(Σ1)

√
det(Σ2)

,

where d is the dimension of the covariance matrices, and we can see that the
second exponential is constant with respect to x. Therefore, the product is a
Gaussian probability density function with mean µ and covariance Σ:

Σ = (Σ−1
1 + Σ−1

2)−1,

µ = Σ(Σ−1
1 µ1 + Σ−1

2 µ2).

Why Gaussians in filtering? These properties ensure that when both the transi-
tion and measurement models are linear with Gaussian noise, the Bayes filter
reduces to simple recursive updates of the mean and covariance. This leads di-
rectly to the family of Kalman filters, which we will introduce in the next section.

14.2 Kalman Filter

The Kalman filter is the canonical parametric realization of the Bayes filter for
linear-Gaussian models. Unlike the discrete Bayes filter from Chapter 13, we
can efficiently apply this filter to problems with continuous states. Specifically,
the Kalman filter uses a multivariate Gaussian distribution to parameterize the

240 approximate filters for state estimation

belief distribution over possible states. In other words, the state xt ∼ N (µt, Σt)

and therefore:

bel(xt) =
1√

det(2πΣt)
exp

(
− 1

2
(xt − µt)

⊤Σ−1
t (xt − µt)

)
.

Like the Bayes filter, the Kalman filter is split up into two steps: a prediction
step and measurement update step. Both of these steps update the mean, µ,
and covariance, Σ, parameters, which requires us to make several assumptions
about the problem setup. First, we must assume that the initial belief, bel(x0), is
Gaussian with x0 ∼ N (µ0, Σ0). We also assume that the state transition model is
linear and of the form:

xt = Atxt−1 + Btut + ϵt, (14.3)

where xt−1 is the previous state, ut is the most recent control input, ϵt is an in-
dependent process noise that is normally distributed according to ϵt ∼ N (0, Rt),
and At and Bt are time varying matrices that define the dynamics. Due to the
mathematical properties discussed earlier, this affine transition model pre-
serves the structure of the Gaussian distribution such that if xt−1 is normally
distributed, then so is xt. Specifically, the probabilistic state transition model
based on Equation (14.3) is:

p(xt | xt−1, ut) =
1√

det(2πRt)
exp

(
− 1

2
(xt−Atxt−1−Btut)

⊤R−1
t (xt−Atxt−1−Btut)

)
.

and therefore the next state is normally distributed with:

xt ∼ N (Atxt−1 + Btut, Rt).

Our next assumption is that the measurement model is also linear, which is
needed to preserve the Gaussian structure in the measurement update step. We
assume the measurement model is of the form:

zt = Ctxt + δt, (14.4)

where δt is an independent measurement noise that is normally distributed
with N (0, Qt) and Ct is a time varying measurement model matrix. Again
leveraging the mathematical properties of Gaussian distributions, we can write
the probabilistic measurement model as:

p(zt | xt) =
1√

det(2πQt)
exp

(
− 1

2
(zt − Ctxt)

⊤Q−1
t (zt − Ctxt)

)
,

such that zt ∼ N (Ctxt, Qt).
To summarize, we assume that the initial belief is normally distributed and

that both the state transition and measurement models are linear with Gaus-
sian noise. These assumptions ensure that the prediction and measurement
update steps from the Bayes filter will maintain the structure of the Gaussian
belief, which makes the Kalman filter a practically efficient algorithm since we
only need to update the parameters µ and Σ. The tradeoff of making these as-
sumptions is that the Kalman filter is now limited to a more restricted class of
problems.

principles of robot autonomy 241

14.2.1 Algorithm (Predict–Correct Form)

Let µ̄t and Σ̄t denote the predicted mean and covariance, i.e., the belief after
applying the control but before incorporating the new measurement.

Algorithm 14.1: Kalman Filter (linear-Gaussian)
Data: µt−1, Σt−1, ut, zt

Result: µt, Σt

// Prediction (motion update)

µ̄t ← At µt−1 + Bt ut;
Σ̄t ← At Σt−1 A⊤t + Gt Rt G⊤t ;
// Innovation (measurement residual)

z̃t ← zt − Ct µ̄t;
St ← Ct Σ̄t C⊤t + Qt;
// Kalman gain

Kt ← Σ̄t C⊤t S−1
t ;

// Correction (measurement update)

µt ← µ̄t + Kt z̃t;
// Covariance update (Joseph form for numerical stability)

Σt ← (I− KtCt) Σ̄t (I− KtCt)⊤ + Kt Qt K⊤t ;
return µt, Σt

One-line intuition: predict the state forward with process uncertainty; then “pull”
the prediction toward the measurement proportionally to its reliability. The ma-
trix St is the innovation covariance; the residual z̃t is the innovation. The Kalman
gain Kt balances model and measurement confidence.

14.2.2 Derivation

One way to derive the Kalman filter algorithm is by evaluating the Bayes filter
updates from Chapter 13 with the Gaussian belief structure and probabilistic
transition and measurement models. This would involve explicitly computing
an integral of p(xt | xt−1, ut)p(xt−1) for the prediction step, which is a little
tedious. Instead, we consider a more intuitive approach that directly leverages
the properties of Gaussians presented in Section 14.1. First, from the prior be-
lief distribution, bel(xt−1) ∼ N (µt−1, Σt−1), we compute the predicted belief,
bel(xt−1), by using the affine transformation property of Gaussian random vari-
ables and the sum of two independent Gaussian random variables property.
Specifically, we apply these properties to the linear state transition model in
Equation (14.3) to give the predicted mean:

µ̄t = Atµt−1 + Btut + 0,

242 approximate filters for state estimation

where the 0 comes from the mean of the independent Gaussian process noise,
ϵt ∼ N (0, Rt). The predicted covariance is then:

Σ̄t = AtΣt−1 A⊤t + Rt.

For the measurement update step of the Bayes filter, we have:

bel(xt) ∝ p(zt | xt)bel(xt),

where p(zt | xt) ∼ N (Ctxt, Qt) and bel(xt) ∼ N (µ̄t, Σ̄t). We can therefore use
the fact that the product of two Gaussians probability density functions is also a
Gaussian probability density function to compute:

bel(xt) = η exp
(
− 1

2
Jt
)
,

where η is a normalization constant and:

Jt = (zt − Ctxt)
⊤Q−1

t (zt − Ctxt) + (xt − µ̄t)
⊤Σ̄−1

t (xt − µ̄t).

We compute the mean, µt, for this new probability density function by finding
where the first derivative of bel(xt) with respect to xt is zero, which occurs
when the derivative of Jt with respect to xt is zero. Similarly, we compute the
new covariance, Σt, as the inverse of the second derivative of Jt with respect to
xt. Therefore, we have the conditions:

0 = −C⊤t Q−1
t (zt − Ctµt) + Σ̄−1

t (µt − µ̄t),

Σ−1
t = C⊤t Q−1

t Ct + Σ̄−1
t ,

which gives:

Σt = (C⊤t Q−1
t Ct + Σ̄−1

t)−1.

and through algebraic manipulation, we write the mean in terms of the covari-
ance Σt:

µt = µ̄t + ΣtC⊤t Q−1
t (zt − Ctµ̄t),

With a few additional algebraic steps, we now transform these equations in
the form of the Kalman filter equations in Algorithm 14.1. From the matrix
inversion lemma, we write:

(C⊤t Q−1
t Ct + Σ̄−1

t)−1 = Σ̄t − Σ̄tC⊤t (CtΣ̄tC⊤t + Qt)
−1CtΣ̄t,

and then we define the Kalman gain as Kt := Σ̄tCT
t (CtΣ̄tC⊤t + Qt)−1 so that the

covariance is given by:

Σt = Σ̄t − KtCtΣ̄t,

Through some additional algebra, we also express the mean in terms of the
Kalman gain to get:

µt = µ̄t + Kt(zt − Ctµ̄t).

Further details on this derivation and the algebraic steps involved can be found
in Thrun et al.3. 3 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005

principles of robot autonomy 243

14.2.3 Practical Considerations

The Kalman filter exploits the structure of the Gaussian distribution, which
makes it a computationally efficient algorithm for filtering in a continuous state
space. However, the use of Gaussian beliefs also restricts the flexibility of the
probabilistic model, since we have to assume the sufficiency of linear state tran-
sition and measurement models. In practice, this linearity assumption may not
be very accurate with respect to the real world behavior of the robot and sen-
sors. The structure also limits the belief distribution to be unimodal, which may
limit performance in some applications. For example, in robot localization tasks,
a multimodal distribution can better capture the global distribution. In the next
section, we take a look at a variant of the Kalman filter that we can apply to
problems with nonlinear state transition and measurement models, which is
much more commonly applied in practical robotics settings.

14.3 Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) generalizes the Kalman filter to nonlinear pro-
cess and measurement models while retaining a Gaussian belief parameteriza-
tion. It does so by locally linearizing the nonlinear models and then applying
KF-style predict–correct updates to the mean and covariance. This makes the
EKF a practical default for many robotics state estimation tasks with smooth
nonlinear dynamics and sensing.

Instead of the linear models in Equation (14.3) and Equation (14.4) used
by the Kalman filter, the EKF considers general nonlinear state transition and
measurement models of the form:

xt = f (xt−1, ut) + ϵt,

zt = h(xt) + δt,
(14.5)

where ϵt ∼ N (0, Rt) and δt ∼ N (0, Qt) are normally distributed process and
measurement noise terms.

The EKF incorporates these nonlinear models into the prediction and mea-
surement update steps of the filter in two ways: first by using the nonlinear
models directly and second by using their linear approximation from a first
order Taylor series expansion. We perform the first order Taylor series expan-
sion of the state transition model, f (xt−1, ut), about the most likely state from the
current belief distribution, which is the expected value, µt−1:

f (xt−1, ut) ≈ f (µt−1, ut) + Gt(xt−1 − µt−1),

where Gt = ∇x f (µt−1, ut) is the Jacobian of f (xt−1, ut) evaluated at µt−1. Using
this linear approximation, we write the probabilistic state transition model as:

p(xt | xt−1, ut) =
1√

det(2πRt)
exp

(
− 1

2
∆x⊤t R−1

t ∆xt
)
,

244 approximate filters for state estimation

where:
∆xt = xt − f (µt−1, ut)− Gt(xt−1 − µt−1).

The prediction step of the EKF leverages the nonlinear state transition model
and the linearized model to update the mean and covariance as:

µ̄t = f (µt−1, ut),

Σ̄t = GtΣt−1G⊤t + Rt,

which exhibits a strong similarity to the Kalman filter prediction step.
We use a similar procedure for the measurement corrections. Specifically, we

approximate the measurement model using a first order Taylor series expansion
about the predicted point, µ̄t, to yield:

h(xt) ≈ h(µ̄t) + Ht(xt − µ̄t),

where Ht = ∇xh(µ̄t) is the Jacobian of h(xt) evaluated at µ̄t. We then write the
probabilistic measurement model using this approximation as:

p(zt | xt) =
1√

det(2πQt)
exp

(
− 1

2
∆z⊤t Q−1

t ∆zt
)
,

where ∆zt = zt − h(µ̄t) − Ht(xt − µ̄t). The measurement update step of the
EKF uses the nonlinear measurement model and the linear approximation to
compute:

µt = µ̄t + Kt(zt − h(µ̄t)),

Σt = (I − KtHt)Σ̄t,

where the Kalman gain is Kt = Σ̄tH⊤t (HtΣ̄tH⊤t + Qt)−1. Again, we can see that
this is very similar to the Kalman filter measurement update step.

We combine the EKF prediction and measurement update steps together in
the overall EKF algorithm definition in Algorithm 14.2. Compare this to Al-
gorithm 14.1 and you will notice only the small difference that the EKF uses
a combination of the nonlinear models and linear approximations from their
Jacobians. Let µ̄t, Σ̄t denote the predicted mean and covariance.
Intuition. The EKF carries out a first-order approximation of the nonlinear mod-
els around the most plausible operating point (the mean). The KF formulas
then apply to this locally linear surrogate. The quality of the update hinges on
the local linearity of f and h around the chosen linearization points and on the
fidelity of the noise covariances.

14.3.1 Practical Considerations

The extended Kalman filter provides more accurate results than the Kalman
filter in many applications due to its ability to consider more general nonlinear
models. However, the linear approximation of the nonlinear models by a Taylor

principles of robot autonomy 245

Algorithm 14.2: Extended Kalman Filter (EKF)
Data: µt−1, Σt−1, ut, zt

Result: µt, Σt

// Linearize dynamics at (µt−1, ut)

Ft ← ∂ f /∂x
∣∣
(µt−1, ut)

;

Lt ← ∂ f /∂ϵ
∣∣
(µt−1, ut)

;

// Prediction

µ̄t ← f (µt−1, ut);
Σ̄t ← Ft Σt−1 F⊤t + Lt Rt L⊤t ;
// Linearize measurement at µ̄t

Ht ← ∂h/∂x
∣∣
µ̄t

;

// Innovation and gain

z̃t ← zt − h(µ̄t);
St ← Ht Σ̄t H⊤t + Qt;
Kt ← Σ̄t H⊤t S−1

t ;
// Correction

µt ← µ̄t + Kt z̃t;
// Joseph-form covariance update (numerically robust)

Σt ← (I− KtHt) Σ̄t (I− KtHt)⊤ + Kt Qt K⊤t ;
return µt, Σt

series expansion can lead to issues where the filter does not perform well, or
even diverges if the approximation is not accurate enough4. The EKF also still 4 Another extension of the Kalman

filter, known as the Unscented Kalman
filter, also uses general nonlinear state
transition and measurement models,
but avoids linearization by representing
the Gaussian distribution by a set of
samples points called sigma-points.

suffers from the same unimodal modeling assumption as the Kalman filter,
since the belief distribution is still represented by a single Gaussian distribution.

14.3.2 Unscented Kalman Filter (UKF)

The unscented Kalman filter (UKF) addresses a core limitation of EKF: first-order
linearization can poorly capture the effect of strong nonlinearities on the mean
and covariance. Instead of linearizing f and h, the UKF propagates carefully cho-
sen deterministically sampled points (sigma points) through the true nonlinear func-
tions and then recomputes the mean/covariance from the transformed samples.

Unscented transform (UT). For an n-dimensional Gaussian N (µ, Σ), construct
2n + 1 sigma points

X (0) = µ, X (i) = µ + ci, X (i+n) = µ− ci, i = 1, . . . , n,

with ci columns from a matrix square root of (n + λ)Σ (e.g., Cholesky). Asso-
ciate weights {W(m)

i , W(c)
i } for mean and covariance using parameters (α, β, κ)

via λ = α2(n + κ)− n.5 Pushing the sigma points through a nonlinear g(·) gives 5 α ∈ (0, 1] scales the spread (e.g.,
10−3–0.3), β reflects prior knowledge
of Gaussianity (often β = 2), κ is
secondary scaling (e.g., 0 or 3− n).

246 approximate filters for state estimation

Y (i) = g(X (i)); recompute the mean/covariance by the weighted average:

ȳ = ∑
i

W(m)
i Y (i), Pyy = ∑

i
W(c)

i
(
Y (i) − ȳ

)(
Y (i) − ȳ

)⊤.

The cross-covariance Pxy is formed similarly. For Gaussian priors, the UT
matches mean/covariance up to at least second order (often third), without
Jacobians.

UKF recursion (additive noise, sketch).

1. Sigma set from prior: build sigma points from (µt−1, Σt−1).

2. Propagation: pass them through f (·, ut) to obtain predicted points; compute
µ̄t, Σ̄t ← P f f + Rt.

3. Measurement transform: pass predicted points through h(·) to get predicted
measurements; compute ẑt, St ← Phh + Qt, and cross-covariance Pxz.

4. Update: Kt = PxzS−1
t , µt = µ̄t + Kt(zt − ẑt), Σt = Σ̄t − KtStK⊤t .

For non-additive noise, augment the state with noise variables and build sigma
points in the augmented space.

EKF vs. UKF (when to use which).

• EKF is appropriate when f , h are mildly nonlinear, Jacobians are easy/accu-
rate, and computational budget is tight. First-order accurate; may bias under
strong curvature.

• UKF excels when nonlinearities are substantial, derivatives are hard/un-
reliable, or measurements are highly nonlinear (e.g., bearings). Captures
mean/covariance more accurately; cost scales with 2n + 1 transformations per
step.

• Square-root UKF improves numerical stability by propagating Cholesky
factors rather than covariances.

14.3.3 Worked Example (Nonlinear Sensing): Range–Bearing Update

Let xt = [px, py, θ]⊤ be a robot pose, and a landmark at ℓ = [ℓx, ℓy]⊤ is observed
with range–bearing

h(xt) =

[√
(ℓx − px)2 + (ℓy − py)2

atan2(ℓy − py, ℓx − px)− θ

]
.

The EKF uses Ht = ∂h/∂x|µ̄t and wraps the bearing residual to (−π, π]. The
UKF bypasses Ht entirely by transforming sigma points through h(·); this often
reduces bias for large range/bearing nonlinearities or when the prior is elon-
gated (high covariance).

principles of robot autonomy 247

Summary. EKF and UKF are two sides of the same Gaussian belief coin: EKF
linearizes models; UKF transports the distribution. Both rest on the Bayes filter
and complement each other in robotics practice.

14.4 Non-parametric Filters: From Grids to Particles

Parametric filters gain efficiency by committing to a fixed belief shape (usually
Gaussian). This can be too rigid when uncertainty is multimodal, the dynam-
ics or sensing are strongly nonlinear, or data association is ambiguous. Non-
parametric filters avoid a fixed functional form and instead approximate the
belief either by (i) discretizing the state space into bins (histogram filters), or (ii)
representing it with samples (particle filters). Both are direct approximations of
the Bayes filter and trade additional computation for representational flexibility.

In Chapter 13, we introduced the robot localization and state estimation prob-
lem and how we can address it through a probabilistic framework. We also
discussed the Bayes filter, a canonical algorithm that uses a probabilistic state
transition and measurement model to recursively update a belief probability
distribution over the state space. Then, we discussed the practical limitations
of the Bayes filter, namely how the prediction update and measurement correc-
tion steps can sometimes be computationally intractable. We also showed how
we can mitigate these practical issues by modeling the belief distribution in a
parametric way, such as by using a Gaussian distribution in the Kalman filter
and extended Kalman filter. The advantage of using a parametric belief distribu-
tion is that its structure can be exploited to reduce the complexity of the update
steps, but a disadvantage is that it may not be able to effectively approximate
the true belief distribution, which could lead to degraded performance. For ex-
ample, when we use a Gaussian distribution to model the belief distribution in a
continuous state space, we only have to update a finite set of mean and covari-
ance parameters instead of the entire infinite-dimensional probability density
function, but we are also limited to a unimodal belief distribution that may not
be representative of the true state uncertainty.

In contrast to parametric filters, non-parametric filters do not make assump-
tions on the structure of the belief distribution6. This can be desirable for 6 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005robotics applications where a fixed structure of the belief distribution may re-
sult in poor performance. For example, consider a robot localization problem
where the robot may not initially know what room of a building it is in. In this
case, we cannot effectively model the robot’s position uncertainty by a unimodal
Gaussian distribution since it could have distinct high probability modes of be-
ing in multiple rooms. In this chapter, we introduce two non-parametric filters
that are based off of the Bayes filter approach from Chapter 13. The first is the
histogram filter, which is an extension of the discrete Bayes filter to continuous
state spaces. The second is the particle filter, which is a sample-based filter that is
more computationally tractable for practical applications.

248 approximate filters for state estimation

14.5 Histogram Filter

The histogram filter is a non-parametric filter that we can view as an extension
of the discrete Bayes filter from Chapter 13 to continuous state spaces. This is
accomplished by discretizing the continuous state space into a finite number
of regions, and then we represent the belief distribution over the discretized
state space by a finite set of probability masses. Mathematically, for the random
state vector X, we discretize the continuous state space, X , into a finite set of
regions7: 7 In the context of the histogram filter,

we often refer to the the discretized
regions as bins.

X = b1 ∪ b2 ∪ . . . ∪ bK,

where bk is the k-th “bin”. For example, if the one-dimensional random vari-
able, X, can have outcomes in the interval [0, 1], then one possible decomposi-
tion is to split the interval [0, 1] into a finite number of sub-intervals with equal
width. We then define the belief distribution, bel(xt), over the state, xt, at time t
in a non-parametric way by specifying a probability mass, pk,t, to each bin, bk.
We can also define a probability density function in a piecewise manner:

p(xt) =
pk,t

|bk|
, xt ∈ bk,

where |bk| denotes the “area” or “volume” of the bin.8 8 By construction ∑k pk,t = 1. In
practice, always renormalize after
the correction step to maintain this
invariant.

It is often useful to make explicit the binwise transition and likelihood that
the filter approximates. Let the continuous transition and measurement models
be p(xt | xt−1, ut) and p(zt | xt). Then the binwise quantities are

T(t)
ki := P(xt ∈ bk | xt−1 ∈ bi, ut) =

1
|bi|

∫
xt−1∈bi

∫
xt∈bk

p(xt | xt−1, ut) dxt dxt−1,

(14.6)

L(t)
k := p(zt | xt ∈ bk) =

1
|bk|

∫
xt∈bk

p(zt | xt) dxt. (14.7)

In practice, we approximate these integrals. A common choice is to use a repre-
sentative “mean” state for each bin:

x̂k :=
1
|bk|

∫
bk

x dx. (14.8)

Using these mean states, we approximate the probabilistic state transition
model p(bk,t | bi,t−1, ut) for transitioning from one bin to another by:

p(bk,t | bi,t−1, ut) ≈ η|bk| p(x̂k,t | x̂i,t−1, ut), (14.9)

where p(x̂k,t | x̂i,t−1, ut) is the original, non-discretized, state transition model
evaluated at the mean bin states, x̂k, and η is a normalization constant9. We 9 If the bin areas |bk | are equal, we can

absorb this term into the normaliza-
tion constant η. For higher fidelity,
sample multiple points per bin (simple
quadrature) and average.

discretize the probabilistic measurement model in a similar manner:

p(zt | bk,t) ≈ p(zt | x̂k,t), (14.10)

such that we approximate the measurement probability associated with a
bin, bk, by the measurement probability associated with the mean bin state, x̂k.10 10 For angular variables (e.g., head-

ings), ensure the representative state
respects periodicity and wrap residuals
appropriately.

principles of robot autonomy 249

Once we have discretized the state space with the bins, bk, and the state tran-
sition and measurement models using the bin mean states, x̂k, the histogram
filter mimics the discrete Bayes filter in Algorithm 13.2, which we detail in Algo-
rithm 14.3.

Algorithm 14.3: Histogram Filter

Data: {pk,t−1}, ut, zt

Result: {pk,t}
foreach k do

pk,t = ∑i p(bk,t | bi,t−1, ut) pi,t−1

pk,t = p(zt | bk,t) pk,t

// Normalization (to enforce ∑k pk,t = 1; use log-weights to avoid

underflow if needed)

η ← (∑k pk,t)
−1; foreach k do

pk,t ← η pk,t

return {pk,t}

When implementing this algorithm, one can consider the following insights.
First, the transition matrix is typically sparse: most motion models move mass
only to nearby bins—iterate over neighbors of each bi (“push”) to reduce cost.
Second, if p(xt | xt−1, ut) is shift-invariant (e.g., additive Gaussian motion in a
grid), the prediction is a discrete convolution that can be accelerated with sep-
arable kernels or FFTs in 1D/2D. Third, at domain boundaries, use reflecting,
absorbing, or wrap-around conditions consistent with the task (e.g., wrap head-
ings on S1).

Like the discrete Bayes filter, the main disadvantage of the histogram filter
is that it can become computationally intractable if the number of values repre-
senting the belief distribution is too large. This can happen if the discretization
of the continuous state space is high-resolution, which could be important for
accuracy, or if the state space is high-dimensional. For example, in a robot lo-
calization problem where we are trying to estimate a two-dimensional pose of
the robot in a building, we would need to discretize along three dimensions: the
two-dimensional position and the heading. If we discretized with a relatively
coarse resolution of one meter and one degree for heading, we could easily have
hundreds of thousands of bins.11 11 Cost scales roughly as O(K nnbr)

per step, where nnbr is the number of
motion-neighbor bins (often small).
Memory is O(K). This “curse of dimen-
sionality” motivates particle filters for
higher-dimensional continuous states.

Worked example (1D line, Gaussian motion + range). Consider a robot mov-
ing along a line segment [0, L]. We discretize this interval into K equal bins of
width ∆ = L/K, with bin k spanning [x−k , x+k] and centroid x̂k = (k − 1

2)∆.
The robot follows a simple additive motion model and receives a noisy range
measurement to the wall at the origin:

xt = xt−1 + ut + ϵt, ϵt ∼ N (0, σ2
u), zt = xt + νt, νt ∼ N (0, σ2

z).

250 approximate filters for state estimation

Prediction. After applying control ut, the robot’s position distribution is shifted
and blurred according to motion noise. For each pair of bins (i, k), the probabil-
ity of moving from bin i to bin k is given by the Gaussian mass over bk centered
at x̂i + ut:

T(t)
ki ≈ Φ

(
x+k −(x̂i+ut)

σu

)
−Φ

(
x−k −(x̂i+ut)

σu

)
,

where Φ is the standard normal CDF. The predicted belief pk,t is obtained by
summing these contributions over all bins i.

Correction. Given a measurement zt, each bin is reweighted according to how
likely its centroid x̂k is under the measurement model:

L(t)
k ≈ N

(
zt; x̂k, σ2

z
)
.

The posterior is then pk,t ∝ L(t)
k pk,t, followed by normalization so that ∑k pk,t =

1.

Discussion. This process naturally captures both unimodal and multimodal
beliefs. For example, starting from a uniform prior, the filter may maintain sev-
eral possible peaks if the measurement is ambiguous (e.g., the environment has
repeated structures). As more controls and measurements accumulate, the in-
consistent modes gradually vanish, and the posterior collapses to a single sharp
peak at the true location. In this way, the histogram filter provides a simple yet
powerful tool for global localization in low-dimensional settings.

14.6 Particle Filter

The particle filter is a non-parametric filter that we can apply to continuous state
spaces in a more computationally tractable way than the histogram filter. Rather
than discretizing the state space a priori like the histogram filter, this filter repre-
sents the belief distribution by a finite set of samples from the state space called
particles12. We define the set of particles at time t mathematically as Pt: 12 The particle filter is sometimes

referred to as a Monte Carlo algorithm
due to its sampling approach.Pt := {x[1]t , x[2]t , . . . , x[K]t }, (14.11)

where x[k]t is the k-th particle. Each particle, x[k]t , represents a hypothesis about
the true state, xt, and therefore regions of the state space with more particles
correspond to regions of higher probability. The particles are ideally always
distributed according to the current belief:

x[k]t ∼ bel(xt),

but theoretically this only occurs as the number of samples, K, approaches infin-
ity13. 13 In practice, the set of particles only

approximately represents the belief
distribution, and in many common
applications, around K ≈ 1000 samples
tends to be sufficient

Following the Bayes filter paradigm, the particle filter updates the prior be-
lief distribution, represented by the set of particles, Pt−1, with a prediction and

principles of robot autonomy 251

measurement update step. The prediction step considers each particle, x[k]t−1, in
the prior set, Pt−1, and samples a new predicted sample from the state transi-
tion model:

x̄[k]t ∼ p(xt | x[m]
t−1, ut).

The filter then computes an importance factor, w[k]
t , for each predicted sample,

x̄[k]t , based on how well the observed measurement, zt, matches the prediction:

w[k]
t = p(zt | x̄[k]t).

We then collect the predicted particles, x̄[k]t , and their associated weights, w[k]
t , in

a new particle set, P̄t, that represents the predicted belief distribution, bel(xt).
The particle filter’s measurement update step consists of resampling (with re-
placement) a new set of K particles from the predicted set, P̄t, with a probability
proportional to the weights, w[k]

t . This step gives preference in the new sample
set to the predicted particles that showed higher correlation to the measure-
ment, zt. Finally, we collect the resampled points to define the posterior belief
distribution particle set, Pt. We outline the particle filter algorithm in Algo-
rithm 14.4, and we show a few iterations of the algorithm for a simple robot
localization problem in Figure 14.1.

Algorithm 14.4: Particle Filter
Data: Pt−1, ut, zt

Result: Pt

P̄t = Pt = ∅
for k = 1 to K do

Sample x̄[k]t ∼ p(xt | x[k]t−1, ut)

w[k]
t = p(zt | x̄[k]t)

P̄t = P̄t ∪
(

x̄[k]t , w[k]
t
)

for k = 1 to K do

Draw i with probability ∝ w[i]
t

Pt = Pt ∪ {x̄[i]t }
return Pt

The resampling step of the particle filter is important for practical reasons
beyond just updating the belief for the measurement corrections. In particular,
without the resampling step, the particles would drift over time to regions of
low probability and there would be fewer particles to represent the regions of
high probability. This could lead to a loss of accuracy and overall divergence
of the filter from a good representation of the belief. We can therefore view the
resampling step as a probabilistic implementation of the Darwinian idea of sur-
vival of the fittest, since it refocuses the particle set to regions in the state space
with high posterior probability. This also helps make the algorithm computa-

252 approximate filters for state estimation

tional efficient since it reduces the number of particles that we need by focusing
them on the regions of the state space that have higher probability.

Figure 14.1: A particle filter
used for robot localization. We
first update the initial set of
particles according to the tran-
sition model, and then weight
them according to the obser-
vation. Finally, we generate a
new set of particles through
weighted resampling.

Decision guide.

• If dynamics/sensing are mildly nonlinear and beliefs stay near unimodal⇒
EKF.

• If Jacobians are hard or curvature matters⇒ UKF (or square-root UKF).

• If global/multimodal uncertainty or severe non-Gaussian noise⇒ Particle
filter.

• If state is low-dimensional and a map/grid is available⇒ Histogram filter.

principles of robot autonomy 253

Parametric (KF / EKF / UKF) Non-parametric (Histogram / Par-
ticle)

Belief Single Gaussian (mean, covari-
ance)

Grid masses or weighted samples

Nonlinearity EKF (linearize), UKF (sigma
points)

Native; no Jacobians needed

Multimodality Poor (unimodal) Natural (multi-peak)
Dimensionality Scales well with state dim Histogram: suffers; Particle: scal-

able with K
Computation Cheap per step Histogram: grows with bins; Parti-

cle: O(K)
When it shines Smooth models, near-Gaussian

noise, good observability
Ambiguity, strong nonlinearities,
non-Gaussian noise, global local-
ization

Pitfalls Linearization bias (EKF), covari-
ance inconsistency

Degeneracy without resampling;
sample impoverishment

Table 14.1: Parametric vs. Non-
parametric Filters (at a glance)

14.7 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: Kalman Filter

In the file ch14/exercises/kalman_filter.ipynb, implement the Kalman filter
predict and update steps and then apply the algorithm to a landmark localiza-
tion problem.

254 approximate filters for state estimation

References

[72] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

15
Robot Localization

Chapter 13 introduced a probabilistic framework for the localization and state
estimation problem along with the canonical Bayes filter algorithm. The previ-
ous chapters also introduced some widely used filtering algorithms based on
the Bayes filter, including the Kalman filter, extended Kalman filter, histogram
filter, and particle filter. Despite their foundational significance, these algorithms
typically need further refinements and extensions before we can effectively ap-
ply them to the task of robot localization. For instance, in their standard form,
these algorithms do not incorporate a local map of the environment. Local maps
may be very important for localization if the robot relies on sensors like laser
rangefinders or cameras that identify local features rather than global sensors
like GNSS. Therefore, we now consider a more specific definition of robot lo-
calization, which is to determine the pose of a robot relative to a map of the
environment1. In this chapter, we give an overview of the taxonomy of robot 1 When using a map for localization,

we can view our goal as finding the
coordinate transformation between the
map’s global coordinate frame and the
robot’s local coordinate frame.

localization problems, and then introduce several map-based localization algo-
rithms2 that are based on the framework of the Bayes filter.

2 S. Thrun, W. Burgard, and D. Fox.
Probabilistic Robotics. MIT Press, 200515.1 A Taxonomy of Robot Localization Problems

We can better understand the broad scope of challenges related to robot lo-
calization by developing a compact taxonomy of localization problems. This
categorization will divide localization problems along a number of important
dimensions, such as how much initial knowledge the robot has, whether the en-
vironment is static or dynamic, if information is gathered passively or actively,
and whether information about the environment is gathered by one robot, or
collaboratively among several robots.

Pose Tracking and Global Pose Localization: The first way we categorize robot lo-
calization problems is by how much knowledge is initially available to the robot,
which can have a significant impact on what type of localization algorithm is
most appropriate for the problem. Pose tracking problems generally assume that
the initial global pose of the robot is at least roughly known, and the task is to
incrementally update or refine the pose as the robot navigates through the en-

256 robot localization

vironment. In these types of problems, the localization error is generally small
and it is often reasonable to model the belief distribution as unimodal, and
therefore one option is to use a Kalman filter or EKF from Chapter 14. Global
localization problems do not make any assumption regarding knowledge of the
initial pose, and unimodal belief distributions are likely not going to effectively
capture the global uncertainty. For global localization problems, we might pre-
fer non-parametric filters, such as the particle filter from Chapter 14, that are
better suited for modeling multiple hypotheses. An even more challenging
variant of the global localization problem is referred to as the kidnapped robot
problem, where we consider scenarios where the robot could be “teleported” to
a new location at any time. In this problem, we have to deal with sudden large
changes of the robot’s pose, which means the localization algorithm has to be
more robust and be able to recover from potentially large divergences.

Static and Dynamic Environment Localization: Environmental changes are an-
other important aspect that we must consider for mobile robot localization. In
a static environment, the robot is the only object that moves, and in a dynamic
environment, other objects may change locations or configurations over time.
Localization is certainly easier in static environments. Dynamic environments
may require augmentation of the localization algorithm, such as by including
the state of changing environmental elements in the filter algorithm, in addition
to the robot’s state.

Active and Passive Localization: Gathering information using the robot’ sen-
sors is crucial for localization, and localization is crucial for motion planning so
the robot can complete its task. We therefore should consider closing the loop
by also including information gathering actions during downstream motion
planning tasks. In our taxonomy, active localization problems consider the abil-
ity of the robot to explicitly choose its actions to improve its localization and
overall understanding of the environment, while passive localization problems
assume the robot’s motion is unrelated to localization. For example, a robot in
the corner of a room might choose to reorient itself to face the rest of the room
so it can collect more environmental information as it moves along the wall.
We can also consider hybrid approaches that only use active localization when
strictly needed, which would help avoid inefficiencies if more sensor informa-
tion doesn’t significantly improve the robot’s ability to complete the task.

Single and Multi-Robot Localization: Finally, we also categorize localization prob-
lems based on whether there is only a single robot or multiple that gather in-
dependent information and cooperatively share it. Single-robot problems are the
most commonly studied and utilized approach and are simpler, but multi-robot
localization can lead to better system level performance. In multi-robot problems,
the robots aren’t limited to sharing sensor information, they can also share their
belief distributions.

principles of robot autonomy 257

15.2 Robot Localization via Bayesian Filtering

In previous chapters, we introduced several well-known variations of the Bayes
filter, including the parametric extended Kalman filter in Chapter 14 and the
nonparametric particle filter in Chapter 14. These algorithms rely on a proba-
bilistic Markov state transition model and measurement model to update the
robot’s belief distribution over time, and in this section, we show how we can
also incorporate the notion of an environment map into this framework.

The three main variables of the models in the general filtering context are
the state, xt, the control input, ut, and the measurements, zt. For map-based
localization, we introduce a new vector, m, that is a collection of properties
about objects in the environment which we define as:

m = {m1, m2, . . . , mN}, (15.1)

where mi represents the set of properties of a specific object and N is the num-
ber of objects being tracked. We generally consider two types of maps: location-
based maps and feature-based maps. The choice of map type can lead to dif-
ferences in both computational efficiency and expressiveness of the resulting
algorithm. In location-based maps, the index i associated with object mi corre-
sponds to a specific location. For example, the object mi in a location-based map
might represent cells in a cell decomposition or grid representation3 of a map, 3 In three dimensions, the grid represen-

tation is usually referred to as a voxel
representation.

such as we show in Figure 15.1. One potential disadvantage of cell-based maps

Figure 15.1: Two examples
of location-based maps. Both
represent the map as a set of
volumetric objects, which in
these examples are cells.

is that their resolution is dependent on the size of the cells, and therefore there
is a tradeoff between computational complexity and accuracy. However, their
advantage is that they can explicitly encode information about the presence of
objects in specific locations.

In feature-based maps, the index i is a feature index, and mi contains in-
formation about the properties of that feature, such as its Cartesian location4. 4 We can also think of feature-based

maps as a collection of landmarks.Figure 15.2 shows two examples of feature-based maps, one is represented by a
set of lines and another is represented by nodes and edges of a graph5. Feature- 5 Generally referred to as a topological

map.based maps can be computationally efficient and can be finely tuned to specific
environments, for example, a line-based map might make sense to use in highly
structured environments such as buildings. However, their main disadvantage is

258 robot localization

Figure 15.2: Two examples of
feature-based maps. One uses a
collection of lines and the other
uses a graph representation of
the empty spaces.

that they may have lower resolution and might not capture spatial information
about all potential obstacles.

15.2.1 Map-Aware State Transition Model

In the previous chapters on Bayesian filtering, the probabilistic state transition
model was given by p(xt | xt−1, ut), but in map-based robot localization prob-
lems we must also account for how the map, m, affects the state transition, since
in general:

p(xt | xt−1, ut) ̸= p(xt | xt−1, ut, m).

For example, the model p(xt | xt−1, ut) does not account for the fact that a
robot cannot move through walls in the environment. To include the map in the
transition model, we make an assumption that:

p(xt | xt−1, ut, m) ≈ η
p(xt | xt−1, ut)p(xt | m)

p(xt)
, (15.2)

where η is a normalization constant. This approximation is derived from Bayes’
rule by assuming that p(m | xt, xt−1, ut) ≈ p(m | xt)6: 6 Note that this assumption improves as

the transition time between t− 1 and t
is reduced.

p(xt | xt−1, ut, m) =
p(m|xt, xt−1, ut)p(xt | xt−1, ut)

p(m | xt−1, ut)
,

= η′p(m|xt, xt−1, ut)p(xt | xt−1, ut),

≈ η′p(m|xt)p(xt | xt−1, ut),

= η
p(xt | xt−1, ut)p(xt | m)

p(xt)
,

where η′ and η are normalization constants. In this approximation, the term
p(xt | m) is the state probability conditioned on the map, which we can think
of as describing the “consistency” of the state with respect to the map. For
example, p(xt | m) = 0 for a state, xt, that cannot be physically realized by the
robot, such as being inside of a wall of a building. We can therefore view the
approximation in Equation (15.2) as taking an initial probabilistic guess using
the original state transition model without map knowledge, and then using the
map consistency term, p(xt | m), to update the likelihood of the new state, xt,
given the map.

principles of robot autonomy 259

15.2.2 Map-Aware Measurement Model

We also need to modify the probabilistic measurement model model, p(zt |
xt), to account for map information since local measurements are significantly
influenced by the environment. For example, a range measurement is clearly
dependent on what object is currently in the line of sight, such as a wall or some
other feature in the map. We express the new map-aware measurement model
as p(zt | xt, m), where the measurement is now also conditioned on the map.

Another simplifying assumption we sometimes make for the measurement
model is that each of the measurements of the vector zt ∈ Rp are conditionally
independent of each other, given the state and map. With this assumption, we
can express the measurement model as:

p(zt | xt, m) =
p

∏
i=1

p(zi
t | xt, m). (15.3)

15.3 Markov Localization

The first map-based localization algorithm we introduce is referred to as the
Markov localization algorithm. This algorithm is conceptually the same as the
Bayes filter, except for the inclusion of the map in the probabilistic state tran-
sition model, p(xt | xt−1, ut, m), and measurement model, p(zt | xt, m). The
algorithm, which we outline in Algorithm 15.1, provides a general framework
that we can use to address many of the localization problems discussed in our
taxonomy in Section 15.1, including pose tracking and global pose localization
problems, but it does assume the map is already known. Similarly to the Bayes

Algorithm 15.1: Markov Localization
Data: bel(xt−1), ut, zt, m
Result: bel(xt)

foreach xt do
bel(xt) =

∫
p(xt | xt−1, ut, m)bel(xt−1)dxt−1

bel(xt) = ηp(zt | xt, m)bel(xt)

return bel(xt)

filter from Chapter 13, the Markov localization algorithm in Algorithm 15.1 is
generally not computationally tractable to implement in practice. Therefore, like
the Bayes filter, we use this algorithm as a foundation to design more practical
algorithms. In Section 15.4, we again use a Gaussian belief distribution, like in
the EKF, to design an extended Kalman filter localization algorithm. Then, in Sec-
tion 15.5, we again use a sampling-based approach, like in the particle filter, to
design the Monte Carlo localization algorithm.

260 robot localization

15.4 Extended Kalman Filter (EKF) Localization

The extended Kalman filter (EKF) localization algorithm is a map-based localization
algorithm that leverages the Markov localization framework and is very simi-
lar to the general EKF algorithm from Chapter 14. Specifically, this algorithm
models the belief distribution as a Guassian such that bel(xt) ∼ N (µt, Σt). This
modeling choice adds structure to the filtering problem, which improves the
computational efficiency relative to the general Markov localization algorithm7. 7 As with the EKF, one tradeoff of

this choice is that we are restricted
to a unimodal distribution that is not
expressive enough to solve global pose
localization problems.

As for the EKF in Section 14.3, we assume the state transition model is:

xt = f (xt−1, ut) + ϵt,

where ϵt ∼ N (0, Rt) is a zero-mean Gaussian process noise. We also compute
the state transition Jacobian, Gt, as:

Gt = ∇x f (µt−1, ut), (15.4)

where µt−1 is the mean of the previous belief distribution, bel(xt−1). The main
difference between the general EKF algorithm and the EKF localization algo-
rithm is the assumption that a feature-based map is available. Specifically, we
assume the map, m, consists of N point landmarks:

m = {m1, m2, . . . , mN}, mj = (mj,x, mj,y),

where we define each landmark, mj, by its two-dimensional location, (mj,x, mj,y),
in the global coordinate frame. The measurements, zt, associated with these
point landmarks at time t are:

zt = {z1
t , z2

t , . . . },

where zi
t is the measurement associated with a particular landmark. We assume

that each landmark measurement is generated by the model:

zi
t = h(xt, j, m) + δt,

where δt ∼ N (0, Qt) models zero-mean Gaussian sensor noise and j is the index
of the map feature, mj ∈ m, that is associated with measurement i.

One new fundamental problem that we now need to consider is the data as-
sociation problem, which arises due to uncertainty in which measurements are
associated with which landmark. We mathematically denote the measurement-
feature correspondences by the variable ci

t ∈ {1, . . . , N + 1}, which takes on the
value ci

t = j if measurement i corresponds to landmark j, and ci
t = N + 1 if mea-

surement i has no corresponding landmark. Given the feature correspondence,
ci

t, for measurement i, we can compute the Jacobian Hi
t that we use in the EKF

measurement update step. Specifically, for the i-th measurement, we compute
the Jacobian of the new measurement model by:

Hci
t

t = ∇xh(µ̄t, ci
t, m), (15.5)

where µ̄t is the predicted mean from the EKF prediction step.

principles of robot autonomy 261

15.4.1 EKF Localization with Known Correspondences

In practice, we generally will not know the correspondences, ci
t, between mea-

surements, zi
t, and landmarks, mj. However, for pedagogical purposes, it is use-

ful for us to first consider the form of the EKF localization algorithm for the case
where we assume the correspondences are known. For known correspondences,
we give the EKF localization algorithm in Algorithm 15.2. Compared to the
general EKF algorithm in Algorithm 14.2, we can see that the main difference
is that we process multiple measurements at the same time. This is possible
because of our assumption in Equation (15.3) that the measurements are condi-
tionally independent. Specifically, with this conditional independence assump-
tion and some special properties of Gaussian distributions, we can perform the
multi-measurement update by sequentially looping over each measurement and
applying the standard EKF measurement update steps.

Algorithm 15.2: EKF Localization, Known Correspondences
Data: µt−1, Σt−1, ut, zt, ct, m
Result: µt, Σt

µ̄t = f (µt−1, ut)

Σ̄t = GtΣt−1G⊤t + Rt

foreach zi
t do

j = ci
t

Si
t = H j

t Σ̄t[H
j
t]
⊤ + Qt

Ki
t = Σ̄t[H

j
t]
⊤[Si

t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − h(µ̄t, j, m))

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

15.4.2 EKF Localization with Unknown Correspondences

Algorithm 15.2 shows what the EKF localization algorithm looks like if the cor-
respondences are known, but in practice they will be uncertain and we will
need to estimate them along with the robot state. One approach is to use max-
imum likelihood estimation, where we calculate the most likely value of the
correspondences, ct, by maximizing the measurement likelihood:

ĉt = arg max
ct

p(zt | c1:t, m, z1:t−1, u1:t).

In other words, we choose the correspondence variables to maximize the prob-
ability of getting the current measurement given the map and the history of the
correspondence variables, the measurements, and the controls. By marginalizing

262 robot localization

over the current pose, xt, we can write this probability distribution as:

p(zt | c1:t, m, z1:t−1, u1:t) =
∫

p(zt | xt, c1:t, m, z1:t−1, u1:t)p(xt | c1:t, m, z1:t−1, u1:t)dxt,

=
∫

p(zt | xt, ct, m)bel(xt)dxt,

which leverages the Markov assumption to simplify p(zt | xt, c1:t, m, z1:t−1, u1:t) =

p(zt | xt, ct, m), and uses the definition of the predicted belief:

bel(xt) := p(xt | c1:t, m, z1:t−1, u1:t),

which now includes the map and correspondences. Note that the term p(zt |
xt, ct, m) is the measurement model given known correspondences, which we can
factor using the conditional independence assumption from Equation (15.3) so
that:

p(zt | c1:t, m, z1:t−1, u1:t) =
∫

bel(xt)∏
i

p(zi
t | xt, ci

t, m)dxt.

Since each correspondence variable, ci
t, in the integral shows up in a separate

term of the product, we can simplify the optimization by performing an inde-
pendent optimization over each correspondence parameter:

ĉi
t = arg max

ci
t

∫
p(zi

t | xt, ci
t, m)bel(xt)dxt.

We can solve this problem efficiently under the assumption that the measure-
ment model and belief distribution are Gaussian8. In particular, the probability 8 Similar to the previous chapters, in

this case, the product of terms inside
the integral will be Gaussian since both
terms are Gaussian.

distribution resulting from the integral is a Gaussian with mean and covariance:∫
p(zi

t | xt, ci
t, m)bel(xt)dxt ∼ N (h(µ̄t, ci

t, m), Hci
t

t Σ̄t[H
ci

t
t]
⊤ + Qt).

We can therefore express the maximum likelihood optimization problem as:

ĉi
t = arg max

ci
t

N (zi
t | ẑci

t
t , Sci

t
t),

where ẑj
t = h(µ̄t, j, m) and Sj

t = H j
t Σ̄t[H

j
t]
⊤ + Qt. This maximization is also

equivalent to:

ĉi
t = arg min

ci
t

di,ci
t

t , (15.6)

where:
dij

t = (zi
t − ẑj

t)
⊤[Sj

t]
−1(zi

t − ẑj
t), (15.7)

is referred to as the Mahalanobis distance. We can show the equivalence by noting
that in the definition of the Gaussian probability density function:

N (zi
t | ẑj

t, Sj
t) = η exp

(
− 1

2
(zi

t − ẑj
t)
⊤[Sj

t]
−1(zi

t − ẑj
t)
)
,

principles of robot autonomy 263

that the exponential function is monotonically increasing and that the normal-
ization constant η is positive, therefore we achieve the maximum by maximizing
the quadratic term in the exponential.

Adding the maximum likelihood estimation step for the correspondences into
the previous EKF localization algorithm in Algorithm 15.2 gives the new EKF
location algorithm in Algorithm 15.3.

Algorithm 15.3: EKF Localization, Unknown Correspondences
Data: µt−1, Σt−1, ut, zt, m
Result: µt, Σt

µ̄t = f (µt−1, ut)

Σ̄t = GtΣt−1G⊤t + Rt

foreach zi
t do

foreach landmark k in the map do
ẑk

t = h(µ̄t, k, m)

Sk
t = Hk

t Σ̄t[Hk
t]
⊤ + Qt

j = arg mink (zi
t − ẑk

t)
⊤[Sk

t]
−1(zi

t − ẑk
t)

Ki
t = Σ̄t[H

j
t]
⊤[Sj

t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − ẑj

t)

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

One of the disadvantages of using the maximum likelihood estimation ap-
proach for determining the correspondences is that it can be brittle with respect
to outliers and in cases where there are equally likely hypotheses for the cor-
respondence. An alternative approach for estimating correspondences that is
more robust to outliers is to use a validation gate. In this approach, the smallest
Mahalanobis distance, dij

t , must also pass a thresholding test:

(zi
t − ẑj

t)
⊤[Sj

t]
−1(zi

t − ẑj
t) ≤ γ,

in order for a correspondence to be created.

Example 15.4.1 (Differential Drive Robot with Range and Bearing Measure-
ments). Consider a differential drive robot with state x = [x, y, θ]⊤ and a sensor
that measures the range, r, and bearing, ϕ, of landmarks mj ∈ m relative to the
robot’s local coordinate frame. Additionally, we assume that we collect multiple
measurements corresponding to different features at each time step such that:

zt = {[r1
t , ϕ1

t]
⊤, [r2

t , ϕ2
t]
⊤, . . . },

where each measurement, zi
t, contains the range, ri

t, and bearing, ϕi
t.

Assuming the correspondences are known, the measurement model for the

264 robot localization

range and bearing is:

h(xt, j, m) =

[√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y, mj,x − x)− θ

]
. (15.8)

The measurement Jacobian, H j
t , corresponding to a measurement from land-

mark j is therefore:

H j
t =

− mj,x−µ̄t,x√
(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 − mj,y−µ̄t,y√

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 0
mj,y−µ̄t,y

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 − mj,x−µ̄t,x

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 −1

 . (15.9)

It is also common for us to assume that the covariance of the measurement
noise is given by:

Qt =

[
σ2

r 0
0 σ2

ϕ

]
,

where σr is the standard deviation of the range measurement noise and σϕ is the
standard deviation of the bearing measurement noise. In this case, we typically
use a diagonal covariance matrix since we can assume these two measurements
are uncorrelated.

15.5 Monte Carlo Localization (MCL)

Another Bayesian estimation approach to Markov localization is the Monte
Carlo localization (MCL) algorithm. This algorithm leverages the framework of
the non-parametric particle filter algorithm from Chapter 14, and is therefore
better suited for solving global pose localization problems9 than the EKF localiza- 9 We can also use MCL to solve the

kidnapped robot problem by injecting
new randomly sampled particles at
each step to ensure the samples don’t
get too concentrated.

tion algorithm.
Like the particle filter, the MCL algorithm represents the belief distribution,

bel(xt), by a set of K particles:

Pt := {x[1]t , x[2]t , ..., x[K]t },

where each particle, x[k]t , represents a hypothesis about the true state, xt. At
each step of the algorithm, we use the state transition model to propagate the
particles forward, and then we use the measurement model to resample a new
set of particles based on the measurement likelihood. We describe the MCL
algorithm in detail in Algorithm 15.4, which we can see is nearly identical to the
particle filter algorithm in Algorithm 14.4 except that we use the map, m, in the
probabilistic state transition and measurement models.

15.6 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

principles of robot autonomy 265

Algorithm 15.4: Monte Carlo Localization
Data: Pt−1, ut, zt, m
Result: Pt

P̄t = Pt = ∅
for k = 1 to K do

Sample x̄[k]t ∼ p(xt | x[k]t−1, ut, m)

w[k]
t = p(zt | x̄[k]t , m)

P̄t = P̄t ∪
(

x̄[k]t , w[k]
t
)

for k = 1 to K do

Draw i with probability ∝ w[i]
t

Add x̄[i]t to Pt

return particlesett

git clone https://github.com/StanfordASL/pora-exercises.git

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: Extended Kalman Filter Localization

In the file ch15/exercises/ekf_localization.ipynb, implement the extended
Kalman filter algorithm and then apply the algorithm to a robot localization
problem.

Problem 2: Particle Filter Localization

In the file ch15/exercises/particle_filter_localization.ipynb, implement
the particle filter algorithm and then apply the algorithm to a robot localization
problem.

266 robot localization

References

[72] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

16
Simultaneous Localization and Mapping (SLAM)

In Chapter 15, we studied robot localization under the assumption that a map of
the environment, m, was known. While this assumption simplifies the estima-
tion process, it is rarely met in practice: robots often operate in a priori unknown
or partially known environments. Examples include autonomous search-and-
rescue in collapsed buildings, planetary exploration, and mapping of underwa-
ter structures. In such cases, a robot must concurrently infer its own state and
build a map from noisy sensor data.

This joint estimation problem is known as simultaneous localization and map-
ping (SLAM) 1. SLAM plays a central role in the perception and navigation lay- 1 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005ers of an autonomy stack. By providing a consistent spatial frame of reference,
it enables downstream planning, control, and decision-making components to
operate effectively in previously unseen environments.

The SLAM problem emerged in the late 1980s, with seminal contributions by
Hugh Durrant-Whyte, John Leonard, and others, who framed it as a probabilis-
tic joint estimation of pose and map. Early approaches treated SLAM as a large
filtering problem. The Extended Kalman Filter (EKF) 2 provided a conceptually 2 Randall Smith, Matthew Self, and Pe-

ter Cheeseman. “Estimating uncertain
spatial relationships in robotics”. In:
Autonomous robot vehicles. Springer,
1990, pp. 167–193, John J Leonard and
Hugh F Durrant-Whyte. “Simultaneous
map building and localization for an
autonomous mobile robot.” In: IROS.
vol. 3. 1991, pp. 1442–1447

elegant way to maintai a joint Gaussian distribution over all robot poses and
landmarks. While influential, EKF-SLAM quickly revealed two limitations: i)
the cost of updating a dense covariance matrix grew quadratically with map
size, making it difficult to scale, and ii) repeated linearization of nonlinear dy-
namics introduced inconsistencies.

In the early 2000s, a breakthrough came with particle-filter methods, most
notably FastSLAM 3. By combining a particle-based representation of the robot’s 3 Michael Montemerlo et al. “FastSLAM:

A factored solution to the simultaneous
localization and mapping problem”. In:
Aaai/iaai 593598.2 (2002), pp. 593–598

trajectory with separate Kalman filters for landmarks (a technique known as
Rao-Blackwellization), FastSLAM improved scalability and handled data associ-
ation more flexibly. Here, data association refers to the problem of determining
which previously mapped landmark, if any, corresponds to each new sensor
measurement – an ambiguity that arises when multiple landmarks look simi-
lar or when sensing is noisy. However, FastSLAM also struggled with “particle
depletion” over long trajectories, which limited robustness in practice.

The field shifted again in the mid-2000s toward an optimization-based view.
Rather than updating a filter step by step, researchers formulated SLAM as a

268 simultaneous localization and mapping (slam)

sparse nonlinear least-squares problem over a pose graph. This “graph-based
SLAM” perspective made it possible to exploit sparsity in the problem, lever-
age robust cost functions to manage outliers, and apply incremental solvers for
real-time operation. The factor graph formalism later generalized this idea, pro-
viding a unified way to represent diverse sources of constraints (from odometry
to loop closures to landmark observations) in a single probabilistic model.

Recent years have seen multiple extensions in various areas, including Visual(-
inertial) SLAM (e.g., PTAM 4), learning-based SLAM (learned features, differ- 4 Feng Lu and Evangelos Milios. “Robot

pose estimation in unknown environ-
ments by matching 2d range scans”. In:
Journal of Intelligent and Robotic systems
18.3 (1997), pp. 249–275, Frank Dellaert
and Michael Kaess. “Square root SAM:
Simultaneous localization and mapping
via square root information smooth-
ing”. In: The International Journal of
Robotics Research 25.12 (2006), pp. 1181–
1203, Michael Kaess, Ananth Ran-
ganathan, and Frank Dellaert. “iSAM:
Incremental smoothing and mapping”.
In: IEEE Transactions on Robotics 24.6
(2008), pp. 1365–1378, Rainer Kümmerle
et al. “g 2 o: A general framework for
graph optimization”. In: 2011 IEEE
international conference on robotics and
automation. IEEE. 2011, pp. 3607–3613

entiable bundle adjustment), Neural implicit maps (e.g., NeRF, Gaussian splat-
ting), and semantic and dynamic SLAM, handling object-level constraints and
non-rigid scenes. Modern SLAM combines probabilistic estimation, large-scale
optimization, and learned representations, advancing toward the broader vision
of spatial AI.

In the remainder of this chapter, we develop the mathematical framework
underlying SLAM, beginning with its formalization as a Bayesian state estima-
tion problem. We introduce the state-space models that capture robot motion
and sensor measurements, explain how these lead to the online and full SLAM
formulations above, and establish the probabilistic factorization that under-
pins both classical (EKF, FastSLAM) and modern (graph- and factor-based)
approaches.

Before delving into mathematical details, it is useful to step back and con-
sider the main algorithmic paradigms that have emerged for SLAM. These pro-
vide the conceptual framing for the methods we will develop in the rest of the
chapter.

16.1 SLAM Paradigms

A modern SLAM pipeline can be conceptually divided into two parts. The front-
end extracts constraints from raw sensor data (features, correspondences, loop
closures). The back-end maintains a consistent estimate of trajectory and map
by solving an optimization or filtering problem over these constraints. The next
sections will focus on back-end paradigms before returning to front-end design.

The SLAM back-end problem can be approached through several algorithmic
paradigms, each shaped by different fidelity and computational priorities. At
the highest level, modern SLAM algorithms fall into two broad families: filter-
based and smoothing-based methods. This distinction reflects whether estimation
is formulated as a sequential state update problem or as a global optimization
over the entire robot trajectory and map.

16.1.1 Filter-based Approaches

Filter-based SLAM maintains a compact state estimate that is updated online
as new sensor measurements arrive. The key idea is to propagate a belief over
the robot’s current state (and possibly the map) using a recursive prediction-

principles of robot autonomy 269

correction cycle. During prediction, the motion model propagates the state
distribution forward in time. During correction, the measurement model in-
corporates the latest observations to refine the estimate. Two classical instances
dominate this family:

• Extended Kalman Filter (EKF) SLAM, which linearizes motion and measure-
ment models around the current estimate and maintains a joint Gaussian
over poses and landmarks.

• Particle filter-based methods, such as FastSLAM, which factorize the posterior
into a distribution over trajectories (represented by particles) and indepen-
dent landmark estimates.

Filtering naturally supports real-time, online operation with bounded mem-
ory requirements, making it attractive for embedded and resource-limited
platforms. However, its sequential nature can cause accumulated lineariza-
tion errors and drift to persist unless additional mechanisms for loop closure are
integrated.

16.1.2 Smoothing-based Approaches

Smoothing-based SLAM treats the entire robot trajectory and map as variables
in a global optimization problem, leveraging all available measurements simul-
taneously. The estimation is framed as a nonlinear least-squares problem or
equivalently as a maximum a posteriori (MAP) problem, often represented via
graph structures:

• Pose Graph SLAM models only robot poses as variables connected by relative
pose constraints.

• Factor Graph SLAM generalizes this by allowing heterogeneous variables
(poses, landmarks, calibration parameters) and constraints of arbitrary form.

This global perspective offers several advantages. First, robustness to closures,
since relinearization over the whole trajectory can remove drift. Second, flexibil-
ity to incorporate heterogeneous sensing modalities. Third, improved accuracy
at the cost of higher computational demands.

16.1.3 Choosing a Paradigm

In practice, the choice between filtering and smoothing depends on several
factors. First, application constraints, such as computational resources, sensor
bandwidth, and latency requirements. Second, environmental characteristics,
such as density of loop closures, degree of nonlinearity, and scale. Finally, de-
sired estimation quality, i.e., tolerance for drift vs. need for global consistency.
Many contemporary SLAM systems adopt hybrid strategies, leveraging filter-
ing for short-term, high-rate state estimation and periodic smoothing for global
consistency.

270 simultaneous localization and mapping (slam)

With this framing in place, we next describe how raw sensor streams are
transformed into constraints: the front-end of a SLAM system. We then develop
the probabilistic foundations that link those constraints to estimation, and fi-
nally present representative back-end algorithms from each family: EKF-SLAM
and FastSLAM (filtering) and pose-/factor-graph SLAM (smoothing), highlight-
ing their strengths, limitations, and typical use cases.

16.2 Front-End

So far, we have focused on back-end formulations: how to structure and solve
the estimation problem once constraints are given. In a SLAM system, the front-
end is the part of the pipeline that takes the raw sensor observations and con-
verts them into constraints, the mathematical relationships that the back-end
will later use to optimize poses and map estimates. If we think of the back-end
as the brain that reasons about the entire history of the robot’s motion and the
structure of the environment, the front-end is the perceptual and interpretative
apparatus: it decides what information the brain receives, how that information is
structured, and with what level of certainty.

16.2.1 Feature Extraction

At its most basic level, the front-end begins by extracting salient information
from sensor streams. In visual SLAM, this may involve detecting corners, edges,
or learned descriptors that can serve as repeatable landmarks across multiple
viewpoints. in LiDAR-based SLAM, geometric primitives such as planes, edges,
or surface patches are identified. The quality and stability of these features
directly impact the accuracy of the subsequent estimation: poor features lead
to weak or drifting contraints, while rich and robust ones enable consistent
localization and mapping.
add reference to Katie’s section on the above

16.2.2 Data Association

Once features are extracted, the next critical step is data association: deciding
whether a feature observed at time t corresponds to a feature observed previ-
ously. This step is notoriously challenging, as prceptual aliasing, sensor noise,
and environmental changes can all induce incorrect matches. A correct associ-
ation introduces a valid constraint between poses and landmarks; an incorrect
one can catastrophically corrupt the entire estimate. Probabilistic methods, gat-
ing strategies, and robust descriptors are employed to mitigate these risks, but
the problem remains one of the hardest in SLAM.

principles of robot autonomy 271

16.2.3 Outlier Rejection

Because incorrect associations are inevitable in practice, the front-end must
incorporate mechanisms for detecting and rejecting outliers before passing con-
straints to the back-end. Techniques range from simple geometric consistency
checks, to RANSAC-based hypothesis testing, to modern approaches that lever-
age semantic priors or consistency with the current map. Outlier rejection is not
merely a preprocessing step, it is an essential safeguard against divergence of
the estimator.

16.2.4 Loop Closure Detection

A defining capability of SLAM systems is loop closure detection: recognizing
that the robot has returned to a previously visited location. Loop closures serve
to eliminate accumulated drift, effectively “tying together” distant parts of the
trajectory. Methods for loop closure range from bag-of-words visual matching,
to learned place recognition networks, to scan-context descriptors for LiDAR.
Each approach trades off between robustness to environmental change and
computational efficiency. Successful loop closure detection is one of the most
important contributions of the front-end, as it directly enables globally consis-
tent maps.

16.2.5 Scan Alignment and ICP

In range-based SLAM, and often as a refinement step in vision-based systems,
scan alignment plays a central role. ICP and its many variants align overlapping
pointclouds to produce relative pose constraints. Although conceptually simple,
these approaches are sensitive to initialization and prone to local minima, so
modern systems typically use them in combination with feature-based methods
or as part of a multi-stage front-end pipeline.
add references to Katie’s parts

16.3 Examples by Sensing Modality

Up to this point we have examined the two major components of a SLAM sys-
tem: the front-end, which converts raw sensor observations into constraints, and
the back-end, which estimates trajectories and maps from those constraints. In
practice, the concrete design of each stage is strongly shaped by the sensing
modality. Although the abstract SLAM framework is sensor-agnostic, the type
of sensor determines what features can be extracted, how reliably data can be
associated, and what form of constraints are passed to the optimizer. This sec-
tion surveys representative SLAM pipelines organized by sensing modality,
highlighting how sensor characteristics—ranging from appearance-rich images
to geometric point clouds and weather-robust radar signals—have driven the

272 simultaneous localization and mapping (slam)

evolution of both front-end and back-end techniques.

16.3.1 Visual SLAM

Cameras are among the most widely used sensors in SLAM due to their low
cost, small form factor, and ability to provide rich appearance information. Vi-
sual SLAM approaches can be broadly categorized into monocular, stereo, and
RGB-D systems, depending on the available input. Each provides a different
balance between depth recovery, robustness, and computational cost. From a
front-end perspective, visual pipelines rely heavily on feature detection and
matching. Local features such as ORB, SIFT, or SURF are extracted from suc-
cessive frames and associated across time to establish correspondences. These
correspondences give rise to geometric constraints such as epipolar relation-
ships, which are used to infer relative pose. To increase robustness, outlier re-
jection (e.g., RANSAC) and loop closure detection via visual place recognition
are essential. Bundle adjustment, which jointly optimizes poses and landmark
positions, naturally serves as the back-end optimization engine in this setting.

Representative systems illustrate this progression. ORB-SLAM and its vari-
ants have become canonical examples, combining feature-based tracking, loop
closure detection, and pose graph optimization into a complete pipeline. VINS-
Mono demonstrates how integration with inertial measurements can greatly
improve robustness, especially in texture-poor or high-dynamic environments.
More recent approaches incorporate direct methods, which minimize photo-
metric error directly on pixel intensities rather than relying on sparse features,
thereby exploiting more of the available image information.

The strengths of visual SLAM are clear: high spatial resolution, semantic
richness, and ubiquity of sensors. However, limitations arise in challenging
lighting conditions, in scenes with strong dynamics, or when depth cannot be
reliably inferred (particularly in monocular settings). These challenges have
motivated hybrid pipelines, such as visual-inertial SLAM, and learning-based
front-ends that attempt to improve data association and depth prediction.

16.3.2 LiDAR SLAM

LiDAR sensors provide direct geometric measurements of the environment
in the form of dense or semi-dense point clouds. This modality has become
especially important for autonomous vehicles and robotics platforms where
accurate metric localization is required in diverse conditions. The front-end of
LiDAR SLAM often begins with scan preprocessing (e.g., deskewing, motion
compensation) followed by registration. Point cloud registration is frequently
performed via ICP and its many robust variants. Local features such as geo-
metric primitives (planes, edges, and corners) are also extracted to create stable
correspondences across scans. Loop closure detection can be accomplished by
comparing global descriptors of scans, or by embedding geometric signatures
into place-recognition networks. On the back-end, pose graph optimization is

principles of robot autonomy 273

the dominant formulation: each scan is treated as a node, with edges encoding
relative transformations from ICP or feature-based registration. Robust opti-
mization is critical here, as even small registration errors can accumulate into
significant drift over long trajectories. Incremental solvers enable efficient up-
dates in real-time systems, while mapping components fuse successive point
clouds into a consistent global map.

Classic systems such as LOAM (LiDAR Odometry and Mapping) demon-
strated how tightly-coupled front-end registration and back-end optimization
can yield centimeter-level accuracy in real time. More recent work integrates
LiDAR with inertial sensing (LIO-SAM, VINS-LIO), leveraging complementary
strengths for robustness in fast-motion scenarios.

LiDAR SLAM excels in conditions where cameras struggle, such as low light
or high dynamic range scenes. However, limitations include sensor cost, power
consumption, and difficulty handling large dynamic environments. Data spar-
sity at long ranges and sensitivity to weather (e.g., rain, fog) further motivate
hybrid pipelines.

16.3.3 Radar SLAM

Radar sensors, once primarily used for automotive collision avoidance, are
emerging as valuable tools for SLAM. Their unique strengths lie in robustness
to adverse weather and lighting, and long-range detection capability. How-
ever, radar signals are noisy, have lower angular resolution, and often include
significant multipath effects, making SLAM challenging. The radar SLAM front-
end typically relies on feature extraction from radar scans, such as identifying
prominent reflectors or learning robust descriptors. Data association is com-
plicated by the high rate of false positives, requiring strong outlier rejection
mechanisms. Loop closure detection can be achieved via global scan descriptors
or by exploiting the periodicity of radar signatures along revisited paths.

The back-end formulations often resemble those of LiDAR SLAM, with pose
graphs or factor graphs constructed from radar-based relative pose estimates.
Recent advances include direct radar odometry via learned representations and
joint radar-visual pipelines that compensate for radar’s low spatial resolution
with camera cues.

Systems such as RadarSLAM and more recent radar-inertial odometry frame-
works show that robust localization and mapping is possible even in degraded
conditions where cameras and LiDAR fail. While still maturing, radar SLAM
represents a critical modality for robust autonomy in all-weather, safety-critical
applications.

16.3.4 Discussion

Each sensing modality emphasizes a different balance between richness of data,
robustness, and environmental adaptability. Cameras provide dense appearance
cues but are fragile under lighting changes. LiDAR yields precise geometry at

274 simultaneous localization and mapping (slam)

the cost of expense and sensitivity to adverse weather. Radar offers robustness
and range but with sparse, noisy measurements. Increasingly, practical SLAM
systems integrate multiple modalities, combining complementary strengths into
robust, real-time pipelines. This sensor fusion trend underscores the modularity
of the SLAM problem and the importance of a unified view of front-end and
back-end design.

Having described how constraints are produced from raw sensor data, we
now turn to the probabilistic models that underpin SLAM estimation. These
mathematical foundations provide the link between sensor-derived constraints
and the algorithms introduced later in the chapter.

16.4 Mathematical foundations of SLAM

Equipped with an understanding of the front-end, we can now formalize the
SLAM problem as a Bayesian state estimation problem. This formulation cap-
tures the joint evolution of robot state and map, and sets the stage for the algo-
rithmic approaches discussed in the following sections. Formally, given a se-
quence of control inputs u1:t and sensor measurements z1:t, the SLAM problem
consists of estimating both a) the robot trajectory x1:t or its current pose xt, and
b) the map m, which may be represented parametrically (e.g., via landmarks) or
non-parametrically (e.g., via occupancy grids). Let xt ∈ Rn denote the robot’s
state at time t. This typically features its pose (i.e., position and orientation) and
may include velocity or other variables related to the motion model. Further,
let m denote the map of the environment. Maps may take different forms:

• Feature-based maps: {m1, . . . , mK}, a finite set of landmarks mk. Each ele-
ment mk encodes information that can include position, but may also in-
corporate additional attributes such as orientation, shape, or appearance
descriptors, depending on sensing modality and map representation.

• Dense or grid maps: for instance, occupancy grids, which discretize the envi-
ronment into cells with associated occupancy probabilities, or signed distance
fields (often discretized for practical implementation).

• Hybrid maps: combining features and dense structures (common in modern
SLAM).

In practice, two common formulations of the SLAM problem are distinguished:

• Online SLAM, where the goal is to estimate the current robot state together
with the map;

• Full SLAM, where the goal is to estimate the entire trajectory of the robot
together with the map.

To unify notation, we define the joint state as:

yt ≜ (xt, m) (online SLAM),

principles of robot autonomy 275

Figure 16.1: Online SLAM
problems estimate only the cur-
rent robot state together with
the map, whereas full SLAM
problems estimate the entire
trajectory of past robot states
(the state history) along with
the map.

y1:t ≜ (x1:t, m) (full SLAM),

where x1:t = (x1, . . . , xt) denotes the full state trajectory. In this context, two
problem formulations are

• Online SLAM: Estimate the belief

bel(xt, m) = p(xt, m | z1:t, u1:t), (16.1)

which focuses on the current robot state and the map.

• Full SLAM: Estimate the belief

bel(x1:t, m) = p(x1:t, m | z1:t, u1:t), (16.2)

which recovers the entire robot trajectory alongside the map.

The distinction between the two is illustrated in Figure 16.1. In both cases, there
is a fundamental coupling: accurate localization depends on map quality, and
accurate mapping depends on localization quality. This interplay leads to sensi-
tivity to drift, data association errors, and outliers—issues addressed in modern
SLAM via loop closure detection, robust estimation, and global optimization.

16.4.1 Motion and measurement models

At each time step, the robot receives a control input ut (e.g., wheel velocities,
steering commands, thrust forces), and sensor observations zt (e.g., lidar scans,
camera images, range-bearing measurements). The history of data up to time t
is u1:t = (u1, . . . , ut) and zt = (z1, . . . , zt), respectively. The robot’s motion is
modeled by a state transition model

xt+1 = f (xt, ut) + wt,

where f (·) captures the deterministic motion dynamics and wt is stochastic pro-
cess noise with distribution p(wt). Sensor observations follow the measurement
model

zt = h(xt, m) + vt,

276 simultaneous localization and mapping (slam)

where h(·) maps the robot state and map to predicted measurements, and vt

is stochastic measurement noise with distribution p(vt). Both models may be
linear or nonlinear, depending on the sensing and actuation setup. For instance:

• Linear motion model (odometry): a simple differential-drive robot with small
wheel slippage has dynamics that can be approximated as xt+1 = xt +

But + wt, where B is a constant matrix mapping wheel velocities ut to pose
increments.

• Nonlinear motion model (unicycle): more realistic kinematics can be given
by:

xt+1 = xt + vt cos(θt) + wx
t ,

yt+1 = yt + vt sin(θt) + wy
t ,

θt+1 = θt + wt + wθ
t ,

where vt, wt are commanded linear and angular velocities.

• Linear measurement model (range sensor in 1D): if a robot moves along a
line and measures the distance to a fixed landmark at position m, then zt =

m− xt + vt, which is linear in xt.

• Nonlinear measurement model (range-bearing in 2D): for a landmark at
position

(
mx, my

)
, one has:

rt =
√
(mx − xt)2 + (my − yt)2 + vr

t ,

θt = arctan
(

my − yt

mx − xt

)
− θt + vθ

t ,

which is nonlinear in the robot pose and landmark coordinates.

• Nonlinear measurement model (camera projection): a 3D landmark (X, Y, Z)
projects to image coordinates as

[
u
v

]
=

1
Z

[
fx 0 cx

0 fy cy

] X
Y
Z

+ vt,

which is nonlinear due to the division by Z.

16.4.2 Bayesian formulation of SLAM

We can formalize the SLAM problem as a Bayesian state estimation problem, in
which both the robot’s trajectory and the environment map are unknown and
must be estimated jointly from noisy sensor data. Specifically, leveraging Bayes’
rule, one has:

p(y1:t | z1:t, u1:t) ∝ p(z1:t | y1:t, u1:t) p(y1:t | u1:t),

where:

principles of robot autonomy 277

• p(z1:t | y1:t, u1:t) is the likelihood, encoding information from the sensor mod-
els;

• p(y1:t | u1:t) is the prior, capturing motion dynamics knowledge and map
assumptions.

The difference between online and full SLAM is reflected in whether y1:t in-
cludes the entire trajectory or only the current state. In the remainder of this
chapter, we present classical solutions, EKF-SLAM for online SLAM and Fast-
SLAM for full SLAM, before moving on to modern graph-based approaches,
robust optimization, and registration methods such as ICP and bundle adjust-
ment.

16.4.3 State-space factorization for SLAM

The Bayesian formulation introduced above becomes tractable by leveraging the
Markov property of motion and measurement processes: conditioned on the
current state, the future is independent of the past. For SLAM, this turns the
motion model into

p(xt+1 | x1:t, m, u1:t) = p(xt+1 | xt, ut),

meaning that the next state depends only on the current state and the control
input. Furthermore, the measurement model adapts to

p(zt | x1:t, m, z1:t−1, u1:t) = p(zt | xt, m)

meaning that the current measurement depends only onn the current state and
the map. Leveraging these properties, the joint posterior for the full SLAM can
be expressed as:

p(zt | x1:t, m, z1:t−1, u1:t) = p(zt | xt, m), (16.3)

where p(x1) is the prior over the initial state, and p(m) is the prior over the
map. This factorization underlies both filtering-based methods (which marginal-
ize past poses to keep xt only) and smoothing-based methods (which maintain
the entire trajectory). In the filtering case, the goal is to maintain a belief distri-
bution over the current state and map,

bel(xt, m) ≜ p(xt, m | z1:t, u1:t),

and update it as new controls and measurements arrive. Applying Bayes’ rule
together with the Markov properties yields the standard recursion, referred to
as recursive estimation:

1. Prediction (motion update): propagate the belief forward in time using the
motion model,

bel(xt+1, m) =
∫

p(xt+1 | xt, ut) bel(xt, m) dxt.

278 simultaneous localization and mapping (slam)

2. Correction (measurement update): refine the belief using the new measure-
ment,

bel(xt+1, m) = ηp(zt+1 | xt+1, m)bel(xt+1, m),

where η is a normalizing constant ensuring the belief integrates to 1.

This recursion is exact in general, but computing it is only tractable for small,
discrete problems. In practice, SLAM algorithms rely on approximations (e.g.,
EKF linearization, particle filters, sparse optimization) to perform the updates
efficiently.

This state-space perspective provides the unifying foundation for SLAM
algorithms:

• EKF-SLAM implements the recursion directly with Gaussian assumptions
and first-order linearization.

• FastSLAM factors the posterior leveraging Rao-Blackwellization, estimating
the trajectory with particles and the landmarks with independent EKFs.

• Graph-based SLAM encodes the same factorization in a graphical model,
solved as a sparse nonlinear least-squares problem.

16.5 Extended Kalman Filter SLAM

We have already seen two use cases of the extended Kalman filter, first as a
general state estimation algorithm in Chapter 14, and then for robot localiza-
tion given a known map in Chapter 15. In this section, we introduce the EKF
SLAM algorithm, a natural starting point for implementing the online formula-
tion introduced in Equation (16.1) 5. In EKF-SLAM, the map is treated as part 5 Randall Smith, Matthew Self, and Pe-

ter Cheeseman. “Estimating uncertain
spatial relationships in robotics”. In:
Autonomous robot vehicles. Springer,
1990, pp. 167–193, John J Leonard and
Hugh F Durrant-Whyte. “Simultaneous
map building and localization for an
autonomous mobile robot.” In: IROS.
vol. 3. 1991, pp. 1442–1447

of an augmented state vector and the joint posterior over robot pose and map
is recursively estimated under Gaussian noise assumptions and first-order lin-
earizations of the process and measurement models. This approach generalizes
the use of the EKF from the earlier cases of localization and generic recursive
state estimation to the simultaneous estimation of a static feature-based map
and the evolving robot trajectory.

As in Chapter 15, we assume that the map is feature-based:

m = {m1, m2, . . . , mN},

where mi is the i-th feature with coordinates
(
mi,x, mi,y

)
. In this formulation, the

joint state vector is

yt :=

[
xt

m,

]
, (16.4)

and the goal of the online SLAM problem is now to compute the posterior belief
distribution:

bel(yt) = p(xt, m | z1:t, u1:t).

principles of robot autonomy 279

We consider a state transition model for the augmented state vector, y, of the
form

yt+1 = g(yt, ut+1) + wt,

with additive Gaussian process noise wt ∼ N (0, Rt). The nonlinear map g is
defined as:

g(yt−1, ut) =


f (xt−1, ut)

m1,t−1
...

mN,t−1

 ,

where f denotes the robot motion model, and we assume that map feature mi ∈
m is static, so its process model is the identity. The process noise covariance is

Rt =

[
R̃t 0
0 0

]
,

where R̃t is motion model noise covariance for the robot, and the zero blocks
reflect the assumption of no process noise for the map features. The Jacobian of
the augmented motion model is

Gt = ∇yg(y, ut)
∣∣
y=µt−1

,

that is, the derivative of g with respect to the augmented state, evaluated at the
current mean estimate µt−1 of the posterior. We adopt the same measurement
model as in Chapter 15:

zi
t = h(yt, j) + δt,

where δt ∼ N (0, Qt) is zero-mean Gaussian noise and j is the index of the map
feature mj ∈ m associated with measurement i. The Jacobian of the measure-
ment model is

H j
t = ∇yh(y, j)

∣∣
y=µ̄t

,

that is, the derivative of the measurement function with respect to the aug-
mented state, evaluated at the predicted mean µ̄t from the EKF prediction step.

16.5.1 EKF SLAM with Known Correspondences

As in the EKF localization algorithm, we first consider the case where data as-
sociations are known. Let ct = [c1

t , . . .]⊤ denote the correspondence vector,
where ci

t is the index of the map feature associated with measurement zi
t. With

known correspondences, the EKF SLAM algorithm in Algorithm 16.1 (see an-
notations for each block) is nearly identical to the EKF localization algorithm in
Algorithm 15.2, except that it operates on the augmented state vector y

A typical initialization for the belief bel(y0) is:

µ0 =


x0

0
...
0

 , Σ0 =


Σ̃0 0 · · · 0
0 ∞ · · · 0
...

...
. . .

...
0 0 · · · ∞

 ,

280 simultaneous localization and mapping (slam)

Algorithm 16.1: EKF Online SLAM, Known Correspondences
Data: µt−1, Σt−1, ut, zt, ct

Result: µt, Σt

// Prediction step: propagate mean and covariance with motion

model

µ̄t = g(µt−1, ut)

Σ̄t = GtΣt−1GT
t + Rt

// Correction step: for each measurement, update state and

covariance

foreach zi
t do

j = ci
t ; // index of associated map feature

if feature j never seen before then

Initialize

[
µ̄j,x

µ̄j,y

]
as expected position based on zi

t

// Innovation covariance

Si
t = H j

t Σ̄t[H
j
t]

T + Qt

// Kalman gain

Ki
t = Σ̄t[H

j
t]

T [Si
t]
−1

// State update using measurement residual

µ̄t = µ̄t + Ki
t(z

i
t − h(µ̄t, j))

// Covariance update

Σ̄t = (I − Ki
tH j

t)Σ̄t

// Final posterior belief

µt = µ̄t

Σt = Σ̄t

return µt, Σt

where:

x0 =


0
...
0

 , Σ̃0 =


0 · · · 0
...

. . .
...

0 · · · 0

 ,

and x0 and Σ̃ are the initial robot state and associated covariance. The origin is
chosen as the map’s arbitrary reference frame, placing the robot at the origin
with certainty. Feature covariances are initialized with very large values (con-
ceptually “infinite”) to represent complete lack of prior knowledge about their
locations.

When a feature is first observed, the algorithm re-initializes its mean using
the corresponding measurement, thus avoiding linearizing the measurement
function about an arbitrary (and potentially poor) initial guess, such as the ori-
gin. For instance, with a range-bearing sensor (e.g., lidar or a laser rangefinder),
a single measurement (r, φ) provides enough information to triangulate the

principles of robot autonomy 281

landmark’s Cartesian coordinates relative to the robot:

mx = xt + r cos(θt + φ), my = yt + r sin(θt + φ).

This makes single-observation initialization valid in such cases. However, the
same assumption does not hold for pure-bearing sensors (e.g., monocular cam-
eras without depth estimation), where multiple observations or motion are
required to infer landmark positions. A more detailed discussion of these dis-
tinctions is provided in Section 16.3.

16.5.2 EKF SLAM with Unknown Correspondences

Handling unknown correspondences in EKF SLAM is considerably more chal-
lenging than in the known-map localization problem of Chapter 13. In local-
ization, where the map is given, we can determine measurement-to-feature
correspondences via a maximum likelihood procedure and then apply the EKF
update to the belief state. In SLAM, the map itself is estimated, so the the max-
imum likelihood association must rely on estimated feature positions. Moreover,
the algorithm must detect and incorporate previously unseen features.

What changes compared to the known-correspondence case? In the known-correspondence
setting, each measurement zi

t comes with a fixed index ci
t identifying the asso-

ciated map feature. In the unknown-correspondence case, this association must
be inferred online. Thus, the algorithm must decide whether a measurement
should be linked to an existing feature (data association) or treated as a new
feature (map expansion). This additional decision layer is what fundamentally
distinguishes this case from the known-correspondence formulation.

The general approach is:

1. For each measurement zi
t, hypothesize a potential new feature position, in-

creasing the feature count from Nt−1 to Nt = Nt−1 + 1.

2. For all existing features k = 1, . . . , Nt, we compute the Mahalanobis dis-
tance 6: 6 Roy De Maesschalck, Delphine Jouan-

Rimbaud, and Désiré L Massart. “The
mahalanobis distance”. In: Chemometrics
and intelligent laboratory systems 50.1
(2000), pp. 1–18

dik
t = (zi

t − ẑk
t)
⊤[Sk

t]
−1(zi

t − ẑk
t),

where ẑk
t = h(ūt, k) is the predicted measurement for feature k and Sk

t is
the corresponding innovation covariance. Intuitively, the Mahalanobis dis-
tance measures how many “standard deviations” the actual measurement zi

t
lies from the predicted measurement ẑk

t , taking into account correlations in
the uncertainty. Unlike the plain Euclidean distance, it automatically down-
weights directions of high uncertainty and upweights directions of low uncer-
tainty, making it a natural measure of statistical consistency.

3. If dik
t > α for all existing features, accept the hypothesized feature as new.

The threshold α controls the trade-off between false positives (too small) and
missed detections (too large)7. 7 Choosing α too small may lead to

an excessive number of spurious
features, increasing computational
load; choosing it too large risks missing
actual features.

282 simultaneous localization and mapping (slam)

The complete EKF SLAM algorithm for unknown correspondences is summa-
rized in Algorithm 16.2.

Algorithm 16.2: EKF Online SLAM, Unknown Correspondences
Data: µt−1, Σt−1, ut, zt, Nt−1

Result: µt, Σt

Nt = Nt−1

µ̄t = g(µt−1, ut)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

Estimate position

[
µ̄Nt+1,x

µ̄Nt+1,y

]
from zi

t

foreach k = 1 to Nt + 1 do
ẑk

t = h(µ̄t, k)
Sk

t = Hk
t Σ̄t[Hk

t]
T + Qt

dik
t = (zi

t − ẑk
t)
⊤[Sk

t]
−1(zi

t − ẑk
t)

di(Nt+1)
t = α

j = arg mink dik
t

Nt = max{Nt, j}
Ki

t = Σ̄t[H
j
t]

T [Sj
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − ẑj

t)

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

Although conceptually straightforward, EKF online SLAM with unknown
correspondences is rarely robust in practice. Sensor noise can introduce false
features that persist indefinitely. Mitigation strategies include robust outlier
rejection and using more distinctive feature descriptors. A further drawback is
the quadratic computational complexity in the number of features N, making it
challenging to balance runtime and localization accuracy.

Example 16.5.1 (Differential Drive Robot with Range and Bearing Measure-
ments). Consider a differential drive robot with a state consisting of the two-
dimensional position and heading, x = [x, y, θ]⊤. Suppose a sensor is available
which measures the range, r, and bearing, ϕ to features mj ∈ m, relative to the
robot’s local coordinate frame. At each timestep, multiple measurements are
collected:

zt = {[r1
t , ϕ1

t]
⊤, [r2

t , ϕ2
t]
⊤, . . . },

principles of robot autonomy 283

where each measurement zi
t = [ri

t, ϕi
t]
⊤. For SLAM, define the augmented state:

yt :=


xt

m1
...

mN

 =
[

x y θ m1,x m1,y . . . mN,x mN,y

]⊤
.

With known correspondences, the measurement model for feature j is:

h(yt, j) =

[√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y, mj,x − x)− θ

]
.

The associated Jacobian H j
t , corresponding to a measurement from feature j is:

H j
t =

− µ̄j,x−µ̄t,x√qt,j
− µ̄j,y−µ̄t,y√qt,j

0 0 . . . 0
µ̄j,x−µ̄t,x√qt,j

µ̄j,y−µ̄t,y√qt,j
0 . . .

µ̄j,y−µ̄t,y
qt,j

− µ̄j,x−µ̄t,x
qt,j

−1 0 . . . 0 − µ̄j,y−µ̄t,y
qt,j

µ̄j,x−µ̄t,x
qt,j

0 . . .

 ,

where:
qt,j = (µ̄j,x − µ̄t,x)

2 + (µ̄j,y − µ̄t,y)
2,

and µ̄j,x and µ̄j,y are the estimate of the x and y coordinates of feature mj from
µ̄t. With both a range and bearing measurement, we compute the estimated
position of feature mj by:[

µ̄j,x

µ̄j,y

]
=

[
µ̄t,x

µ̄j,y

]
+

[
ri

tcos(ϕi
t + µ̄t,θ)

ri
tsin(ϕi

t + µ̄t,θ)

]
,

which we can use in the known-correspondence EKF SLAM algorithm in Algo-
rithm 16.1 to initialize the feature position, and in the unknown-correspondence
case in Algorithm 16.2 to hypothesize the position of new features.

While EKF-SLAM provides a principled probabilistic framework for joint
pose and map estimation, its computational and memory requirements scale
quadratically with the number of features, and its reliance on Gaussian assump-
tions and linearization can limit performance in large or highly nonlinear en-
vironments. Such limitations have motivated the development of more scalable
and flexible approaches, such as particle filter-based methods, which we discuss
next.

16.6 Particle Filter-Based SLAM

The SLAM problem can also be addressed within the framework of nonpara-
metric particle filters. A major advantage of this approach is that it can be ex-
tended to solve the full SLAM problem, estimating the joint posterior p(x1:t, m |
z1:t, u1:t), which includes both the map m and the full trajectory x1:t of the robot.
This contrasts with EKF-SLAM, which addresses only the online SLAM problem
(estimating the current pose and map).

284 simultaneous localization and mapping (slam)

A naive implementation would resemble Monte Carlo localization from
Chapter 15, but with the augmented state vector y from Equation (16.4) includ-
ing the entire map. However, such an approach is computationally infeasible:
the number of particles required to represent the belief grows exponentially
with the dimensionality of the state space, and the map may contain a large
number of features. A key insight avoids this curse of dimensionality: given the
full robot path and known correspondences, the locations of individual map
features are conditionally independent. Formally, the SLAM posterior over the
augmented state y1:t = (x1:t, m) can be factorized as

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)
N

∏
i=1

p(mi | x1:t, z1:t, c1:t), (16.5)

which we derive in more detail in Equation (16.6).
This factorization separates the posterior into

• a path posterior p(x1:t | z1:t, u1:t, c1:t) over robot trajectories, handled by a
particle filter, and

• feature posteriors p(mi | x1:t, z1:t, c1:t) for each map element, handled indepen-
dently (e.g., via EKFs).

This decomposition drastically reduces the effective state dimension that
particles must represent, enabling efficient particle-based SLAM in large maps.
As with other particle-based approaches, Particle SLAM can a) handle non-
linear process and measurement models without linearization, b) represent
multi-modal belief distributions, and c) avoid explicit Jacobian derivations. Its
drawbacks mirror those discussed earlier: particle methods may require large
numbers of samples to avoid degeneracy in high-dimensional spaces, and per-
formance depends on careful proposal design and resampling strategies.

16.6.1 Factoring the Posterior

Let the full augmented state be y1:t = (x1:t, m) and assume known correspon-
dences c1:t and a single measurement per time step. The key insight is that we
can factor the posterior as:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)
N

∏
i=1

p(mi | x1:t, z1:t, c1:t), (16.6)

where mi is the i-th feature in the map m, the term p(x1:t | z1:t, u1:t, c1:t) is
referred to as the path posterior, and the terms p(mi | x1:t, z1:t, c1:t) are referred to
as the feature posteriors. We derive this factored form by first using Bayes’ rule to
express the posterior, p(y1:t | z1:t, u1:t, c1:t), as:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)p(m | x1:t, z1:t, u1:t, c1:t).

principles of robot autonomy 285

Next, we note that since the feature posterior, p(m | x1:t, z1:t, u1:t, c1:t), is condi-
tioned on x1:t, the dependence on u1:t is redundant such that we can simplify:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)p(m | x1:t, z1:t, c1:t).

Next, we turn our attention to the feature posterior, p(m | x1:t, z1:t, c1:t), and
consider whether or not the feature mi is observed in the latest measurement, zt,
which we denote as i = ct if it was observed and i ̸= ct if it was not observed.
Under these two cases, we write the feature posterior for mi as:

p(mi | x1:t, z1:t, c1:t) =

p(mi | x1:t−1, z1:t−1, c1:t−1), i ̸= ct,
p(zt |mi ,xt ,ct)p(mi |x1:t−1,z1:t−1,c1:t−1)

p(zt |x1:t ,z1:t−1,c1:t)
, i = ct,

where the first case follows from the most recent measurement having no effect
on unrelated features, and the second case is obtained by applying Bayes’ rule
together with the conditional independence of features given the trajectory (so
that other features can be factored out of the likelihood). For the case of i = ct,
we can therefore write the probability of the observed feature as:

p(mct | x1:t−1, z1:t−1, c1:t−1) =
p(zt | x1:t, z1:t−1, c1:t)p(mct | x1:t, z1:t, c1:t)

p(zt | mct , xt, ct)
.

We can now show that the factorization in Equation (16.6) holds by induction.
First, suppose that the feature posterior at the previous time, t − 1, is factored
as8: 8 This assumption is true at the first

time step because there is not yet any
information about any features.p(m | x1:t−1, z1:t−1, c1:t−1) =

N

∏
i=1

p(mi | x1:t−1, z1:t−1, c1:t−1).

Then, using Bayes’ rule and the conditional independence of features given the
robot path, the posterior at time t can be written as

p(m | x1:t, z1:t, c1:t) =
p(zt | m, xt, ct)p(m | x1:t−1, z1:t−1, c1:t−1)

p(zt | x1:t, z1:t−1, c1:t)
,

=
p(zt | mct , xt, ct)

p(zt | x1:t, z1:t−1, c1:t)

N

∏
i=1

p(mi | x1:t−1, z1:t−1, c1:t−1).

Next, we apply the analysis of p(mi | x1:t, z1:t, c1:t) above for the cases where
i ̸= ct and i = ct to get:

p(m | x1:t, z1:t, c1:t) =
p(zt | mct , xt, ct)

p(zt | x1:t, z1:t−1, c1:t)
p(mct | x1:t−1, z1:t−1, c1:t−1) ∏

i ̸=ct

p(mi | x1:t−1, z1:t−1, c1:t−1),

= p(mct | x1:t, z1:t, c1:t) ∏
i ̸=ct

p(mi | x1:t, z1:t, c1:t),

=
N

∏
n=1

p(mn | x1:t, z1:t, c1:t),

which shows the correctness of the factorization.

286 simultaneous localization and mapping (slam)

16.6.2 FastSLAM with Known Correspondences

Now that we have shown that we can factor the posterior distribution, p(y1:t |
z1:t, u1:t, c1:t), according to Equation (16.6), we introduce FastSLAM, the particle
SLAM algorithm which exploits this factorization for computational efficiency.
Specifically, FastSLAM estimates the path posterior, p(x1:t | z1:t, u1:t, c1:t), using
a particle filter and estimates each feature posterior, p(mi | x1:t, z1:t, c1:t), by an
EKF conditioned on the robot path, x1:t. This reduces the size of the state space
that the particles must represent to only the size of the robot’s state, which
is generally significantly smaller than the number of potential features in the
map, and therefore helps avoid the curse of dimensionality that can plague the
particle filter approach.

For this factorization, the set of particles that FastSLAM uses is:

Pt := {P[1]
t , P[2]

t , . . . , P[K]
t },

where the k-th particle is:

P[k]
t := {x[k]t , µ

[k]
1,t, Σ

[k]
1,t, . . . , µ

[k]
N,t, Σ

[k]
N,t},

with x[k]t a hypothesis of the robot state, and (µ
[k]
i,t , Σ

[k]
i,t) the EKF mean and co-

variance for feature mi under that trajectory hypothesis. Note that each particle
contains the parameters for an EKF for each feature since, from the factoriza-
tion, the posterior over the map feature is conditioned on the state. Thus, each
particle carries its own local map estimate, and with K particles there are NK
EKFs in total.

Algorithmic structure. The FastSLAM recursion proceeds in blocks, blending
elements of particle filters with EKF updates:

1. Prediction (motion update). For each particle, sample a new robot pose x[k]t
from the state transition model given control input ut:

x[k]t ∼ p(xt | x[k]t−1, ut).

2. Feature update (measurement correction). For the observed feature j = ct,
update the EKF mean and covariance in each particle:

ẑ[k] = h(µ[k]
j,t−1, x[k]t),

S = H jΣ
[k]
j,t−1[H

j]⊤ + Qt,

K = Σ
[k]
j,t−1[H

j]⊤S−1,

µ
[k]
j,t = µ

[k]
j,t−1 + K(zt − ẑ[k]), Σ

[k]
j,t = (I − KH j)Σ

[k]
j,t−1.

principles of robot autonomy 287

3. Weighting. Each particle receives a weight w[k] proportional to the likelihood
of the observation under its map estimate:

w[k] ∝ exp
(
− 1

2 (zt − ẑ[k])⊤S−1(zt − ẑ[k])
)

.

4. Copying unchanged features. For all n ̸= ct, propagate map features un-
changed:

µ
[k]
n,t = µ

[k]
n,t−1, Σ

[k]
n,t = Σ

[k]
n,t−1.

5. Resampling. Draw a new particle set Pt by resampling from the weighted
particles, favoring those that explain the measurements well.

We outline this procedure in Algorithm 16.3. It is important to see how Fast-
SLAM combines two ideas: (1) the particle filter is used to track the robot tra-
jectory distribution, while (2) the EKF updates are used to maintain Gaussian
feature posteriors inside each particle.

Unknown correspondences. So far, we have assumed that correspondences ct are
given. In practice, FastSLAM can also be extended to handle unknown corre-
spondences: within each particle, one can evaluate the likelihood of the observa-
tion under multiple feature hypotheses (e.g., using the Mahalanobis distance as
in EKF-SLAM) and update the feature set accordingly. This increases robustness
but also raises complexity, since each particle must solve its own data associa-
tion problem.

16.7 Graph SLAM

A particularly important specialization of the general SLAM formulation arises
when the environment is represented implicitly through relative pose measure-
ments between robot states. In pose graph SLAM, the variables are restricted to
the sequence of robot poses x0:T , while landmarks (if any) are marginalized
out. Each measurement constrains a pair of poses, typically corresponding to
odometry or loop closure observations, and can be written as:

zij = hij
(

xi, xj
)
+ vij,

where zij is the relative pose measurement from pose i to pose j, hij is the mea-
surement function (often composition of relative transformations), and vij is
zero-mean noise with known covariance. The maximum a posteriori (MAP) es-
timate of the poses is obtained by minimizing the sum of squared, information-
weighted residuals:

x⋆0:T = arg min
x0:T

∑
(i,j)∈E

∥∥rij(xi, xj)
∥∥2

ij
,

where E is the set of edges in the graph, ij is the information matrix of zij, and

rij(xi, xj) ≜ zij ⊖ hij(xi, xj),

288 simultaneous localization and mapping (slam)

is the residual. The information matrix ij is defined as the inverse of the mea-
surement covariance, ij = Q−1

ij . It encodes the confidence we have in the mea-
surement: directions of high variance in Qij correspond to low confidence (small
entries in ij), while directions of low variance correspond to high confidence
(large entries). The weighted norm ∥r∥2 = r⊤ r therefore penalizes residuals
more strongly in directions where the sensor is reliable.

The operator ⊖ denotes the relative pose difference on SE(2) or SE(3). Given
two poses xa, xb ∈ SE(3), the expression

xa ⊖ xb = Log
(

x−1
a xb

)
,

maps the transformation from xa to xb into the tangent space (a vector in R3

for SE(2) or R6 for SE(3)). This ensures that residuals are computed in a linear
vector space, while still respecting the underlying geometry of rotations and
translations.

Linearization and Jacobians. Because the residuals are nonlinear in xi, xj, iterative
optimization is required. At each iteration, the residuals are linearized around
the current estimate. Denote the Jacobians of rij as

Ai =
∂rij

∂xi
, Aj =

∂rij

∂xj
.

These Jacobians encode how the residual changes with respect to perturbations
in the connected poses.

Normal equations and sparsity. The linearized least-squares problem leads to the
sparse normal equations:

H ∆x = b,

where ∆x is the pose increment. Here H is the global information (Hessian) matrix,
obtained by summing Jacobian and information contributions from all edges:

H = ∑
(i,j)∈E

J⊤ij Ωij Jij,

and b is the corresponding gradient vector,

b = ∑
(i,j)∈E

J⊤ij Ωij rij.

Only the blocks of H corresponding to poses directly connected by a measure-
ment are nonzero, which reflects the locality of sensing and allows the use of
sparse linear algebra.

Robust kernels and priors. In practice, two modifications are typically required.
Robust kernels. Not all measurements are reliable: for instance, an incorrect
loop closure may introduce a residual that is inconsistent with the rest of the

principles of robot autonomy 289

graph. To reduce their impact, the squared error term ∥rij∥2
Ωij

can be replaced

with a robust loss ρ(∥rij∥2
Ωij

), where ρ(·) grows more slowly than the quadratic
function (e.g., Huber or Tukey kernels). This means that small residuals are
treated normally, while very large residuals are “downweighted,” preventing a
single outlier from dominating the solution.

Priors / gauge constraints. The optimization problem is also underdetermined:
without additional information, the entire solution can be shifted or rotated
without changing the relative errors. To remove this ambiguity, we add a prior
factor on the first pose (e.g., fixing it at the origin with small covariance), or
equivalently introduce a gauge constraint. This anchors the graph in a global
reference frame, ensuring a unique and well-posed solution.

Retraction on the manifold. The linear system provides increments ∆xi that
live in the tangent space of the pose manifold, i.e., a local linear approximation
of SE(2) or SE(3). Since robot poses themselves must remain valid rigid-body
transformations, we cannot update them by simple vector addition. Instead,
each pose is updated using the ⊕ operator:

xi ← xi ⊕ ∆xi,

where ⊕ denotes a retraction: it maps the tangent increment ∆xi ∈ R3 (for SE(2))
or R6 (for SE(3)) back onto the manifold.

Concretely, this is often implemented via the exponential map of the Lie
group:

xi ⊕ ∆xi = xi · Exp(∆xi),

so that translations and rotations remain properly represented as rigid transfor-
mations. This guarantees that the updated poses remain on the manifold SE(2)
or SE(3), rather than drifting off into the linearized space.

Summary. The resulting optimization procedure is a batch Gauss-Newton
or Levenberg-Marquardt algorithm applied to the pose graph. Loop closures
appear as edges that connect non-consecutive nodes, providing the essential
constraints to correct accumulated drift. The sparsity of the information matrix
enables scalable solvers that can handle large-scale graphs with thousands of
poses.

While pose graph SLAM is most commonly used for robot-centric mapping
when only relative pose constraints are needed, the same formulation can be
extended to multi-robot scenarios (with inter-robot relative pose edges) or to
hybrid representations where selected landmarks are retained as additional
variables.

The next section generalizes this concept to factor graphs, which provide a
more flexible and modular representation for SLAM, accommodating heteroge-
neous measurements and variables beyond robot poses.

290 simultaneous localization and mapping (slam)

16.8 Factor Graph SLAM

While pose graph SLAM models only robot poses connected by relative-pose
constraints, many real-world scenarios involve additional unknowns: explicit
landmark positions, extrinsic calibration between sensors, time-varying biases,
or even semantic object labels. Factor graph SLAM generalizes the pose graph
formulation by casting SLAM as a probabilistic graphical model in which ar-
bitrary variables can be constrained by heterogeneous measurements. This
perspective has become the standard abstraction for modern SLAM back-ends.

16.8.1 Motivation

Pose graph SLAM is elegant but restrictive: it assumes every measurement
can be reduced to a relative pose between two robot states. In practice, this
abstraction hides important structure:

• Landmarks cannot be explicitly represented and refined.

• Sensor calibration parameters (e.g., camera intrinsics, lidar-IMU extrinsics)
must be estimated separately.

• Multi-modal sensing introduces higher-order constraints involving more than
two variables at once.

Factor graphs overcome these limitations by embedding SLAM into the broader
framework of graphical models. Each measurement becomes a factor, i.e., a local
probabilistic relation between the subset of variables it touches. This modularity
allows heterogeneous information to be fused consistently within one optimiza-
tion problem.

16.8.2 Formulation

In a factor graph, nodes represent variables to be estimated:

X = {x0, x1, . . . , xT} robot poses,

L = {l1, . . . , lM} landmarks,

Θ = {θ1, . . . } sensor parameters, biases, etc.

Edges represent factors, each encoding the likelihood of a measurement zk given
the variables Yk it depends on:

p(X, L, Θ | Z) ∝ ∏
k

ϕk(Yk).

Example. Suppose a stereo camera at pose xt observes a landmark lj. The mea-
surement depends not only on the robot pose and landmark coordinates, but
also on the stereo calibration parameters θ. This induces a ternary factor

ϕ(xt, lj, θ) ∝ p(zt,j | xt, lj, θ),

principles of robot autonomy 291

linking three variables simultaneously. Such higher-order constraints cannot
be represented in a pure pose graph, but arise naturally in the factor graph
formulation.

16.8.3 Residuals and Linearization

For each factor we define a residual

rk(Yk) = zk ⊖ hk(Yk),

where hk(·) is the measurement function and ⊖ denotes subtraction in the ap-
propriate tangent space. Linearization around the current estimate introduces
the Jacobian

Jk = ∇Yk rk(Yk).

Linearized system. The MAP estimation problem reduces to nonlinear least
squares over all residuals. At each iteration, linearization yields the sparse nor-
mal equations

H ∆Y = b,

with contributions from each factor,

H += J⊤k Ωk Jk, b += J⊤k Ωkrk,

where Ωk is the information matrix of measurement k. Sparsity arises because
each factor touches only a small subset of variables, which is the key to scalabil-
ity.

Robust kernels and priors. As in pose graph SLAM, robust kernels ρ(·) can be
applied to downweight large residuals from outliers. Gauge freedom is removed
by including priors as additional factors, e.g., anchoring the first pose.

Schur complement. When landmarks are numerous, it is common to marginal-
ize them analytically via the Schur complement. This reduces the system to
one over poses and calibration parameters while preserving the information
conveyed by landmark observations.

Manifold retraction. After solving for increments ∆Y, variables are updated
using the ⊕ operator:

y← y⊕ ∆y,

which retracts from the tangent space back onto the appropriate manifold
(e.g., Exp(·) on SE(3) for poses, direct addition in R3 for landmarks).

292 simultaneous localization and mapping (slam)

16.8.4 Algorithmic structure

16.8.5 Alternatives and Variants

While Gauss-Newton and Levenberg-Marquardt are the standard batch solvers,
large-scale problems often rely on iterative linear methods such as precondi-
tioned conjugate gradient. For online operation, incremental solvers such as
iSAM and iSAM2 update only a subset of variables upon receiving new factors,
achieving real-time performance. Other approaches explore convex relaxations,
stochastic gradient methods, or sampling-based inference, though these remain
less common in mainstream SLAM systems.

16.8.6 Practical Impact

The factor graph formalism has three defining advantages:

• Modularity: new sensor models or constraints can be added as factors with-
out altering the solver.

• Scalability: sparsity in the factor graph yields sparse Jacobians and Hessians,
enabling efficient large-scale optimization.

• Incrementality: compatibility with incremental solvers allows real-time up-
dates.

For these reasons, factor graphs underpin nearly all modern SLAM back-ends.
Widely used libraries such as GTSAM, g2o, and Ceres Solver implement this
framework and form the backbone of current research and deployed robotic
systems.

16.9 Advanced and Emerging Methods

While classical SLAM pipelines rely on geometric features and optimization-
based back-ends, the field has rapidly expanded to incorporate learning-based
techniques, richer scene representations, and integration with broader AI sys-
tems. These methods aim not only to improve accuracy and robustness, but also
to enable SLAM to function in environments and applications beyond the reach
of purely geometric methods.

16.9.1 Deep Learning in SLAM

Learning has been used to improve both the front-end and back-end of SLAM.
On the front-end, convolutional and transformer-based networks provide robust
feature detection, semantic segmentation, and depth estimation, even in chal-
lenging lighting or texture-poor settings. On the back-end, learned priors can
regularize optimization, improve loop-closure detection, or predict uncertainty

principles of robot autonomy 293

in sensor data. End-to-end “neural SLAM” systems attempt to replace hand-
engineered pipelines entirely, although their generalization and interpretability
remain active research challenges.

16.9.2 Neural Implicit Maps

Traditional mapping approaches (occupancy grids, point clouds, mesh recon-
structions) scale poorly or lack continuity. Neural implict representations, such
as signed distance functions or neural radiance fields, provide compact, con-
tinuous encodings of geometry and appearance. These maps can be queried
at arbitrary resolution, fused across time, and potentially shared among mul-
tiple agents. While computationally demanding, implicit maps point to a new
paradigm where SLAM outputs not just geometry, but a photorealistic and se-
mantically enriched digital twin of the environment.

16.9.3 Semantic and Dynamic SLAM

Classic SLAM often assumes static scenes, but real-world environments are
dynamic and cluttered with moving agents. Semantic SLAM augments the map
with object-level labels, enabling robots to recognize and reason about doors,
vehicles, or furniture rather anonymous landmarks. Dynamic SLAM explicitly
models moving objects, separating them from the static background and in
some cases tracking them jointly with the ego-motion. Such capabilities open
the door to task-driven autonomy, where maps support higher-level reasoning
and interaction.

16.9.4 Toward Spatial AI

Looking forward, SLAM is evolving beyond trajectory estimation and mapping
toward a broader concept sometimes referred to as Spatial AI. Here, geometry,
semantics, and temporal dynamics are tightly integrated into a coherent rep-
resentation that supports decision-making, planning, and interaction. Rather
than being a self-contained module, SLAM becomes part of a larger perception-
and-action loop, one that enables robots to act intelligently in complex, dynamic
worlds.
Connect with Katie

16.10 Exercises

The starter code for the exercises provided below is available online through
GitHub. To get started, download the code by running in a terminal window:

git clone https://github.com/StanfordASL/pora-exercises.git

294 simultaneous localization and mapping (slam)

We denote Problems requiring hand-written solutions and coding in Python
with and , respectively.

Problem 1: EKF SLAM

In the file ch16/exercises/ekf_slam.ipynb, implement the extended Kalman
filter SLAM algorithm and then apply the algorithm to a robot SLAM problem.

principles of robot autonomy 295

References

[10] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart.
“The mahalanobis distance”. In: Chemometrics and intelligent laboratory
systems 50.1 (2000), pp. 1–18.

[11] Frank Dellaert and Michael Kaess. “Square root SAM: Simultaneous
localization and mapping via square root information smoothing”. In: The
International Journal of Robotics Research 25.12 (2006), pp. 1181–1203.

[27] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. “iSAM: Incre-
mental smoothing and mapping”. In: IEEE Transactions on Robotics 24.6
(2008), pp. 1365–1378.

[34] Rainer Kümmerle et al. “g 2 o: A general framework for graph optimiza-
tion”. In: 2011 IEEE international conference on robotics and automation. IEEE.
2011, pp. 3607–3613.

[37] John J Leonard and Hugh F Durrant-Whyte. “Simultaneous map building
and localization for an autonomous mobile robot.” In: IROS. Vol. 3. 1991,
pp. 1442–1447.

[43] Feng Lu and Evangelos Milios. “Robot pose estimation in unknown envi-
ronments by matching 2d range scans”. In: Journal of Intelligent and Robotic
systems 18.3 (1997), pp. 249–275.

[46] Michael Montemerlo et al. “FastSLAM: A factored solution to the simul-
taneous localization and mapping problem”. In: Aaai/iaai 593598.2 (2002),
pp. 593–598.

[68] Randall Smith, Matthew Self, and Peter Cheeseman. “Estimating un-
certain spatial relationships in robotics”. In: Autonomous robot vehicles.
Springer, 1990, pp. 167–193.

[72] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

296 simultaneous localization and mapping (slam)

Algorithm 16.3: FastSLAM
Data: Pt−1, ut, zt, ct

Result: Pt

for k = 1 to K do
// Prediction: sample new robot pose

Sample x[k]t ∼ p(xt | x[k]t−1, ut)

// Measurement update for observed feature

j = ct

if feature j never seen before then

Initialize feature: (µ[k]
j,t−1, Σ

[k]
j,t−1)

else

ẑ[k] = h(µ[k]
j,t−1, x[k]t)

S = H jΣ
[k]
j,t−1[H

j]T + Qt

K = Σ
[k]
j,t−1[H

j]T [S]−1

µ
[k]
j,t = µ

[k]
j,t−1 + K(zt − ẑ[k])

Σ
[k]
j,t = (I − KH j)Σ

[k]
j,t−1

// Weighting: compute importance weight

w[k] = det(2πS)−1/2 exp
(
− 1

2 (zt − ẑ[k])⊤S−1(zt − ẑ[k])
)

// Copy unchanged features

for n ∈ {1, . . . , N}, n ̸= ct do

µ
[k]
n,t = µ

[k]
n,t−1

Σ
[k]
n,t = Σ

[k]
n,t−1

// Resampling: select new particle set according to weights

Pt = ∅
for i = 1 to K do

Draw k with probability ∝ w[i]
t

Pt = Pt ∪ (x[k]t , µ
[k]
1,t, Σ

[k]
1,t, . . . , µ

[k]
N,t, Σ

[k]
N,t)

return Pt

principles of robot autonomy 297

Algorithm 16.4: Pose-Graph (GraphSLAM) – Batch Gauss–Newton /
Levenberg–Marquardt

Data: Initial poses x(0)0:T (e.g., odometry), edge set E with measurements
{zij} and information matrices {Ωij}, prior on root pose(

xprior
0 , Ωprior

)
, max iterations K, damping λ ≥ 0 (LM), robust

kernel ρ (optional)
Result: Optimized poses x⋆0:T
// Batch Pose-Graph SLAM (Gauss-Newton / Levenberg-Marquardt)

x← x(0)0:T
for k = 1 to K do

Initialize normal equations: H ← 0, b← 0
foreach (i, j) ∈ E do

ẑij ← hij(xi, xj)

rij ← zij ⊖ ẑij // pose residual on SE(2/3)
Ai, Aj ← ∇xi ,xj rij

wij ← robust weight from ρ(∥rij∥Ωij) // set wij = 1 if no

robust kernel

Ω̃ij ← wijΩij

// Scatter-add into sparse H, b
Hii += A⊤i Ω̃ij Ai, Hij += A⊤i Ω̃ij Aj, Hjj += A⊤j Ω̃ij Aj

bi += A⊤i Ω̃ijrij, bj += A⊤j Ω̃ijrij

// Anchor to fix gauge

H00 += Ωprior, b0 += Ωprior
(

xprior
0 ⊖ x0

)
// Solve for increment

Solve (H + λI)∆x = b with sparse Cholesky/QR
// Retract on the manifold

for i = 0 to T do
xi ← xi ⊕ ∆xi // retraction via Exp(·) on SE(2/3)

if ∥∆x∥∞ < ε or relative cost decrease < τ then
break

return x

298 simultaneous localization and mapping (slam)

Algorithm 16.5: Factor-Graph SLAM: batch Gauss–Newton /
Levenberg–Marquardt

Data: Variables Y = {X, L, Θ, . . . } with initial guess Y(0);
factors F = {ϕk}, each with measurement zk, information Ωk, and model
zk ≈ hk(Yk);
optional ordering π;
max iters K, damping λ ≥ 0, robust kernel ρ (optional)
Result: MAP estimate Y⋆

Y ← Y(0)

for t = 1 to K do
H ← 0, b← 0
foreach ϕk ∈ F do

ẑk ← hk(Yk)

rk ← zk ⊖ ẑk // on tangent space

Jk ← ∇Yk rk

wk ← robust weight from ρ(∥rk∥Ωk)

Ω̃k ← wkΩk

H += J⊤k Ω̃k Jk, b += J⊤k Ω̃krk

if use Schur complement then
Partition H, b into pose vs. landmark blocks and eliminate L

Solve (H + λI)∆Y = b with sparse Cholesky/QR
foreach variable y ∈ Y do

y← y⊕ ∆y

if ∥∆Y∥∞ < ε or relative cost decrease < τ then
break

return Y

17
Sensor Fusion and Object Tracking

Individual sensors have inherent design limitations, such as limited range, lim-
ited field of view, or performance degradation under certain environmental
conditions. In practice, it is also common for individual sensors to malfunction,
either through a degradation of measurement accuracy over time or even from
catastrophic sensor failure. We can design robots to be robust to these weak-
nesses and failure modes by incorporating multiple sensors, including multiple
types of sensors, which can effectively reduce uncertainty for perception and
localization tasks.

For example, a self-driving car might use a combination of lidar and radar for
measuring distances, since lidar can provide short range high resolution data
but radar is more robust at longer ranges1. The car might also leverage cameras 1 Radar is also generally more robust

than lidar in poor weather conditions
such as fog, rain, or snow.

to compliment distance sensors, which could give bearing measurements to
an obstacle and are also much better suited to help with object recognition.

Figure 17.1: Sensor fusion can
reduce uncertainty by provid-
ing more well-rounded data.
For example, a radar sensor
may provide good longitudinal
distance accuracy but slightly
less lateral accuracy, and a cam-
era may provide poor range
estimation but good lateral
position estimation. By fusing
these two signals, the result-
ing position estimate can be
accurate longitudinally and
laterally.

As another example, a wheeled robot may use GNSS sensors as well as wheel
encoders to estimate position. The GNSS sensors can help ensure the global
position error is small, but the wheel encoders might give a higher resolution
signal for small movements, or if GNSS signals are lost.

This chapter covers the topic of sensor fusion2,3, which provides methods 2 F. Gustafsson. Statistical Sensor Fusion.
Studentlitteratur, 2013, p. 554

3 D. Simon. Optimal State Estimation:
Kalman, H∞, and Nonlinear Approaches.
John Wiley & Sons, 2006

for combining signals from multiple sensors and multiple sensor modalities to
support a common goal, such as state estimation.

300 sensor fusion and object tracking

17.1 A Taxonomy of Sensor Fusion

We begin our discussion on sensor fusion by presenting a taxonomy of concepts
and challenges that put the sensor fusion problem into a broader perspective.
This includes a taxonomy for challenges related to the raw data signals that sen-
sors provide, a taxonomy for types of signal fusion problems, and a taxonomy
for the overall architectural designs of multi-sensor systems.

Data-related Taxonomy: One of the primary challenges with data fusion is the
inherent imperfection in measurement data, including uncertainty from sensor
noise, imprecision from sensor bias, and granularity from the sensor’s resolu-
tion limits. Other important data-related aspects of sensor fusion include data
correlation, disparity, and inconsistency, such as from data conflicts, outliers, or
disorder. Broadly speaking, sensor data can experience multiple types of imper-
fection at the same time, and therefore we must develop data fusion algorithms
with robustness in mind.

Fusion-related Taxonomy: At the data-fusion level, it is useful to classify the
problem based on the type of data that is being fused. Low-level fusion prob-
lems typically fuse low-level signal data, such as time-series data, intermediate-
level problems fuse features and characteristics, and high-level fusion problems
consider decisions. We also categorize fusion problems based on the relation-
ship among different sensors used in the fusion process. Competitive fusion
problems consider redundant sensors that directly measure the same quantity.
Complementary fusion problems consider sensors that provide complementary
information about the environment, such as lidar for short distance ranging and
radar for long distance ranging. Finally, cooperative fusion considers problems
where the required information cannot be inferred from a single sensor4. Gen- 4 For example, GNSS localization and

stereo vision can be cooperatively fused
because they measure fundamentally
different environmental quantities.

erally speaking, competitive fusion increases reliability and accuracy of fused
information, complementary fusion increases the completeness of information,
and cooperative fusion broadens the type of information that we can gather.

Architectural Taxonomy: We also classify fusion algorithms based on their type
of architecture, namely whether they are centralized, decentralized, or distributed.
Centralized architectures first collect all sensor data and then perform compu-
tations on the entire collection of data. This approach is theoretically optimal
since all information is gathered and operated on at once, but it requires high
levels of communication and processing which may be practically challenging.
Decentralized architectures are essentially collections of centralized systems,
and generally still suffer from the same high communication and processing
requirements as centralized architectures. On the other hand, distributed archi-
tectures do not collect all sensor information ahead of time, but rather perform
computations directly on local sensor data before potentially passing informa-
tion on for further fusion tasks. Distributed architectures scale better, but can

principles of robot autonomy 301

lead to suboptimal performance because each sensor is performing local pro-
cessing and therefore does not have all available information.

17.2 Bayesian Approach to Sensor Fusion

The previous chapters presented several algorithms for robot state estimation
and localization based on Bayes filter. We can also view these algorithms as
methods to solve the sensor fusion problem. In this section, we explore in more
detail the Bayesian approach to sensor fusion, and show exactly how these
approaches can blend measurement data to reduce uncertainty.

Recall that the Bayesian approach is probabilistic and models unknowns
as random variables and quantifies knowledge and uncertainty in the form of
probability distributions over these variables. This principled approach is also
useful for sensor fusion problems for several reasons. First, it provides a unified
framework for representing knowledge that is compatible with any quantity
and type of sensor and is interpretable. Second, probability distributions implic-
itly provide information about uncertainty5. Third, Bayes’ rule provides a the- 5 For example, the variance of a Gaus-

sian distribution is a statistic that
quantifies the uncertainty in the distri-
bution.

oretically principled approach for updating the probability distributions given
data. Finally, we can use Bayesian approaches to deal with missing information
and classification of new observations.

Example 17.2.1 (Probabilistic Competitive Fusion Example). As an example to
show how we can use a probabilistic approach to reduce uncertainty through
sensor fusion, consider a case where two sensors are fused to estimate a sin-
gle quantity, x ∈ R. Suppose the two measurements y1 and y2 are normally
distributed random variables:

p(y1 | x) =
1√

2πσ2
1

e
− 1

2
(x−y1)

2

σ2
1 ,

p(y2 | x) =
1√

2πσ2
2

e
− 1

2
(x−y2)

2

σ2
2 ,

where σ2
1 < σ2

2 , which means the first sensor has a higher precision than the
second sensor. Assuming conditional independence, the joint measurement
probability is:

p(y1, y2 | x) = p(y1 | x)p(y2 | x),

and by exploiting the property that the product of two Gaussian density func-
tions is a Gaussian density function:

p(y1, y2 | x) =
1√

2πσ2
e−

1
2
(x−µ)2

σ2 ,

where:

µ =
y1σ2

2 + y2σ2
1

σ2
1 + σ2

2
, σ2 =

σ2
1 σ2

2
σ2

1 + σ2
2

.

302 sensor fusion and object tracking

Given two measurements y1 and y2, we can see that the best estimate of the
quantity x is given by µ, which is a weighted average of the two measurements
where more influence is given to the measurement with higher precision. Since

σ2
1

σ2
1+σ2

2
< 1 and σ2

2
σ2

1+σ2
2
< 1, we can also see that σ2 < σ2

1 < σ2
2 , and therefore the

overall uncertainty is smaller.

17.2.1 Kalman Filter Sensor Fusion

The Kalman filter from ?? is a common parametric state estimation technique
for solving sensor fusion problems. The Kalman filter assumes a linear state
transition model:

xt = Atxt−1 + Btut + ϵt,

and a linear measurement model:

zt = Ctxt + δt,

where x is the state and z is the measurement. The Kalman filter also models
the belief probability distribution over x and the noise terms, ϵ, δ, as Gaussian
distributions:

bel(xt) ∼ N (µt, Σt), ϵt ∼ N (0, Rt), δt ∼ N (0, Qt),

where Rt and Qt are the covariance matrices for the state transition and mea-
surement noise models, respectively.

We can use this algorithm for sensor fusion because the measurement vector,
z, can include measurements from multiple different types of sensors at the
same time, as long as the relationship between the sensor measurement and the
state, x, follows the linear model assumption. Each iteration of the Kalman filter
corrects the predicted state estimate using each component of the measurement
vector at time t simultaneously, and takes into account the covariance Rt that
includes the covariance of each individual sensor. In fact, the Kalman filter will
implicitly favor measurements with lower covariance when performing the
correction step6. 6 Specifically, this occurs during the

computation of the Kalman gain.A useful trick for applying the Kalman filter to sensor fusion problems is
to note that we can define the state, x, to include any type of information; it is
not strictly limited to the state usually associated with the robot’s dynamics or
kinematics. For example, the state could be augmented with auxiliary states
such as sensor bias, sensor offsets, or variables that define sensor and actuator
health.

Example 17.2.2 (Kalman Filter Multi-Sensor Fusion). Consider a self-driving
car that has an inertial measurement unit (IMU), a GNSS receiver, and a lidar
sensor, and suppose the goal is to leverage all of these sensors to estimate the
longitudinal position, velocity, and acceleration of the vehicle. This suite of
sensors provides noisy position estimates through the lidar and GNSS sensors,

principles of robot autonomy 303

as well as noisy acceleration measurements from the IMU. In this example, we
perform sensor fusion by using the Kalman filter algorithm.

We start by defining a very simple kinematics model that models the longitu-
dinal motion of the vehicle:

ṗ = v,

v̇ = a,

where p is the longitudinal position, v is the longitudinal velocity, and a is the
longitudinal acceleration. The analytical solution of these differential equations
assuming a constant acceleration is:

p(t) = p(0) + v(0)t +
1
2

at2,

v(t) = v(0) + at,

and therefore we can discretize the differential equation model in time by choos-
ing a sampling time, T, and assuming a constant acceleration over the interval
to get: pt+1

vt+1

at+1

 =

1 Ts
T2

2
0 1 T
0 0 1


pt

vt

at

+ ϵt,

where we have also added the Gaussian process noise, ϵ. The state of this sys-
tem is x := [p, v, a]⊤. We assume that the lidar and GNSS sensors directly
measure the position, p, and that the IMU directly measures the acceleration, a,
such that the measurement model is:zlidar,t

zgnss,t

zimu,t

 =

1 0 0
1 0 0
0 0 1


pt

vt

at

+ δt,

where δ ∼ N (0, Qt) is Gaussian measurement noise with zero mean and covari-
ance:

Qt =

σ2
lidar 0 0
0 σ2

gnss 0
0 0 σ2

imu

 ,

with assumed parameters σlidar = 0.5, σgnss = 0.1, and σimu = 0.2.
Figure 17.2 shows results of the application of the Kalman filter algorithm for

fusing these sensor measurements into position estimates. The top plot shows a
case where the GNSS sensor is not used, and we can see the noisy high-variance
lidar measurements result in a noisy estimate of the ground truth position of the
car. With the addition of the lower-variance GNSS sensor in the bottom figure,
the estimate of the position is much less noisy7. 7 Generally speaking, the estimate

would also be more accurate even with
the addition of a sensor that was noisier
than the lidar sensor, but the impact
would not be as significant.

17.3 Practical Challenges in Sensor Fusion

Sensor fusion problems are generally quite challenging and can vary signifi-
cantly from application to application. Some practical problems in the context

304 sensor fusion and object tracking

Figure 17.2: Kalman filter sen-
sor fusion for Example 17.2.2.
The position of a vehicle is
estimated using noisy lidar,
GNSS, and IMU data, and the
resulting estimate tracks the
ground truth. We can see that
the addition of the GNSS sensor
improves the estimate through
sensor fusion.

of sensor fusion are referred to as registration, bias, correlation, data association,
and out-of-sequence measurements. The registration problem is that coordinate
frames, both in time and space, of different sensors may not always be aligned,
which is necessary to ensure we appropriately combine their signals. Biases can
also arise due to transformations of the data into the unified set of coordinates.
Correlation between sensors can also occur, even if they are independently col-
lecting data, and any knowledge of correlation between sensors can have an
impact on the best way to fuse the information. In some robotics applications,
such as in multi-target tracking problems, data association8 can also be a chal- 8 The data association problem is

similar to the correspondence problem
in the context of SLAM, which we
discussed in Chapter 16.

lenge. Finally, out-of-sequence measurements9 also pose a logistical challenge

9 One potential cause of out-of-sequence
measurements is due to communication
limitations among agents in multi-agent
settings.

in practical sensor fusion applications. Out-of-sequence measurements might
lead to an incorrect temporal order, which causes a negative time measurement
update during data fusion, such as in the Kalman filter algorithm.

17.4 Object Tracking

Robot systems rely on an accurate perception of their dynamic environment to
safely and effectively operate autonomously. Therefore, tracking other objects
by predicting their state over time given noisy and sometimes ambiguous mea-

principles of robot autonomy 305

surements, occlusions, false signals, and inherent prediction uncertainty10 is 10 In other words, uncertainty in the
dynamics of the object.an important task. The single-object tracking11 problem is well-understood and
11 Also sometimes referred to as single
hypothesis tracking.typically easy to solve. For example, we can leverage algorithms that we have

already studied, such as the EKF, to track the object’s state. Multi-object tracking
algorithms typically maintain a set of estimation filters, with one filter for each
object being tracked. Like in the single-object tracking problem, we can leverage
single-hypothesis algorithms like the Kalman filter or EKF for each individual
filter. However, multi-object tracking is a more challenging problem due to ad-
ditional factors, such as the data association problem for assigning observations
to each target and the track maintenance problem to know when to create or
delete tracks.

17.4.1 Gating

For the data association problem in multi-object tracking, we must consider
how likely each observation comes from a particular track. One approach to
help solve this problem is to use a gating or screening mechanism. This process
generally consists of simply ignoring measurements that occur outside of a
specific region for each track, which can speed up the data assignment process
by reducing the number of measurements that need to be processed. The gating
regions can take on simple geometric forms, such as rectangular or ellipsoidal
areas that represent the level set of a multivariate Gaussian distribution.

17.4.2 Data Association

Data association or data assignment is the process of linking an observation to
a track. This is particularly difficult if we have a large number of target tracks,
many detections, or conflicting hypotheses. We categorize the assignment prob-
lems as either 2-D or S-D. The 2-D assignment problem assigns n targets to m
measurements, for example where the m measurements all come from the same
sensor. The S-D assignment problem assigns n targets to a set of measurements
{m1, m2, . . . }, for example where each set of measurements, mi, comes from
a different sensor. We focus on two solution methods for the 2-D assignment
problem, the global nearest neighbor (GNN) approach and the joint probabilistic
data association (JPDA) approach. The global nearest neighbor approach is a
single hypothesis approach that assigns the nearest observations to existing
tracks and creates new track hypotheses for unassigned observations. The as-
signment of observations to an existing track is straightforward if there is no
conflict where an observation falls in the gating region of multiple targets, or
if multiple observations fall within the gating region of a single target. If there
is a conflict, the GNN approach defines a cost based on a generalized statisti-
cal distance and makes the assignments that minimize the cost. Alternatively,
the joint probabilistic data association (JPDA) approach is a Bayesian technique
that fuses measurements weighted by the probability of the observation-to-track
association12. 12 Unlike the GNN, which makes a hard

assignment, the JPDA approach per-
forms a soft assignment of observations
to tracks.

306 sensor fusion and object tracking

17.4.3 Track Maintenance

The track maintenance problem is to determine when to create new tracks and
when to remove old tracks. A simple approach for track removal is to keep
track of how many times observations are assigned to the track, and to remove
the track if it has not been assigned an observation in some fraction of the most
recent updates. Similarly, for track creation, a simple approach is to create a vir-
tual track when there is a single unassigned observation, and then promote this
virtual track into a new track if it is assigned an observation in some fraction of
the following updates.

17.4.4 Extended Object Tracking

One potential failure mode of standard multi-object tracking algorithms is when
a single target generates multiple observations13, such as due to observation 13 Standard multi-object tracking algo-

rithms typically assume a single object
detection per sensor.

reflections or due to high-resolution sensor modalities like lidar that might gen-
erate a point cloud for a single object. We refer to this new problem, of handling
multiple observations from a single sensor for each track, as an extended object
tracking problem. Extended object tracking algorithms estimate position and
velocity like standard multi-object tracking algorithm, but they also estimate
the dimensions and the orientation of the object. Prominent extended object
tracking algorithms include the Gamma-Gaussian inverse Wishart probability
hypothesis density (PHD) tracker and the Gaussian-mixture PHD tracker.

principles of robot autonomy 307

References

[19] F. Gustafsson. Statistical Sensor Fusion. Studentlitteratur, 2013, p. 554.

[66] D. Simon. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches.
John Wiley & Sons, 2006.

Part IV

Robot Decision Making

18
Finite State Machines

Algorithms for solving problems in robot control, trajectory optimization, mo-
tion planning, perception, localization, and state estimation often involve mod-
eling, manipulation, and observation of continuous variables. This is a natural
consequence of the fact that robots are often physical entities that operate in
physical environments. For example, motion planning and control algorithms
manipulate the robot’s physical state, consisting of continuously varying posi-
tions, velocities, and orientations, and perception and localization tasks observe
continuously valued information from the environment to estimate the robot’s
or the environment’s physical state.

However, there are also problems in robot autonomy where we represent
the state of the robot or environment using discrete variables, such as when
planning higher-level tasks that involve discrete logic or actions. For example,
consider a planning task to go from point A to point B, pick up a package, and
then deliver it to point C. While the robot’s continuous physical state is crucial
for the lower-level motion planning and control task to get the robot to drive
from point to point, it is also important to keep track of the stage of the overall
plan that the robot is currently performing, such as what location the robot is
currently headed to and if the package has been successfully picked up. We
might also want to keep track of other discrete valued states of the robot, such
as if a sensor is functioning properly. Analogously to dynamics and kinematics
models for the robot’s continuous physical state, finite state machines1 are one 1 L. Kaelbling et al. 6.01SC: Introduction

to Electrical Engineering and Computer
Science I. MIT OpenCourseWare. 2011

useful modeling framework2 for discrete states and transitions of the robot and

2 It is important to note that this is a
framework for modeling and is not a
particular algorithm.

its environment. In this chapter, we provide a mathematical definition of a finite
state machine, discuss some architecture options and computational challenges,
and then discuss a practical implementation approach.

18.1 Finite State Machines

Finite state machines (FSMs) are a computational modeling framework for sys-
tems with a finite number of states whose output depends on the entire history
of their inputs. This framework is used in a wide variety of disciplines, includ-
ing electrical engineering, linguistics, computer science, philosophy, biology, and

312 finite state machines

more. We can use finite state machines in several different ways, including to
specify a desired program or behavior, to model and analyze a system’s behavior,
or to predict future behavior.

One important practical disadvantage of finite state machines is that their
complexity does not scale well with system complexity, and, generally speaking,
it can be time consuming and challenging to design FSMs for practical robotic
systems. To reduce complexity as much as possible, we must carefully choose
the appropriate set of states to represent the system, and even with a well de-
fined set of states the interactions and transitions between states can be complex
and hard to specify. For example, Figure 18.1 shows a graphical representa-
tion of the finite state machine for the popular open source flight software PX4.
Specifying the full behavior for a system like this can lead to a complex FSM,
even if there are not very many states.

Figure 18.1: A graphical repre-
sentation of the finite state ma-
chine for the open source flight
software PX4, https://px4.io/.
We can see that even for a rel-
atively small number of states,
the FSM is quite complex in
order to model the full behavior
of the system. Image retrieved
from diydrones.com.

We define a finite state machine mathematically by a finite set of states, S,
a set of inputs, I, a set of outputs, O, a next-state function, n(it, st) −→ st+1,
that maps the input, it, and current state, st, at time t to the next state, st+1, an
output function, o(it, st) −→ ot, and an initial state, s0. We also represent FSMs
graphically, which often gives a more intuitive understanding of how the system
will behave. To define the graph representation, we use nodes to represent each
state in the set S and each directed edge of the graph corresponds to a possible
transition between states that is defined by a particular input. We also typically
include the outputs for a particular state-input pair, (s, i), along each directed
edge. Figure 18.2 shows an example graphical representation of a simple finite
state machine with three states.

Example 18.1.1 (Parking Gate Control). Consider a parking gate control prob-
lem where the goal is to raise the gate when a car arrives, and then lower the
gate when the car has passed. We assume sensors are available to tell if a car
is at the gate, when the car has passed through the gate, and the current posi-

principles of robot autonomy 313

s0 i0

i1

s2

s1

i0

i2

o1

o0

o1

o0 Figure 18.2: A graphical
representation of a finite
state machine with states
S = {s0, s1, s2}, inputs
I = {i0, i1, i2} and outputs
O = {o0, o1}. The directed
edges correspond to the next-
state functions and the output
associated with each edge is
defined by the output func-
tion. For example, in this
FSM, we show the transition
n(i1, s0) −→ s1 in the top left,
along with the corresponding
output o(i1, s0) −→ o1.

tion of the gate. The control actions are raising, lowering, or holding the gate
position fixed. Note that in the real world, the position and velocity of the gate
can vary continuously between the down and up positions. However, we use
a higher level abstraction for designing a finite state machine that defines the
overall logic for the parking gate. In our FSM model, we choose the states to be:

S := {down, raising, up, lowering}.

We choose the set of inputs, which correspond to the available sensors, as:

I := {car waiting, no car waiting, car past, car not past,

gate up, gate down, gate moving}.

Finally, we define the output of the finite state machine, which specify the ac-
tions for the gate, as:

O := {lower, raise, hold}.

We now choose the next-state function and output function to define the
desired behavior for the parking gate. For example, if the gate is currently down
and the sensor measures that a car is waiting, the desired behavior is to output
the command to raise the gate. This desired behavior is transcribed in the next-
state and output functions by:

n(car waiting, down) −→ raising,

o(car waiting, down) −→ raise,

Similarly, if the gate was just raised for the car and the sensor shows that the car
is not yet fully past, the desired output is to hold the gate up, and we define the
next-state and output functions as:

n(up, car not past) −→ up,

o(up, car not past) −→ hold,

Figure 18.3 shows a graphical representation of the full car parking gate finite
state machine.

314 finite state machines

down

raising

lowering

up

car waiting

¬car waiting

car past

¬car past

gate up

gate down

gate moving

gate moving

hold

raise

raise

hold

hold

lower

lower

hold

Figure 18.3: A graphical rep-
resentation of the finite state
machine for the parking gate
controller discussed in Exam-
ple 18.1.1.

18.2 Finite State Machine Architectures

Finite state machines can become quite complex since increasing the number of
states by one from N to N + 1 increases the number of possible transitions by
N. We can keep the complexity of FSMs lower by analyzing for and removing
redundant states, using hierarchical FSMs, and using compositions based on
common patterns.

18.2.1 Reducing the Number of States

Algorithms exist to identify and combine states in FSMs that would yield the
same overall behavior. In particular, we say that two states are equivalent, and
therefore can be combined, if they have the same output and transition to the
same or equivalent states for all input combinations. One possible generic algo-
rithmic approach for reducing states in an FSM is to first place all states into a
single set, then create a single partition based on the output behavior, and then
repeatedly partition further based on next state transitions until no further par-
titions are possible. We provide an example of this procedure in Example 18.2.1.

Example 18.2.1 (Finite State Machine State Reduction). Consider a finite state
machine that detects the input sequences 010 or 110. We show the states, next-
state function values, and output function values for this FSM in Table 18.1.
We can see that the states are the partial sequences and a reset state, S :=

principles of robot autonomy 315

{0, 1, 00, 01, 10, 11, reset}, the inputs are I := {0, 1}, and the outputs are the
booleans O := {True, False} that indicate if the sequence 010 or 110 has been
created. For example, if the current partial sequence is 01 and a 0 is input, the
next state will be the reset state and the output will be True.

State, s n(0, s) n(1, s) o(0, s) o(1, s)
reset 0 1 False False
0 00 01 False False
1 10 11 False False
00 Reset Reset False False
01 Reset Reset True False
10 Reset Reset False False
11 Reset Reset True False

Table 18.1: Finite state machine
for a sequence detector that ac-
cepts digits 0 and 1 and outputs
True if the sequences 010 or 110

are generated.

We can now simplify this FSM by removing redundant states. To identify re-
dundant states, we first place all of the states into a single set, {reset, 0, 1, 00, 01, 10, 11},
and create a partition based on the output behavior:

{reset, 0, 1, 00, 10} : always leads to a False output,

{01, 11} : does not always lead to False output.

We then further partition these sets based on the next-state function until
we cannot make any further partitions. In the first step, we partition the set
{reset, 0, 1, 00, 10} into:

{reset, 00, 10} : cannot transition to {01,11},

{0, 1} : can transition to {01,11},

and then partition {reset, 00, 10} into:

{reset} : can transition to {0, 1},
{00, 10} : cannot transition to {0, 1}.

Therefore, instead of the original seven states, {0, 1, 00, 01, 10, 11, reset}, there
are now only four states, Snew = {{01, 11}, {0, 1}, {00, 10}, reset}. We can there-
fore now define the equivalent3 and reduced finite state machine shown in 3 Equivalent here meaning it has the

same input-output behavior.Table 18.2.

State, s n(0, s) n(1, s) o(0, s) o(1, s)
reset {0,1} {0,1} False False
{0,1} {00,10} {01,11} False False
{00,10} Reset Reset False False
{01,11} Reset Reset True False

Table 18.2: Reduced finite state
machine for a sequence detector
that accepts digits 0 and 1 and
outputs True if the sequences
010 or 110 is generated.

18.2.2 Hierarchical FSMs

In some cases, there might be states that are not truly equivalent but we might
still find it to be beneficial to group them closely together. For these cases, we

316 finite state machines

can define FSMs based on the concepts of super-states, which are groups of
closely related states, and generalized transitions that define transitions between
super-states. This approach is analogous to graph clustering.

18.2.3 Compositions

We can also compose individual state machines in a variety of ways depending
on their input/output behavior, including cascade compositions, parallel compo-
sitions, and feedback compositions. Cascade compositions combine two FSMs in
sequence, where the output vocabulary of one matches the input vocabulary of
the other. The new state of the combined machine is the concatenation of the
states of the individual FSMs, such as we show in Figure 18.4. Parallel compo-
sitions run two FSMs side by side using the same input. In this case, we define
both the state and output by the concatenation of the two individual FSMs’ state
and output. Feedback compositions use a single FSM, but only require a partial
input and then also reuse the output as input4. 4 Note that this composition requires

the input and output vocabularies to be
the same.

Figure 18.4: Cascade, parallel,
and feedback compositions of
finite state machines.

18.3 Implementation Details

There are numerous ways to implement finite state machines in practice. One
common approach is to exploit Object Oriented Programming (OOP) by build-
ing the finite state machine as a class. This approach keeps track of the state of
the FSM in a class member variable. We then implement the state update pro-
cess and definition of the FSM outputs through the use of if-else statements in
class methods. We show an example implementation in Python of the parking
gate controller finite state machine from Example 18.1.1 below:

import rospy as rp

from std_msgs.msg import String

class ParkingGateFSM():

"""Simple FSM for parking gate control"""

def __init__(self):

rp.init_node(' parking_gate ' , anonymous=True)
self.state = ' down '
self.cmd = rp.Publisher(' /gate_cmd ' , String)
rp.Subscriber(' /car_sensor ' , String, self.car_clbk)
rp.Subscriber(' /gate_sensor ' , String, self.gate_clbk)

def car_clbk(self, data):

self.car_input = data

def gate_clbk(self, data):

self.gate_input = data

principles of robot autonomy 317

def run(self):

rate = rp.Rate(10) # 10 Hz
while not rp.is_shutdown():

if self.state == ' down ' :
if self.car_input == ' no_car_waiting ' :

output = ' hold '
elif self.car_input == ' car_waiting ' :

self.state = ' raising '
output = ' raise '

elif self.state == ' raising ' :
if self.gate_input == ' gate_not_up ' :

output = ' raise '
elif self.gate_input == ' gate_up ' :

self.state = ' up '
output = ' hold '

elif self.state == ' up ' :
if self.car_input == ' car_not_passed ' :

output = ' hold '
elif self.car_input == ' car_passed ' :

self.state = ' lowering '
output = ' lower '

elif self.state == ' lowering ' :
if self.gate_input == ' gate_not_down ' :

output = ' lower '
elif self.gate_input == ' gate_down ' :

self.state = ' down '
output = ' hold '

self.cmd.publish(output)

rate.sleep()

318 finite state machines

References

[26] L. Kaelbling et al. 6.01SC: Introduction to Electrical Engineering and Com-
puter Science I. MIT OpenCourseWare. 2011.

19
Sequential Decision Making

Decision making is a fundamental task in robot autonomy. Specifically, we are
typically interested in the problem of sequential decision making1,2, which allows 1 D. Bertsekas. Reinforcement learning and

optimal control. Athena Scientific, 2019

2 M. J. Kochenderfer, T. A. Wheeler,
and K. H. Wray. Algorithms for Decision
Making. MIT Press, 2022

us to decompose longer horizon planning tasks into incremental actions, in-
corporate new information about the world over time, and also reason about
how future actions and observations can influence the current decision. Robot
sequential decision making tasks are very diverse. They range from low-level
control to high-level task planning, they can involve discrete or continuous
actions and states, and they might need to be made at high or low frequen-
cies. For example, the low-level trajectory tracking task that we introduced in
Chapter 3 on closed-loop motion planning and control is a sequential decision
making task that involves continuous physical robot dynamics and operates at
high frequency. On the other side of the spectrum are high-level decision mak-
ing tasks, such as the parking gate operation problem from Chapter 18 on finite
state machines, which involve discrete state and control spaces and can oper-
ate at low frequencies. Many other important autonomous sequential decision
making tasks live somewhere in between these extremes. For example, an au-
tonomous vehicle navigating an intersection needs to reason about continuous
physical motions as well as discrete actions like activating a turn signal, or a
warehouse robot may need to decide the order to pickup and drop off packages
while accounting for physical constraints.

While we have already discussed some concepts for sequential decision
making problems, including the closed-loop control framework and the finite
state machine modeling framework, in this chapter, we introduce a new gen-
eral optimization-based problem formulation3 that is commonly applied to a 3 Like some of the methods we dis-

cussed in Chapter 3, this new approach
is considered a closed-loop optimal control
method.

large variety of decision making problems. We also extend the problem formu-
lation to consider problems with uncertainty4, which is a fundamental aspect

4 These problems are referred to as
stochastic decision making problems,
and can include uncertainty in the
robot’s state and environment.

of practical robot autonomy, in the forms of the stochastic decision making prob-
lem and the related and commonly used Markov decision process framework. In
addition to the problem formulation, we also introduce dynamic programming, a
foundational approach for solving these problems that leverages the principle of
optimality.

320 sequential decision making

19.1 Deterministic Decision Making Problem

Sequential decision making problems are commonly formulated as optimiza-
tion problems because the objective function can naturally encode the goal or
task and the constraints encode other relevant limitations, like physical motion
constraints and control or resource constraints. The mathematical formulation
for these problems includes several components, including a state transition
model describing the robot’s behavior, a set of admissible control inputs, and
a cost function. This formulation is quite similar to the optimization problems
we discussed in Chapter 2 and Chapter 3, except we now express the problem
in discrete-time rather than in continuous-time5. In practice, discrete time formu- 5 The continuous-time formulation is

known as the Hamilton–Jacobi–Bellman
formulation.

lations are often more convenient for higher level decision making problems
and it is also generally easier to design and implement practical computational
algorithms to solve them6. 6 Recall the discussions on the advan-

tages of direct methods from Chapter 2.In the deterministic decision making problem, we model robot’s state transi-
tion model7 in discrete-time as: 7 In the context of sequential decision

making, we typically refer to this
model as a state transition model rather
than a dynamics model, which was the
terminology we used in the context of
motion planning and control.

xt+1 = ft(xt, ut), t = 0, . . . , T− 1, (19.1)

where x ∈ Rn is the robot’s state, u ∈ Rm is the control input, the function
ft defines how the robot’s state changes at time step t, and T is an integer that
defines a finite planning horizon for the decision making problem. We also
assume that only some control actions are admissible at a given state, which we
denote by the set U (xt). For example, in a high-level routing problem, a car may
only have an option to turn left or right when it is at an intersection. Therefore,
we express the control constraints at time step t by:

ut ∈ U (xt). (19.2)

Note that there are generally no restrictions on how the set of admissible con-
trols is defined. For example, U (xt) could be a finite set of actions or a convex
region over a continuous action space.

We assume the cost function that defines the goal of the decision making
problem to be additive and defined over a finite horizon as:

J(x0, u0, . . . , uT−1) = gT(xT) +
T−1

∑
t=0

gt(xt, ut), (19.3)

where gT is a terminal state cost function and gt for t = 0, . . . , T − 1 are stage
cost functions8. We also don’t place any particular restrictions on these cost 8 In practice, it is common for the stage

cost to be constant over time.functions, for example related to convexity or differentiability.

Definition 19.1.1 (Deterministic Decision Making Problem). The determinis-
tic decision making problem for the state transition model in Equation (19.1),
control constraints in Equation (19.2), and cost function in Equation (19.3) is to
compute the finite horizon control sequence that is the solution to the optimiza-

principles of robot autonomy 321

tion problem:

J∗(x0) = minimize
ut , t=0,...,T−1

J(x0, u0, . . . , uT−1),

s.t. xt+1 = ft(xt, ut), t = 0, . . . , T− 1,

ut ∈ U (xt), t = 0, . . . , T − 1

(19.4)

The solution to Equation (19.4) is the optimal open-loop control sequence,
{u∗0 , . . . , u∗T−1}, given the initial condition, x0, which is similar to the trajectory
optimization problem in Chapter 2. This problem is generally challenging to
solve in practice since there is no guarantee that the state transition model in
Equation (19.1) and cost function in Equation (19.3) have any particular struc-
ture that we can leverage to make the optimization problem amenable to nu-
merical optimization algorithms. In theory, we could solve the problem through
a brute force search over all possible combinations of sequences, {u0, . . . , uT−1},
but this leads to a combinatorial explosion of options and is therefore not practi-
cal except for very small problems.

19.1.1 Principle of Optimality (Deterministic Case)

Fortunately, the deterministic decision making problem possesses an underlying
structure that we can leverage to solve the problem more efficiently than with
brute force search. We refer to this underlying problem structure as the principle
of optimality9. 9 Also referred to as Bellman’s principle of

optimality.

Figure 19.1: Starting from point
a, let the path a → b → e be the
optimal path from a to e, with a
total cost of J∗ae = Jab + Jbe. The
principle of optimality says that
the path b → e must therefore
be the optimal path when start-
ing from point b. We can prove
this by contradiction, since if
the path b → c → e had a lower
cost than path b → e, such that
Jbce < Jbe, then the original
path, a → b → e, cannot be
optimal.

The principle of optimality for deterministic systems states that for a se-
quence of optimal decisions, the tail of the optimal sequence is also optimal for
a tail subproblem. For a concrete example, see Figure 19.1. This property greatly
simplifies the overall problem, since we can reuse optimal paths for different sce-
narios. We define the principle of optimality more formally in Theorem 19.1.2.

Theorem 19.1.2 (Principle of Optimality (Deterministic Case)). Let {u∗0 , u∗1 . . . , u∗T−1}
be an optimal control sequence to the deterministic decision making problem in Equa-
tion (19.4) with a given initial condition, x∗0 , and let the resulting optimal state se-
quence be {x∗0 , x∗1 . . . , x∗T}. The tail sequence, {u∗t , . . . , u∗T−1}, is then an optimal con-
trol sequence when starting from x∗t and minimizing the cost:

Jtail(xt, ut, . . . , uT−1) = gT(xT) +
T−1

∑
i=t

gi(xi, ui),

322 sequential decision making

from time t to time T

We now demonstrate how to apply the principle of optimality to simplify the
decision making problem for the scenario in Figure 19.2. In this case, our goal is
to find an optimal path from point b to point f , and we assume that we already
know optimal paths from c, d, and e to f . A brute force search over all possible
paths in this problem would require us to evaluate nine paths:

{b→ c→ f , b→ c→ d→ f , b→ c→ d→ e→ f , b→ d→ c→ f , b→ d→ f ,

b→ d→ e→ f , b→ e→ d→ c→ f , b→ e→ d→ f , b→ e→ f }.

However, by leveraging the principle of optimality, the number of candidate
paths is reduced to just three:

b→ c→ f , b→ d→ f , b→ e→ f .

By leveraging the principle of optimality, we can perform a search over just
the immediate decisions by concatenating the optimal tail decisions. We generally
implement this procedure backward in time, for example, in Figure 19.2, we
evaluate the goal point f first, then the points c, d, and e, and then finally the
point b.

Figure 19.2: Suppose we know
the optimal paths from points
c, d and e to f . Using the prin-
ciple of optimality, we can
find the optimal path from
point b to f by only searching
over paths from b to c, d, and
e, and determining the low-
est cost from the candidates
{Jbc + J∗c f , Jbd + J∗d f , Jbe + J∗e f }.
In other words, we can leverage
the optimal tails to reduce the
total number of paths that we
need to be consider when find-
ing the optimal path from b to
f .

19.1.2 Dynamic Programming (Deterministic Case)

Dynamic programming is a foundational technique that leverages the principle
of optimality10 to globally solve the deterministic decision making problem in

10 The principle of optimality is a fun-
damental property that is actually
leveraged in almost all decision making
algorithms, not just dynamic program-
ming.

Equation (19.4). The dynamic programming algorithm, which we detail in Algo-
rithm 19.1, performs a backward-in-time recursion where each step performs a
local optimization11 that leverages the optimal tail costs from the previous itera-

11 The local optimization equation
is often referred to as the Bellman
equation.

tion. The output of the dynamic programming algorithm is a set of costs, J∗t (xt),
for each time step, t = 0, . . . , T, and states, xt, which provide the optimal tail
costs for the tail subproblems.

Then, given an initial condition, x0, we can compute the optimal control
sequence, {u∗0 , . . . , u∗T−1}, that solves the deterministic decision making problem

principles of robot autonomy 323

Algorithm 19.1: Dynamic Programming (Deterministic)

J∗T(x) = gT(x), for all x ∈ X
for t = T − 1 to 0 do

J∗t (x) = minimize
u∈U (x)

gt(x, u) + J∗t+1(ft(x, u)), for all x ∈ X

return J∗0 (·), . . . , J∗T(·)

with a “forward pass” procedure. For this procedure, we start by computing the
first control input:

u∗0 = arg min
u0∈U (x0)

g0(x0, u0) + J∗1 (f0(x0, u0)).

We then compute the next state, x∗1 = f0(x0, u∗0), and repeat the process:

u∗1 = arg min
u1∈U (x∗1)

g1(x∗1 , u1) + J∗2 (f1(x∗1 , u1)),

until the full trajectory and optimal control is specified.
In practice, the dynamic programming algorithm in Algorithm 19.1 is not

practical to implement when the state space is continuous, since it would have
to iterate over an infinite number of states. One possible modification for Algo-
rithm 19.1 to handle continuously valued states is to discretize the state space
into a finite set of states. However, even a finite but large set of states can be
computationally challenging to handle in practice. These challenges have led
to the development of more practical algorithms that are based on dynamic
programming and the principle of optimality, but make various simplifying
approximations. Another interesting thing to note about the dynamic program-
ming algorithm is that control constraints can actually simplify the procedure,
since they restrict the number of possible state transitions that we need to con-
sider.

Example 19.1.1 (Deterministic Dynamic Programming). Consider the environ-
ment shown in Figure 19.3, where the goal is to start at point a and reach point
h while incurring the smallest cost. In this problem, we represent the state as the
current location and we encode the control constraints by the arrows indicating
possible travel directions. For example, at point c, it is possible to either go right
or up but not down or left. We also define the cost of traversing between two
points in Figure 19.3.

For this problem, we start the dynamic programming recursion at the goal
point h with:

J∗T(h) = 0,

since we assume there is no cost to stay at point h. Moving backward in time,
we can see that the possible states xT−1 that can transition to xT = h are the
points h, e, and g, again assuming it is possible to stay at h with no cost. There-

324 sequential decision making

Figure 19.3: A deterministic de-
cision making problem where
the goal is to move from point
a to point h while incurring the
minimal amount of cost. The
path a → d → e → f → g → h
is the optimal path. We solve
this problem by dynamic pro-
gramming in Example 19.1.1.

fore, in the first step of the dynamic programming recursion we compute:

J∗T−1(h) = 0 + J∗T(h) = 0, u∗T−1(h) = stay.

J∗T−1(e) = 8 + J∗T(h) = 8, u∗T−1(e) = right,

J∗T−1(g) = 2 + J∗T(h) = 2, u∗T−1(g) = up,

Note that J∗t (h) = 0 for all t ≤ T, and therefore we will not explicitly include it
in the following steps. In the next step:

J∗T−2(e) = 8 + J∗T−1(h) = 8, u∗T−2(e) = right,

J∗T−2(g) = 2, u∗T−2(g) = up,

J∗T−2(d) = 3 + J∗T−1(e) = 11, u∗T−2(d) = right,

J∗T−2(f) = 3 + J∗T−1(g) = 5, u∗T−2(f) = right,

At this point, these optimal tail costs are the optimal costs associated with con-
trol actions that lead from e, g, d, or f to the end point, h, in two steps. Continu-
ing the recursion for the third step:

J∗T−3(e) = min{8 + J∗T−2(h), 2 + J∗T−2(f)} = 7, u∗T−3(e) = down,

J∗T−3(g) = 2, u∗T−3(g) = up,

J∗T−3(d) = 3 + J∗T−2(e) = 11, u∗T−3(d) = right,

J∗T−3(f) = 5, u∗T−3(f) = right,

J∗T−3(a) = 8 + J∗T−2(d) = 19, u∗T−3(a) = right,

J∗T−3(c) = min{5 + J∗T−2(d), 3 + J∗T−2(f)} = 8, u∗T−3(c) = right.

We can now see that it is possible to accomplish the objective of going from
point a to h in three time steps on path a → drightarrowerightarrow f), and that
we would incur an optimal cost of 19. However, it turns out that an even lower
cost is achievable if the number of time steps is increased further. Continuing

principles of robot autonomy 325

the dynamic programming recursion:

J∗T−4(e) = 7, u∗T−4(e) = down,

J∗T−4(g) = 2, u∗T−4(g) = up,

J∗T−4(d) = 3 + J∗T−3(e) = 10, u∗T−4(d) = right,

J∗T−4(f) = 5, u∗T−4(f) = right,

J∗T−4(a) = 8 + J∗T−3(d) = 19, u∗T−4(a) = right

J∗T−4(c) = min{5 + J∗T−3(d), 3 + J∗T−3(f)} = 8, u∗T−4(c) = right,

J∗T−4(b) = 9 + J∗T−3(c) = 17, u∗T−4(b) = right,

and finally with one more iteration:

J∗T−5(e) = 7, u∗T−5(e) = down,

J∗T−5(g) = 2, u∗T−5(g) = up,

J∗T−5(d) = 10, u∗T−5(d) = right,

J∗T−5(f) = 5, u∗T−5(f) = right,

J∗T−5(a) = min{8 + J∗T−4(d), 5 + J∗T−4(b)} = 18, u∗T−5(a) = right

J∗T−5(c) = min{5 + J∗T−4(d), 3 + J∗T−4(f)} = 8, u∗T−5(c) = right,

J∗T−5(b) = 9 + J∗T−4(c) = 17, u∗T−5(b) = right.

Further iterations would no longer change the costs and optimal decisions, so
the algorithm has converged. We can finally see that with a sufficiently long
horizon, in this case T ≥ 5, the optimal path from a to h is a → d → e →
f → g → h and incurs a cost of 18. Note that the dynamic programming al-
gorithm has actually given us a lot more information than what we specifically
needed, which was just the optimal sequence from a to h. In particular, given
any starting point and any horizon, we can now easily generate an optimal con-
trol sequence to h. For example, if we wanted to start at point c and get to h in
T = 3 steps, we can immediately see that the optimal path is c → f → g → h
and the optimal cost is 8.

19.2 Stochastic Decision Making Problem

Many interesting real-world robotics problems involve uncertainty in how the
state changes over time, and therefore designing algorithms based on the de-
terministic state transition model in Equation (19.1) may not be sufficient to
achieve robust autonomy. Instead of leveraging the deterministic problem in
Definition 19.1.1, we can instead consider a stochastic decision making problem
that leverages a stochastic discrete-time state transition model:

xt+1 = ft(xt, ut, wt), t = 0, . . . , T− 1, (19.5)

where wt represents a stochastic disturbance. We also assume that the distur-
bance, wt, has a known conditional probability distribution, pt(wt | xt, ut),

326 sequential decision making

which can change over time. Note that we assume the disturbance is only de-
pendent on the current state, xt, and control, ut, which is another example of
the Markov assumption that we used to develop Bayesian algorithms for prob-
abilistic filtering. Considering a stochastic state transition model means we also
modify the cost function to account for the uncertainty in the future state tra-
jectory. It is common practice to define the cost in the stochastic problem as the
expected value12: 12 Using the expected value for the cost,

which minimizes the cost on average,
is often referred to as a risk-neutral
formulation.Jπ(x0) = Ew

[
gT(xT) +

T−1

∑
t=0

gt(xt, πt(xt), wt)

]
, (19.6)

where the expectation is over the stochastic variables, w.
Another significant difference between the stochastic and deterministic deci-

sion making problems is that the stochastic problem solves for a control policy
rather than an open-loop control sequence. Control policies, which we usu-
ally denote u = π(x), are functions that map the state, x, to a control, u, and
therefore define a closed-loop control law. The search for optimal control poli-
cies makes the stochastic problem more difficult to solve but is required to have
robust closed-loop behavior. We now define the stochastic decision making
problem in Definition 19.2.1.

Definition 19.2.1 (Stochastic Decision Making Problem). The stochastic decision
making problem for the stochastic state transition model in Equation (19.5),
control constraints in Equation (19.2), and cost function in Equation (19.6) is
to compute the finite horizon sequence of policies, π := {π0, . . . , πT−1}, that
solves:

J∗(x0) = minimize
π

Jπ(x0),

s.t. xt+1 = ft(xt, ut, wt), k = 0, . . . , T − 1,

πt(xt) ∈ U (xt), t = 0, . . . , T − 1

(19.7)

19.2.1 Principle of Optimality (Stochastic Case)

The principle of optimality also applies to the stochastic setting, and while the
proof is slightly different due to having to reason about probability distribu-
tions, the intuition is identical to the deterministic case. In the stochastic setting,
the principle of optimality is:

Theorem 19.2.2 (Principle of Optimality (Stochastic Case)). Let π∗ = {π∗0 , π∗1 . . . , π∗T−1}
be an optimal policy for the stochastic decision making problem in 19.7, and assume the
state, xt, is reachable. Then, the tail policy sequence, {π∗t , . . . , π∗T−1}, is an optimal
policy sequence when starting from xt to minimize the cost from time t to time T.

As in the deterministic case, we can again leverage this principle to simplify
algorithms for solving the decision making problem by optimizing over imme-
diate decisions based on known optimal tail policies.

principles of robot autonomy 327

19.2.2 Dynamic Programming (Stochastic Case)

The dynamic programming algorithm for the stochastic setting, defined in Algo-
rithm 19.2, is similar to Algorithm 19.1 for the deterministic case. This algorithm

Algorithm 19.2: Dynamic Programming (Stochastic Case)

J∗T(x) = gT(x), for all x ∈ X
for t = T − 1 to 0 do

J∗t (x) = min
u∈U (x)

Ew
[
gt(x, u, w) + J∗t+1(ft(x, u, w))

]
, for all x ∈ X

return J∗0 (·), . . . , J∗T(·)

computes the optimal costs, J∗t (x), for each time step, t, and for all states, x.
Once we have computed these values, we can extract the optimal policy by:

π∗t (xt) = arg min
ut∈U (xt)

Ewt

[
gt(xt, ut, wt) + J∗t+1(ft(xt, ut, wt))

]
. (19.8)

Example 19.2.1 (Stochastic Dynamic Programming). Consider an inventory
control problem where the available stock of a particular item is the state, xt ∈
N, the ability to add to the inventory is the control, ut ∈ N, and the demand
for the item is a stochastic variable, wt ∈ N. We model the dynamics of the
available stock as:

xt+1 = max{0, xt + ut − wt},

which models the fact that demand reduces available stock but the stock can
also never be negative. We also consider the control constraints:

xt + ut ≤ 2,

which limits the amount of additional inventory that we can add based on the
current available stock to ensure that xt ≤ 2. We model the stochastic demand,
wt, by the probability distribution:

p(wt = 0) = 0.1, p(wt = 1) = 0.7, p(wt = 2) = 0.2.

Finally, we define the cost for a horizon of T = 3 as:

E

[
2

∑
t=0

ut + (xt + ut − wt)
2

]
,

which penalizes ordering new stock at each time step and also having available
stock at the next time step, since the extra would have to be stored.

We apply the stochastic dynamic programming algorithm by starting with
the terminal costs:

J3(x3) = 0,

328 sequential decision making

and then recursively computing:

J2(0) = minimize
u2∈{0,1,2}

E
[
u2 + (u2 − w2)

2
]
= minimize

u2∈{0,1,2}
u2 + 0.1u2

2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2 = 1.3,

J2(1) = minimize
u2∈{0,1}

E
[
u2 + (1 + u2 − w2)

2
]
= 0.3,

J2(2) = E
[
(2− w2)

2
]
= 1.1,

where the last cost is easily evaluated since the constraint makes the control
u2 = 0 the only feasible choice. The optimal stage policies associated with this
step are:

π∗2 (0) = 1,

π∗2 (1) = 0,

π∗2 (2) = 0.

In the next step:

J1(0) = minimize
u1∈{0,1,2}

E
[
u1 + (u1 − w1)

2 + J2(max{0, u1 − w1})
]
= 2.5,

J1(1) = minimize
u1∈{0,1,}

E
[
u1 + (1 + u1 − w1)

2 + J2(max{0, 1 + u1 − w1})
]
= 1.5,

J1(2) = E
[
(2− w1)

2 + J2(max{0, 2− w1})
]
= 1.68,

with optimal stage policies:

π∗1 (0) = 1,

π∗1 (1) = 0,

π∗1 (2) = 0.

Finally, in the last step:

J0(0) = minimize
u0∈{0,1,2}

E
[
u0 + (u0 − w0)

2 + J1(max{0, u0 − w0})
]
= 3.7,

J0(1) = minimize
u0∈{0,1,}

E
[
u0 + (1 + u0 − w0)

2 + J1(max{0, 1 + u0 − w0})
]
= 2.7,

J0(2) = E
[
(2− w0)

2 + J1(max{0, 2− w0})
]
= 2.818,

with optimal stage policies:

π∗0 (0) = 1,

π∗0 (1) = 0,

π∗0 (2) = 0.

Interestingly, the best scenario occurs with an initial stock of one, rather than
having no stock or too much stock. We can also note that the optimal policy
ends up being the same at all time steps: if you have no stock you add one item,
otherwise you do nothing.

principles of robot autonomy 329

19.3 Markov Decision Processes

In our introduction of the deterministic and stochastic sequential decision mak-
ing problems in Section 19.1 and Section 19.2, we use a problem formulation
based on common notation from the field of optimal control. An equivalent
problem formulation for stochastic sequential decision problems is the Markov
decision process (MDP), which is widely used in robotics and, in particular, the
field of reinforcement learning.

A Markov decision process is defined for a system by a state space, a control
or action space, a stochastic state transition model, and a reward function13. 13 The MDP formulation uses a reward

function, which is just a negative
expression of a cost function.

Following our notational convention from previous chapters, we denote the
state space as X and the control space as U . Note that this notation differs from
the standard in the reinforcement learning literature, which typically denotes
the state space as S and refers to controls as actions and denotes the action space
as A.

In contrast to the stochastic decision making problem discussed in Sec-
tion 19.2, which uses the model in Equation (19.5), the MDP formulation equiva-
lently represents the stochastic state transition model as the probability distribu-
tion:

p(xt+1 | xt, ut), (19.9)

which is the conditional probability distribution over the next state, xt+1, given
the current state and control. Note that by modeling the state transition proba-
bility as a function of only the previous state and control, and not the full state
and control histories, we are again employing the Markov assumption that we
also leveraged in Chapter 13 on Bayesian filtering. We also assume the state
transition model is stationary and therefore does not change in time, which is
a common assumption in MDP problem formulations. We encode the decision
making objective in a MDP by the reward function:

R(xt, ut). (19.10)

which defines the reward for taking the control ut from state xt, and is equiv-
alent to the negative of the stage cost, gt, from Equation (19.3). For finite hori-
zon problems with horizon T, the goal is to compute a sequence of policies,
π := {π0, . . . , πT−1}, that define the controls ut = πt(xt) that maximizes the
risk-neutral expected value:

Vπ
T (x) = E

[
T−1

∑
t=0

R(xt, πt(xt)) | x0 = x

]
, (19.11)

where Vπ
T (x) is the value function14 for applying the policy π to the system with 14 This is analogous to the cost-to-go, Jπ ,

defined earlier.stochastic dynamics defined by Equation (19.9) for T steps. With each of these
components, we can define problem formulation for the finite horizon Markov
decision process:

330 sequential decision making

Definition 19.3.1 (Finite Horizon MDP Problem). The finite horizon MDP
problem with states x ∈ X , controls u ∈ U , the probabilistic state tran-
sition model defined by Equation (19.9), and the finite horizon value func-
tion in Equation (19.11) is to compute the finite horizon sequence of policies,
π := {π0, . . . , πT−1}, that solves:

π∗(x) = arg max
π

Vπ
T (x), (19.12)

It is also common to consider the infinite-horizon problem. In this case, our
goal is to compute a stationary policy, π(x), that maximizes an infinite horizon
value function defined as the discounted15 cumulative expected value: 15 We can view the discount as model-

ing the fact that we are more confident
about the short-term impacts of our
actions, but it is also required mathe-
matically to ensure the value function
is bounded, assuming the reward
function, R(x, u), is bounded.

Vπ(x) = E

[
∞

∑
t=0

γtR(xt, π(xt)) | x0 = x

]
, (19.13)

where we refer to γ ∈ (0, 1) as the discount factor. We therefore define the infi-
nite horizon problem as:

Definition 19.3.2 (Infinite Horizon MDP Problem). The infinite horizon MDP
problem with states x ∈ X , controls u ∈ U , the probabilistic state transition
model defined by Equation (19.9), and the finite horizon value function in Equa-
tion (19.11) is to compute the stationary policy, π, that solves:

π∗(x) = arg max
π

Vπ(x), (19.14)

19.3.1 Dynamic Programming (Markov Decision Processes)

Recall that the MDP problem formulation is conceptually the same as the
stochastic decision making problem from Section 19.2 and, importantly, the
principle of optimality and the dynamic programming technique are equally
applicable to this formulation. In the finite horizon MDP problem formulation,
we can express the value function from Equation (19.11) recursively as:

Vπ
k+1(x) = R(x, π(x)) + ∑

x′∈X
p(x′ | x, π(x))Vπ

k (x′). (19.15)

Then, we again leverage the principle of optimality to express the optimal value
function as:

V∗k+1(x) = max
u∈U

R(x, u) + ∑
x′∈X

p(x′ | x, u)V∗k (x′) (19.16)

where V∗k (x) = Vπ∗
k (x) is the optimal value function for the k-step horizon. We

then leverage this recursion for the dynamic programming algorithm for the
finite horizon case in Algorithm 19.3. We can then extract the optimal policy, π∗t ,
by computing:

π∗t (x) = arg max
u∈U

R(x, u) + ∑
x′

p(x′ | x, u)V∗T−1−t(x′). (19.17)

principles of robot autonomy 331

Algorithm 19.3: Dynamic Programming (Finite Horizon MDP)

V∗0 (x) = 0, for all x ∈ X
for k = 0 to T − 1 do

V∗k+1(x) = max
u∈U

R(x, u) + ∑x′ p(x′ | x, u)V∗k (x′), for all x ∈ X

return V∗0 (·), . . . , V∗T (·)

In the infinite horizon MDP problem formulation, we can similarly express
the value function from Equation (19.13) recursively as:

Vπ(x) = R(x, π(x)) + γ ∑
x′∈X

p(x′ | x, π(x))Vπ(x′), (19.18)

and again leverage the principle of optimality to express the optimal value
function as:

V∗(x) = max
u∈U

R(x, u) + γ ∑
x′∈X

p(x′ | x, u)V∗(x′) (19.19)

where V∗(x) = Vπ∗(x) is the optimal value function and where we commonly
refer to the equation for V∗(x) as the Bellman optimality equation. The dynamic
programming-based algorithm for the infinite horizon case16 is shown in Al- 16 In the context of reinforcement

learning, this algorithm is commonly
referred to as value iteration.

gorithm 19.4. From the optimal value function, V∗(x), from Algorithm 19.4, we

Algorithm 19.4: Dynamic Programming (Infinite Horizon MDP)

V∗0 (x) = 0, for all x ∈ X
for k = 0 to ∞ do

V∗k+1(x) = max
u∈U

R(x, u) + γ ∑x′ p(x′ | x, u)V∗k (x′), for all x ∈ X

if V∗ converged then
return V∗(·)

can extract the optimal policy by computing:

π∗(x) = arg max
u∈U

R(x, u) + γ ∑
x′∈X

p(x′ | x, u)V∗(x′). (19.20)

Note that in the infinite horizon algorithm, we initialize the value function to
zero, but in practice we can initialize this to any bounded value, and initializing
by a guess of the optimal value would help speed up convergence.

Example 19.3.1 (Finite Horizon MDP Dynamic Programming). Consider again
the inventory control problem from Example 19.2.1, where the state, xt ∈ N, is
the available stock of a particular item, the control, ut ∈ N, adds items to the
inventory, the demand, wt, is uncertain, and the state transition and constraints
are:

xt+1 = max{0, xt + ut − wt},
p(w = 0) = 0.1, p(w = 1) = 0.7, p(w = 2) = 0.2.

332 sequential decision making

and:
xt + ut ≤ 2.

Based on the state transition model, we can define the probabilistic state transi-
tion model of the form in Equation (19.9) as:

p(xt+1 = {0, 1, 2} | xt = 0, ut = 0) = {1, 0, 0},
p(xt+1 = {0, 1, 2} | xt = 0, ut = 1) = {0.9, 0.1, 0},
p(xt+1 = {0, 1, 2} | xt = 0, ut = 2) = {0.2, 0.7, 0.1},
p(xt+1 = {0, 1, 2} | xt = 1, ut = 0) = {0.9, 0.1, 0},
p(xt+1 = {0, 1, 2} | xt = 1, ut = 1) = {0.2, 0.7, 0.1},
p(xt+1 = {0, 1, 2} | xt = 2, ut = 0) = {0.2, 0.7, 0.1},

where we have omitted some transition values due to the control constraints.
Next, we define the reward function as:

R(xt, ut) = −E
[
ut + (xt + ut − wt)

2
]

,

= −
(
ut + (xt + ut −E [wt])

2 + Var[wt]
)
.

We then apply Algorithm 19.3 starting with the value function with no steps
to go:

V∗0 (x) = 0,

and then recursively compute:

V∗1 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
= −1.3,

V∗1 (1) = max
u2∈{0,1}

−
(
u + (1 + u− 1.1)2 + 0.29

)
= −0.3,

V∗1 (2) = −
(
(2− 1.1)2 + 0.29

)
= −1.1,

where E [w] = 1.1 and Var(w) = 0.29. The optimal stage policies associated
with this step are:

π∗T−1(0) = 1, π∗T−1(1) = 0, π∗T−1(2) = 0.

In the next step:

V∗2 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 0, u)V∗1 (x′) = −2.5,

V∗2 (1) = max
u∈{0,1,}

−
(
u + (1 + u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 1, u)V∗1 (x′) = −1.5,

V∗2 (2) = −
(
(2− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 2, u = 0)V∗1 (x′) = −1.68,

with optimal stage policies:

π∗T−2(0) = 1, π∗T−2(1) = 0, π∗T−2(2) = 0.

principles of robot autonomy 333

Finally, in the last step:

V∗3 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 0, u)V∗2 (x′) = −3.7,

V∗3 (1) = max
u∈{0,1,}

−
(
u + (1 + u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 1, u)V∗2 (x′) = −2.7,

V∗3 (2) = −
(
(2− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 2, u = 0)V∗2 (x′) = −2.818,

with optimal stage policies:

π∗T−3(0) = 1, π∗T−3(1) = 0, π∗T−3(2) = 0.

As expected, these results are identical to the results from Example 19.2.1 since
the problem is the same, we have just formulated it using the MDP framework.

19.4 Limitations of Dynamic Programming

Dynamic programming is a powerful foundational algorithm that is the back-
bone for a collection of methods for solving sequential decision-making prob-
lems, but it also suffers from several practical limitations. First, in their standard
form, dynamic programming-based algorithms require perfect knowledge of the
environment, including the deterministic or stochastic state transition model
and the reward function. In many practical scenarios, this requirement may be
limiting if the system’s dynamics are too complex to model accurately, such as
for applications involving friction, contact forces, and other non-linear inter-
actions with the environment, or if the dynamics are stochastic. The dynamic
programming-based algorithms presented in this chapter also assume that the
full state of the system is known and observable, which is not always the case in
practice since it maybe not be possible or economical to have sensors that mea-
sure every single state component directly. In settings with state uncertainty17, 17 In contexts where we express stochas-

tic decision making problems as
Markov decision processes (MDP),
we refer to the extension to handle
state uncertainty as a partially observable
Markov decision process (POMDP).

the problem becomes even harder to solve from a computational perspective
since we have to reason about policies defined over belief probability distri-
butions over the state space, which effectively increases the dimension of the
problem.

Another significant practical limitation of dynamic programming is referred
to as the curse of dimensionality. The curse of dimensionality is that the compu-
tational and storage requirements grow exponentially with the dimension of
the state space. Specifically, if the state is n-dimensional and each state variable
can take on M different discrete values, then at each step of the algorithm the
Bellman equation must be solved Mn times. While this may be practically pos-
sible to implement for small problems, it can grow out of hand very quickly.
This is particularly relevant in robotics, where the state space can be very high-
dimensional. For example, the state of a robot can include joint angles and their
velocities in three-dimensions, actuator states, and more.

These challenges related to dynamic programming motivate the development
of approximate dynamic programming approaches that are more practical for

334 sequential decision making

specific settings, such as with high-dimensional states, when the model is not
known, and more. In the next chapter, we introduce methods from the field of
reinforcement learning that address the sequential decision making through the
lens of learning from interaction to remove the requirement that the environment
is fully modeled.

principles of robot autonomy 335

References

[6] D. Bertsekas. Reinforcement learning and optimal control. Athena Scientific,
2019.

[32] M. J. Kochenderfer, T. A. Wheeler, and K. H. Wray. Algorithms for Decision
Making. MIT Press, 2022.

20
Reinforcement Learning

In Chapter 19, we introduced the deterministic and stochastic sequential decision-
making problems and the Markov decision process (MDP) framework, and
demonstrated how these problems can be solved by dynamic programming.
However, these approaches are limited by their assumption of knowledge of the
system dynamics and their exponential growth in computational requirements
with the dimensionality of the state space. In this chapter, we provide an intro-
duction and overview of the field of Reinforcement Learning1,2. At a high level, 1 D. Bertsekas. Reinforcement learning and

optimal control. Athena Scientific, 2019

2 R. Sutton and A. Barto. Reinforcement
learning: An introduction. MIT Press,
2018

reinforcement learning is the process of learning what to do3 from interaction

3 Specifically, learning how to map
states to controls with the objective of
maximizing a numerical reward signal.

with the environment. In other words, reinforcement learning is the process
of learning from interaction, whereby, rather than being told what to do, the
learner must discover an effective strategy through trial and error and by receiv-
ing feedback from the environment. Unlike the methods covered in the previous
chapter, in the context of reinforcement learning, we do not make assumptions
regarding the knowledge or observability of the environment. This makes rein-
forcement learning a practical and general framework for autonomous decision-
making.

In this chapter, we begin in Section 20.1 by introducing key concepts and
theoretical foundations of the reinforcement learning problem. Next, in Sec-
tion 20.2, we introduce reinforcement learning algorithms based on exact dy-
namic programming that leverage ideas from Chapter 19. Motivated by prac-
tical limitations of dynamic programming, we introduce two foundational
model-free learning paradigms known as Monte Carlo methods and temporal-
difference learning in Section 20.3. Finally, in Section 20.5 and Section 20.6, we
discuss widely used model-free and model-based reinforcement learning algo-
rithms.

20.1 The Reinforcement Learning Problem

The reinforcement learning problem is a mathematical formalism for learning-
based decision making that captures the essential aspects of a learning agent
interacting over time with its environment to achieve a goal or objective. In this
section, we present the mathematical formulation, which takes the form of an

338 reinforcement learning

optimal control problem within the context of a partially unknown Markov
decision process (MDP). Within the landscape of machine learning paradigms,
there are a number of key distinctions and specific challenges that are unique to
reinforcement learning.

First, in supervised learning contexts4, the learner is provided with a dataset 4 Supervised learning is a very well-
studied category of machine learning.of labeled examples from a knowledgeable supervisor, and the goal is to learn

to imitate the supervisor’s behavior. While this is a powerful form of learning, it
is not suitable for learning from interaction, where obtaining labeled examples
is impractical. Reinforcement learning is instead characterized by a process of
learning without a teacher, whereby the agent is not told which actions to take,
but instead must learn from environment feedback in the form of rewards or
penalties.

The second unique and challenging aspect of reinforcement learning prob-
lems is that the agent must learn to balance the intrinsic trade-off between explo-
ration and exploitation. In this trade-off, the agent must explore the environment
to discover the best actions while also making sure to exploit the knowledge it
has already acquired to maximize its reward. If an agent were to exclusively
pursue only one of the two strategies, it would either fail to discover the optimal
policy or fail to exploit it effectively. In other words, the agent must learn to try
a variety of actions and progressively focus on the most rewarding ones.

Third, the feedback from the environment that drives the learning process
may be delayed or sparse. This is a common feature of many real-world prob-
lems5. Delays in the reward signal can make it difficult for the agent to correctly 5 For example, the reward signal may

only be received after a sequence of
actions has been taken, such as in a
game of chess, where feedback is only
received at the end of the game when it
is either won or lost.

perform credit assignment6.

6 Attributing the reward to the actions
that led to it, even if the responsible
actions were taken well before the
reward was received.

Lastly, in reinforcement learning contexts, the data used for learning is not
independent and identically distributed, which is a fundamental assumption
underlying the majority of statistical learning theory. Instead, the data is highly
correlated since the agent’s actions influence the subsequent data it receives.

20.1.1 Elements of Reinforcement Learning

In this and previous chapters, we have encountered and briefly discussed sev-
eral key elements of a reinforcement learning system: a policy, an environment, a
reward signal, a value function, and, optionally, a model of the environment. In this
section, we provide a more formal definition of these elements and discuss how
they interact in the context of the reinforcement learning problem.

A policy, π(ut | xt), is a mapping from states to actions that defines the
agent’s behavior. The policy can take the form of a simple function, such as
a lookup table or a parametric function, or we can define it by a complex
decision-making scheme, such as an explicit search process. Policies are either
deterministic, where each state maps to a single action, or stochastic, where a
state maps to a distribution over actions7. 7 We commonly denote stochastic

policies as π(ut | xt) and deterministic
policies as π(xt).

The environment is the system the agent interacts with. We mathematically
represent the environment by a transition model, p(xt+1 | xt, ut), which defines

principles of robot autonomy 339

the probability of transitioning to a new state, xt+1, given the current state,
xt, and action, ut. The transition model may also be either deterministic or
stochastic, depending on the nature of the environment.

A reward signal defines the goal of the agent. At each time step, we assume
the agent receives a scalar reward, rt ∈ R, from the environment that indicates
how well the agent is performing. Reward signals are deterministic or stochastic
functions of the state of the environment and the action taken, and we denote
the function that produces the reward as R(xt, ut).

While the reward signal represents an immediate measure of performance,
the value function represents performance in the long run. Specifically, the value
of a state defines how much reward the agent can expect to accumulate from
that state onwards. For example, a state might have a low immediate reward but
a high value if it usually leads to states with high rewards, and vice versa. An
effective agent chooses actions by considering the value of the action rather than
just the immediate reward8. 8 Therefore, many methods in rein-

forcement learning are centered around
accurately estimating the value of an
action.

Lastly, a model of the environment is an optional component of the reinforce-
ment learning problem that represents the agent’s understanding of the envi-
ronment. The model’s goal is to mimic the behavior of the environment, and
we can use it to make hypotheses about how the environment will evolve9. In 9 For example, we can use models

to evaluate different actions before
executing them.

this chapter, we explore reinforcement learning algorithms that use models for
learning, referred to as model-based algorithms, as well as more direct model-free
algorithms that do not attempt to learn a model of the environment and solely
focus on discovering optimal policies by trial-and-error learning.

At a high level, most reinforcement learning algorithms follow the same basic
learning cycle. First, the agent interacts with the environment by observing
the state, x, applying an action, u, from a chosen behavior policy10, and then 10 The behavior policy does not nec-

essarily have to match the learned
policy.

observing the next state, x′, and scalar reward, r = R(x, u). This procedure,
which we show in Figure 20.1, may repeat for multiple steps, during which the
agent uses the observed transitions, (x, u, r, x′), to update its policy.

Robot Environment

Control, u(x)

Next state, x′

Reward, r

Figure 20.1: The reinforcement
learning problems consists of a
robot (agent) that learns how to
make decisions by interacting
with the environment.

20.1.2 Problem Formulation

In Section 19.3, we introduced the Markov decision process (MDP) framework
in the context of sequential decision making problems where we assume the

340 reinforcement learning

environment’s dynamics are known. The mathematical framework for modeling
the reinforcement learning problem is also built around the Markov decision
process, and so in this section we reintroduce the key concepts of MDPs. Note
that there will be some small differences in the MDP formulation that we use
in this chapter which are more common in the reinforcement learning commu-
nity. For example, it is common in the context of reinforcement learning to use
stochastic policies, π(u | x), while in Section 19.3 we presented the MDP for-
mulation using a deterministic policy, π(x). At a high level, MDPs represent
a formalization of the sequential decision-making problem, where the agent’s
actions influence not only the immediate reward but also the subsequent states,
and through those the future rewards.

We formally refer to an MDP as a tuple of elementsM = (X ,U , p, R, γ),
where X is the discrete or continuous state space, U is the discrete or continuous
action space, p(·) describes the dynamics of the system through a conditional
probability distribution of the form p(xt+1 | xt, ut), R : X × U → R defines a
reward function, and γ ∈ (0, 1] is a scalar discount factor. From a reinforcement
learning perspective, our goal is to learn a policy defined as a probability distri-
bution over actions to take from a given state, π(u | x). A trajectory is a sequence
of states and actions of length T, given by:

τ := (x0, u0, . . . , xT),

where T may be infinite. The trajectory distribution, pπ , for a policy, π, is:

pπ(τ) =
T−1

∏
t=0

π(ut | xt)p(xt+1 | xt, ut). (20.1)

The reinforcement learning objective, Vπ
T , is the expectation of future discounted

cumulative reward under this trajectory distribution:

Vπ
T := Eτ∼pπ(τ)

[
T−1

∑
t=0

γtR(xt, ut)

]
. (20.2)

An additional concept required to fully characterize Vπ
T is that of discount-

ing. In particular, the discount factor, γ, is a scalar value in the range [0, 1] that
determines the relative importance of future rewards, whereby a smaller γ will
make the agent focus more on immediate rewards, while a larger γ will make
the agent give more importance to future rewards. For example, in the limit case
with γ = 0, the agent will only consider immediate rewards, while in the case
with γ = 1, the agent will consider all future rewards equally. Mathematically,
discounting is also crucial in ensuring that the sum of rewards in Vπ is finite
even in the infinite horizon case with T = ∞, such that if γ < 1 and the rewards,
rt, are bounded, the sum of the rewards will be finite. In practice, the choice
of γ is often problem-dependent, and it is common to use a value close to 1 to
ensure that the agent considers future rewards.

principles of robot autonomy 341

20.1.3 Value Functions and Bellman Equations

Almost all reinforcement learning algorithms involve estimating value func-
tions. At its core, a value function is a function of state or state-action pairs that
defines how good11 it is for the agent to be in a given state or to take a given 11 As defined in the previous section,

value functions define quality in terms
of expected cumulative future rewards.

action in a given state. Since the reward an agent expects to receive in the future
depends on the actions it will take, the value function is inherently defined with
respect to a particular policy, π.

We define the state-value function, Vπ(x), as the expected sum of future re-
wards when starting in state x and following policy π thereafter12: 12 Throughout this chapter, we primarily

consider the infinite-horizon case when
referring to Vπ , although the same
concepts extend to the finite-horizon
case.

Vπ(x) := Eτ∼pπ(τ)

[
∞

∑
k=0

γt+kR(xt+k, π(xt+k)) | xt = x

]
. (20.3)

Similarly, the action-value function, Qπ(x, u), is the expected return when
starting in state x, taking action u, and then following policy π thereafter:

Qπ(x, u) := Eτ∼pπ(τ)

[
∞

∑
k=0

γt+kR(xt+k, π(xt+k)) | xt = x, π(xt) = u

]
. (20.4)

A key property of value functions used in the context of reinforcement learn-
ing and dynamic programming is that they satisfy the Bellman equations. The
Bellman equations describe a recursive relationship that decomposes the value
of a state or state-action pair into the immediate reward and the value of the
next state or state-action pair. Formally, for any policy, π, and any state, x, the
Bellman equation defines the self-consistency condition:

Vπ(x) = Eu∼π(·|x)

[
R(x, u) + γEx′∼p(·|x,u)

[
Vπ(x′)

]]
, (20.5)

where, to simplify notation, we have omitted the time index, t, and used x′ to
denote the next state.

Similarly, the Bellman equation for the action-value function is:

Qπ(x, u) = R(x, u) + γEx′∼p(·|x,u), u′∼π(·|x′)
[
Qπ(x′, u′)

]
. (20.6)

The value functions Vπ and Qπ are unique solutions to the Bellman equations.
In the remainder of this chapter, we show how we can use the Bellman equa-
tions to derive algorithms for estimating and approximating value functions,
and how we can use these value functions to derive optimal policies.

Optimal policies and optimal value functions are another important concept in
the context of reinforcement learning. Value functions define a partial ordering
over policies. We consider a policy, π, to be better than or equal to policy π′

if its value function is greater than or equal to the value function of the other
policy for all states. Formally, π ≥ π′ if and only if Vπ(x) ≥ Vπ′(x) for all
states x. An optimal policy, π∗, is a policy that is better than or equal to all other
policies, such that π∗ ≥ π for all policies π. While the optimal policy does not

342 reinforcement learning

need to be unique, all optimal policies share the same optimal value function, V∗,
which satisfies:

V∗(x) = max
π

Vπ(x), ∀x ∈ X .

Optimal policies also share the same optimal action-value function, Q∗(x, u),
which satisfies:

Q∗(x, u) = max
π

Qπ(x, u), ∀x ∈ X , u ∈ U .

As discussed above, V∗ and Q∗ are value functions for the optimal policy,
thus, they must satisfy the Bellman equations with respect to the optimal policy.
However, because V∗ and Q∗ are the optimal value functions, we can write the
Bellman equations in a special form that does not depend on a specific policy
by leveraging the fact that the value of a state under the optimal policy is the
expected return of the best action in that state.

We can derive the Bellman equations for the optimal state-value function
and action-value function13 by substituting the expectation over the policy from 13 Referred to as the Bellman optimality

equations.Equation (20.5) and Equation (20.6) with a maximization over actions:

V∗(x) = max
u

[
R(x, u) + γEx′∼p(·|x,u)

[
V∗(x′)

]]
, (20.7)

Q∗(x, u) = R(x, u) + γEx′∼p(·|x,u)

[
max

u′
Q∗(x′, u′)

]
. (20.8)

The optimal value functions, V∗ and Q∗, are important in reinforcement
learning because we can use them to derive the optimal policy by acting greed-
ily with respect to the optimal value function:

π∗(x) = arg max
u

[
R(x, u) + γEx′∼p(·|x,u)

[
V∗(x′)

]]
. (20.9)

In other words, once we have access to V∗, we can determine the optimal policy
through a one-step search and by selecting the actions that lead to states with
the highest value.

Access to the optimal action-value function, Q∗, simplifies the process even
further. For any state x, we can obtain the optimal policy by selecting the action
that maximizes Q∗:

π∗(x) = arg max
u

Q∗(x, u). (20.10)

20.2 Dynamic Programming Methods

As we introduced in Chapter 19, the key idea of dynamic programming is to
decompose a complex problem into simpler subproblems. This is achieved
by using value functions to systematically organize and structure the search
for optimal policies. In this section, we show how we can leverage dynamic
programming algorithms in the context of reinforcement learning by turning
the Bellman equations into iterative update rules for the estimation of value

principles of robot autonomy 343

functions. In particular, we explore how to use dynamic programming ideas
to derive algorithms for two distinct but interconnected tasks: prediction and
control.

Definition 20.2.1 (Prediction). In the context of reinforcement learning, we often
refer to the task of estimating the value function for a given policy as prediction.

Definition 20.2.2 (Control). In the context of reinforcement learning, we often
refer to the task of finding the optimal policy as control.

20.2.1 Prediction: Policy Evaluation

We first consider the prediction problem of estimating the value function, Vπ ,
under a given policy, π. According to the Bellman equation in Equation (20.5),
the value of a state, x, under policy π is defined as an expectation with respect
to the policy and state transition model. For simplicity, we assume that the state
transition model and policy describe probability distributions over discrete
states and actions, respectively, which allows us to express the expectations in
the Bellman equation as sums rather than integrals14: 14 The extension to continuous states

and actions is fundamentally equivalent
and just requires the replacement of
summations with integrals.Vπ(x) = ∑

u∈U
π(u | x)

[
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)Vπ(x′)

]
. (20.11)

Policy evaluation is an iterative algorithm to solve the prediction problem.
Consider a sequence of approximations to the value function, denoted as
V0, V1, V2, . . . , Vπ , where V0 is an arbitrarily chosen initial guess15. Policy evalu- 15 Under the condition that any terminal

state, occurring when t = T in the finite-
horizon setting or when the episode
terminates in the infinite-horizon
setting, must be assigned a value of
zero.

ation uses the Bellman equation in Equation (20.11) as an update rule, such that
at iteration k, the value function for all states x ∈ X is updated according to:

Vk+1(x) = ∑
u∈U

π(u | x)

[
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)Vk(x′)

]
. (20.12)

It is important to note that Vk = Vπ is a fixed point of the update rule in Equa-
tion (20.12) since the Bellman equation for Vπ ensures equality in this case.
Under mild regularity conditions, we can show that the sequence of value func-
tions, {Vk}, converges to Vπ as k → ∞. As we will see in the remainder of
this chapter, the ideas described above are at the core of many reinforcement
learning algorithms, including both model-based and model-free methods.

20.2.2 Policy Improvement

Now that we have introduced an approach to solve the prediction problem of
estimating the value function under a given policy, we now turn our attention to
the problem of control, which is to find the optimal policy. To solve the control
problem, we leverage the policy improvement theorem, which provides a way
to update a given policy that is guaranteed to be better than or equal to the

344 reinforcement learning

original policy. Consider a pair of policies, π and π′, such that for all states
x ∈ X :

Qπ(x, π′(x)) ≥ Vπ(x). (20.13)

Then, the policy π′ is guaranteed to be better than or equal to π, such that:

Vπ′(x) ≥ Vπ(x).

Consider the greedy policy, π′, which selects the action that maximizes the
action-value function, Qπ , from policy π16: 16 In other words, the greedy policy

selects the best action after a one-step
lookahead based on the current value
function Vπ .

π′(x) := arg max
u

Qπ(x, u)

= arg max
u

[
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)Vπ(x′)

]
.

(20.14)

By construction, this greedy policy is guaranteed to satisfy the condition of the
policy improvement theorem from Equation (20.13), and is therefore better than
or equal to the original policy. We refer to the process of constructing a new
policy by greedily selecting actions with respect to the current value function as
policy improvement.

Suppose now that the greedy policy, π′, is as good as the original policy,
π, such that Vπ′ = Vπ . From the definition of the greedy policy in Equa-
tion (20.14):

Vπ′(x) = max
u

[
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)Vπ(x′)

]
.

However, since Vπ′ = Vπ , this is the same as the Bellman optimality equation,
and therefore the policy π′ must be optimal.

20.2.3 Control: Policy Iteration

The policy improvement theorem provides a concrete strategy to improve a pol-
icy by greedily selecting actions with respect to the current value function. In
this section, we discuss how we use this strategy, in tandem with policy evalu-
ation, to construct an algorithm for finding the optimal policy. We refer to this
algorithm for finding the optimal policy as policy iteration. At a high level, the
key idea of policy iteration is that once we have improved a given policy, π,
according to Vπ to yield a new policy, π′, we can evaluate this new policy to
obtain Vπ′ . We can then use the new value function, Vπ′ to further improve the
policy into π′′, and repeat this process until convergence to the optimal policy.

More formally, policy iteration defines a sequence of monotonically improv-
ing policies by alternating between policy evaluation and policy improvement:

V0
PE−−−→ π0

PI−−−→ V1
PE−−−→ π1

PI−−−→ V2
PE−−−→ π2

PI−−−→ . . . ,

where PE denotes policy evaluation and PI denotes policy improvement. We
outline the policy iteration algorithm in Algorithm 20.1. Policy iteration is guar-

principles of robot autonomy 345

Algorithm 20.1: Policy Iteration
Data: Initial policy, π, and value function, V0, arbitrarily initialized for all

x ∈ X .
Result: Policy, π ≈ π∗, and value function, Vπ ≈ V∗.
Policy Evaluation:
for k = 0, . . . , ∞ do

for x ∈ X do
Vk+1(x) = ∑u∈U π(u | x) [R(x, u) + γ ∑x′∈X p(x′ | x, u)Vk(x′)]

if ∥Vk+1 −Vk∥ < ϵ then
Vπ = Vk+1

break

Policy Improvement:
for x ∈ X do

π′(x) = arg maxu [R(x, u) + γ ∑x′∈X p(x′ | x, u)Vπ(x′)]

if policy has converged then
π = π′

break
return π ≈ π∗ and Vπ ≈ V∗

anteed to converge to the optimal policy and value function, given enough
iterations. In practice, since the policy evaluation step is an iterative algorithm,
we typically initialize the value function to the value function from the previous
step of policy iteration. This can increase the speed of convergence since the
value function does not typically change substantially between iterations.

20.2.4 Control: Value Iteration

One drawback of policy iteration is that it requires a full policy evaluation step
at each iteration. This makes it computationally expensive because the algo-
rithm must wait for the value function to converge before proceeding to the
policy improvement step, which only happens in the limit17. To address this 17 Several variants of policy iteration use

truncated policy evaluation steps.issue, value iteration is an alternative algorithm that combines policy evaluation
and policy improvement into a single step. Value iteration defines the following
update rule:

Vk+1(x) = max
u

[
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)Vk(x′)

]
. (20.15)

For an arbitrary initial value function, V0, the sequence of value functions, {Vk},
generated by the value iteration algorithm is guaranteed to converge to the op-
timal value function, V∗. We can interpret value iteration from the perspective
of the Bellman optimality equation, where the update rule in Equation (20.15)
is equivalent to the Bellman optimality operator from Equation (20.7) applied to
the value function Vk. In other words, we can view policy iteration as the itera-
tive application of the Bellman equation in the policy evaluation step followed

346 reinforcement learning

by one step of policy improvement, and we can view value iteration as the iter-
ative application of the Bellman optimality equation. We outline the complete
value iteration algorithm in Algorithm 20.2.

Algorithm 20.2: Value Iteration
Data: Initial value function, V0, arbitrarily initialized for all x ∈ X .
Result: Policy, π ≈ π∗, and value function, Vπ ≈ V∗.
for k = 0 to ∞ do

for x ∈ X do
Vk+1(x) = maxu [R(x, u) + γ ∑x′∈X p(x′ | x, u)Vk(x′)]

if ∥Vk+1 −Vk∥ < ϵ then
Vπ = Vk+1

π(x) = arg maxu [R(x, u) + γ ∑x′∈X p(x′ | x, u)Vk(x′)], for all x ∈ X
return Vπ ≈ V∗ and π ≈ π∗

Policy iteration and value iteration are two of the most foundational algo-
rithms in reinforcement learning and are the basis for many modern reinforce-
ment learning algorithms.

20.2.5 Inheriting the Limitations of Dynamic Programming

Dynamic programming methods, including policy iteration and value iteration,
are powerful tools for solving MDPs. However, these methods also inherit the
limitations of dynamic programming as they require a complete model of the
environment, p(x′ | x, u), to compute the expectations in the Bellman equations,
and are computationally expensive for large state and action spaces. In the next
sections, we discuss two key approaches to address these limitations. We first
introduce sampling methods, which relax the requirement of having a complete
model of the environment, and then we introduce the concept of function ap-
proximation, which helps address the computational complexity of dynamic
programming methods.

20.3 Reinforcement Learning Paradigms

Monte Carlo (MC) methods and temporal-difference (TD) learning are two classes of
learning methods that estimate value functions and compute optimal policies
without requiring a complete model of the environment. These approaches are
particularly effective in practice since they are applicable to a wide range of
problems where modeling the environment dynamics is either impractical or
infeasible. Similar to our discussion of dynamic programming methods, we first
address the prediction problem for both Monte Carlo and temporal-difference
methods before extending the analysis to the control problem.

principles of robot autonomy 347

20.3.1 Monte Carlo Methods

The term Monte Carlo broadly refers to a class of algorithms that rely on ran-
dom sampling to estimate quantities of interest. In the context of reinforcement
learning, Monte Carlo methods represent a class of approaches for solving the
reinforcement learning problem based on averaging observed cumulative re-
wards from experience18. Monte Carlo methods are particularly well-suited for 18 We often use the terms samples or

experience to refer to sequences of
states, actions, and rewards collected by
interacting with the environment.

problems modeled as episodic MDPs, where the interaction between the agent
and the environment is divided into episodes. Each episode consists of a finite
sequence of states, actions, and rewards, starting from an initial state and pro-
gressing until the episode terminates. An episode ends when either a terminal
state is reached or the horizon, T, is exceeded.

Episodic MDPs naturally describe tasks with well-defined beginnings and
endings, such as navigating a maze, playing a game, or completing a robotic
assembly. At the end of each episode, the agent has access to a complete trajec-
tory of experience, which we can use to estimate quantities of interest. These
include updates to value functions, such as the state-value function, Vπ(x), or
the action-value function, Qπ(x, u), or updates to the policy, π.

Monte Carlo methods for solving the prediction problem aim to learn the
value function, Vπ , or action value function, Qπ , given a policy, π. In this sec-
tion, we first address the problem of using Monte Carlo methods for learning
the state-value function, Vπ , and then extend the discussion to learning the
action-value function, Qπ . Since the value of a state is defined as the expected
cumulative reward starting from the state, we compute the Monte Carlo esti-
mate of the value by averaging the observed cumulative rewards from samples
passing through the state. The estimate of the value function will then become
more accurate with an increased number of visits to the state.

Specifically, suppose we wish to learn the value, Vπ(x), of the state x under
the policy π, given a set of N episodes, {τ1, τ2, . . . , τN}, passing through x. We
can apply the Monte Carlo method defined in Algorithm 20.3 for estimating the
desired state-value function.

Algorithm 20.3: Monte Carlo Prediction
Data: Initial value function, V, arbitrarily initialized for all x ∈ X .
Result: Value function estimate, Vπ .
Initialize the state visit count, N(x) = 0, for all x ∈ X
for each episode τi = {x0, u0, r0, x1, u1, r1, . . . , xT} do

for t = T − 1 to 0 do
Compute the cumulative future reward from state xt:

Gt = ∑T−1
k=t γk−trk

Update the value estimate: V(xt)← V(xt) +
1

N(xt)
(Gt −V(xt))

Increment the visit count: N(xt)← N(xt) + 1

return V ≈ Vπ

348 reinforcement learning

Monte Carlo prediction uses the incremental update rule V(xt) ← V(xt) +
1

N(xt)
(Gt − V(xt)) to update the value estimate, V(xt), towards the average fu-

ture reward, where N(xt) is the number of times state xt has been visited. This
incremental update is an efficient way to compute the average of a sequence of
values, equivalent to V(xt) =

1
N(xt)

∑
N(xt)
i=1 Gi

t, where Gi
t is the cumulative future

reward observed in the i-th visit to state xt.
We can also use Monte Carlo methods for learning action values19. At a high 19 Learning action values, Qπ , is useful

in practice because we can use them to
directly derive an optimal policy using
Equation (20.10).

level, Monte Carlo methods for estimating action value functions, Qπ(x, u), are
essentially equivalent to the method presented above for estimating state val-
ues, with the only difference being that we now consider visits to state-action
pairs instead of states. We consider a state-action pair to have been visited in
an episode if the agent is in state x and takes action u at some point during the
episode. As we discussed for estimating state values, Monte Carlo methods esti-
mate the action value, Qπ(x, u), by averaging the observed cumulative rewards
from the visits to the state-action pair, (x, u).

However, if we use a deterministic policy to collect samples from the environ-
ment, we will only observe rewards for one action in each state20. This means 20 Since a deterministic policy will

always select the same action from the
same state.

we will not be able to estimate the value of the other actions in that state, and
therefore will not be able to derive the policy by maximizing over actions. We
refer to this as the problem of maintaining exploration, which plays a crucial role
in reinforcement learning.

As we will see in the remainder of this chapter, a common approach to ad-
dress this issue is to consider policies that lead to all state-action pairs being
encountered with non-zero probability. For example, we can achieve this by con-
sidering stochastic policies that assign non-zero probability to all actions in each
state.

20.3.2 Temporal-Difference Learning

Temporal-difference learning is widely considered one of the most influential con-
cepts in reinforcement learning. At a high level, temporal-difference learning
combines elements of both Monte Carlo methods and dynamic programming.
Like dynamic programming methods, temporal-difference learning can use
incomplete sequences of experience21 by updating estimates based on other 21 In other words, without waiting for

the end of an episode.learned estimates in process is known as bootstrapping. Additionally, like Monte
Carlo methods, temporal-difference learning directly leverages raw experience
without requiring a model of the environment in a process known as sampling.
In this sense, temporal-difference learning serves as a bridge between the two
approaches, inheriting the advantages of both.

Similar to Monte Carlo methods, temporal-difference methods address the
prediction problem by collecting samples from the environment and using
the experience to update value estimates. Recall that in Monte Carlo methods,
we must wait until the end of the episode to compute the cumulative reward
following time t, which we denote as Gt, and then use Gt to define the target for

principles of robot autonomy 349

the value function update:

V(xt)← V(xt) + α(Gt −V(xt)), (20.16)

where← denotes the assignment operator and α is an externally-specified step-
size parameter22. In contrast, temporal-difference methods update the value 22 In Algorithm 20.3, we used α =

1/N(xt)function estimate at each time step, t, based on the observed reward, rt, and the
estimate of the value function at the next state, xt+1, by the update:

V(xt)← V(xt) + α(rt + γV(xt+1)−V(xt)). (20.17)

This update rule is known as the TD(0) update, where the subscript 0 denotes
that the update is based on a single step of experience23. By comparing the two 23 TD(0) is a special case of the more

general TD(λ) approach.update rules, we can see that we require a full episode of experience to com-
pute the Monte Carlo target, Gt, while we can compute the temporal-difference
target, rt + γV(xt+1), at each time step, t. We provide a complete algorithm for
TD(0) in Algorithm 20.4. It is worth noting that we can interpret the quantity

Algorithm 20.4: Temporal-Difference Learning (TD(0))
Data: Initial value function, V, arbitrarily initialized for all x ∈ X .
Result: Value function estimate, Vπ .
for each episode do

Initialize state x
while x is not terminal do

Take action u according to π

Observe r and x′

V(x)← V(x) + α(r + γV(x′)−V(x))
x← x′

return V ≈ Vπ

r + γV(x′) − V(x) as an error measuring the difference between the current
estimate of the value function, V(x), and a better24 estimate, r + γV(x′). This 24 This quantity represents a more

accurate estimate of the value in state x
because it can leverage one step of true
reward realization, r, in the transition
from x to x

′
.

quantity, which we refer to as the TD error, plays a crucial role in the develop-
ment of various reinforcement learning algorithms.

20.3.3 Example: Monte Carlo Control

We have already discussed how we can use the Monte Carlo and temporal-
difference learning paradigms to address the problem of learning without a
model of the environment. However, we solely discussed these methods in the
context of the prediction problem, where we are trying to estimate the value
function of a given policy. In this section, we introduce a generic Monte Carlo
control method as our first complete example of a reinforcement learning algo-
rithm for learning optimal policies. Later in this chapter, we introduce various
reinforcement learning algorithms that, in one way or another, build upon the
principles of model-free control that we discuss here.

350 reinforcement learning

The overall idea of using Monte Carlo estimation for control is to proceed
according to the same principles of Policy Iteration that we introduced in Sec-
tion 20.2, but where we leverage Monte Carlo prediction methods for the policy
evaluation step. We refer to this Monte Carlo-based policy iteration approach
as an example of Generalized Policy Iteration (GPI), which is the general frame-
work that encompasses all methods that alternate between policy evaluation
and policy improvement.

In this method, we learn action values, Q(x, u), since, as we discussed in
Section 20.3.1, we can use them to directly derive a policy25. This GPI method 25 Unlike state value functions, which

require a model to perform the one-step
lookahead to derive the policy.

alternates between the following steps:

π0
E−−→ Qπ0 I−−→ π1

E−−→ Qπ1 I−−→ π2
E−−→ . . . I−−→ π∗

E−−→ Qπ∗ ,

where E−−→ denotes policy evaluation, and I−−→ denotes policy improvement.
In contrast to the Policy Iteration algorithm, we use the Monte Carlo prediction
approach from Section 20.3.1 in the policy evaluation step rather than using
the exact Bellman equation to update the value function, which would require
a model of the environment. The policy improvement step remains the same,
where we define the new policy by acting greedily with respect to the current
action-value function by choosing πi+1(x) = arg maxu Qπi (x, u).

While this approach encompasses various core principles of many reinforce-
ment learning algorithms, it is relatively simplistic. For example, this approach
doesn’t address the problem of maintaining exploration26. In the current form, 26 All state-action pairs must be ex-

plored with non-zero probability to
ensure that we can correctly estimate
the action-value function.

this approach would only work under the exploring starts assumption, which
ensures that when resetting the episode the agent will start in each state-action
pair with non-zero probability. We have to remove this assumption to obtain a
practical algorithm. Later in the chapter, we introduce various practical methods
to ensure that the agent explores the environment sufficiently.

20.3.4 A Unifying View of Reinforcement Learning

Temporal-difference
learning

Dynamic
programming

Monte Carlo
methods

Exhaustive
search

Sample-based Exact

Bootstrapping

Episodes Figure 20.2: We can categorize
reinforcement learning meth-
ods along two-axes based on
whether they are sample-based
and whether they bootstrap.

principles of robot autonomy 351

Monte Carlo, temporal-difference, and dynamic programming methods are
often presented as distinct approaches to reinforcement learning. However, it is
worth noting that these methods are extremes of a spectrum. To appreciate this,
we can consider the advantages, disadvantages, and commonalities of each of
these paradigms.

Monte Carlo and temporal-difference methods have an advantage over dy-
namic programming methods in that they do not require a model of the envi-
ronment, and they can learn directly from sampled experiences with the envi-
ronment. This capability greatly extends the applicability of these methods to
real-world problems, where the environment could be unknown or too complex
to be modeled.

An advantage of temporal-difference and dynamic programming methods
over Monte Carlo methods is that they do not require waiting until the end of
an episode to update value estimates and can learn from incomplete sequences
of experience by bootstrapping. This can be an important advantage in practice
since some applications have very long, or even non-terminating, episodes.

On the other hand, Monte Carlo methods have an advantage over temporal-
difference methods in that they are unbiased estimators of the true value func-
tion. This is because Monte Carlo methods use the true return, Gt, to update
the value function, whereas temporal-difference methods use a biased estimate
of the return, rt+1 + γV(xt+1). Relative to Monte Carlo methods, temporal-
difference methods accept some amount of bias for a reduction in variance from
updating the value estimates towards targets that depend on fewer steps of
stochasticity.

We organize these paradigms based on how they are related in Figure 20.2.
At the top right, we have exhaustive search, where we compute quantities of
interest, such as value estimates, exactly by model-based simulation of the en-
tire set of possible system evolutions. At the bottom right, we have dynamic
programming, where we exploit the principle of optimality, together with a
model of the environment to perform a one-step look-ahead and use future val-
ues to compute current value estimates by bootstrapping. As we move to the
left, we relax the requirement of having a model of the environment or infinite
computation, and instead learn from direct experience with the environment
by sampling. At the top left, we have Monte Carlo methods, where we avoid
exhaustive search by learning from complete samples from the environment.
Finally, at the bottom left, we have temporal-difference methods, where we com-
bine the sampling of Monte Carlo methods with the bootstrapping of dynamic
programming, thus being able to learn from incomplete sequences of experi-
ence.

20.4 A Taxonomy of Reinforcement Learning

Over the last years, the field of reinforcement learning has seen a rapid growth
in the number of algorithms and methods, each with its own strengths and

352 reinforcement learning

weaknesses. While an exhaustive treatment of all these methods is beyond the
scope of this chapter, we aim to provide an overall picture of the different types
of algorithms that exist, a deeper understanding of the core principles that un-
derlie these algorithms, and a number of representative examples from each
category. In this section, we provide a bird’s-eye view of the field of reinforce-
ment learning and classify the different algorithms into a taxonomy, shown
graphically in Figure 20.3, that can serve as reference through the rest of the
chapter.

Reinforcement Learning

Model-freeModel-based

Learned ModelKnown Model Policy OptimizationValue-based

Figure 20.3: A taxonomy of
reinforcement learning algo-
rithms based on whether or not
they leverage a model of the
environment.

The first fundamental distinction among reinforcement learning algorithms
is between model-free and model-based methods. Model-free methods, which
are the focus of Section 20.5, attempt to learn the optimal policy directly from
experience, without explicitly modeling the environment. Model-based meth-
ods, on the other hand, aim to learn a model of the environment and then use
this model to derive optimal policies. We cover model-based methods in Sec-
tion 20.6.

Looking at model-free methods, we can further distinguish between value-
based and policy optimization methods. Value-based methods, similar to the ones
described in previous sections, define the policy implicitly through a value
function. By doing so, the main focus of value-based methods lies in accurately
estimating the optimal value function, which we can then use to derive the
optimal policy. Policy optimization methods, on the other hand, represent the
policy explicitly via a parametric function and optimize the parameters of this
function to maximize the reinforcement learning objective.

On the other side of the graph in Figure 20.3, we can see how we can further
divide model-based methods into algorithms that either focus on learning a
model of the environment from data, or algorithms that use a known model27 27 For example, we could derive the

model from physics or other domain
knowledge.

to derive optimal policies. In this chapter, we focus on methods that learn a
model of the environment from data. As we will see in Section 20.6, we can
use learned models in various ways, such as within planning routines or for
accelerating model-free algorithms.

principles of robot autonomy 353

20.4.1 On-policy vs Off-policy Learning

Another crucial distinction among reinforcement learning algorithms is between
on-policy and off-policy learning. On-policy methods aim to evaluate or improve
the policy that is used to interact with the environment. Off-policy methods,
on the other hand, evaluate or improve a policy that is different from the one
used to interact with the environment. For example, the Monte Carlo control
algorithm we presented above is an on-policy method as it attempts to improve
the same policy used to make decisions in the environment. Off-policy methods
define two distinct policies: one that must be updated and ideally becomes the
optimal policy and one used to interact with the environment. We refer to the
policy being learned as the target policy, while we refer to the policy used to
generate samples from the environment as the behavior policy.

Generally, on-policy methods are simpler to implement and are often more
stable, while off-policy methods are typically more complex and require ad-
ditional considerations. Due to this additional complexity, we often consider
off-policy methods less stable and characterized by slower convergence. How-
ever, off-policy methods are also more powerful and general, encompassing
on-policy methods as a special case where the target and behavior policies are
the same. We can use off-policy methods to learn from data collected by other
policies, such as data collected by a human demonstrator or other conventional
non-learning-based policies, to learn about multiple policies simultaneously, or
to learn about the optimal policy while still exploring the environment.

Throughout the next sections, we introduce various on-policy and off-policy
methods for learning and discuss the advantages and disadvantages of each
approach.

20.5 Model-free Reinforcement Learning

Model-free reinforcement learning methods are commonly considered to be
the most popular and widely used class of algorithms in the field. This pop-
ularity is largely due to their recent successes in a wide range of applications,
including playing games28, robot control29, and the fine-tuning of large-scale 28 D. Silver et al. “Mastering the game

of Go with deep neural networks and
tree search”. In: Nature 529.7587 (2016),
pp. 484–489

29 S. Levine et al. “End-to-End Training
of Deep Visuomotor Policies”. In:
Journal of Machine Learning Research
17.39 (2016), pp. 1–40

AI chatbots30. In this section, we discuss representative reinforcement learning

30 Y. Bai et al. “Training a Helpful and
Harmless Assistant with Reinforcement
Learning from Human Feedback”. In:
(2022). url: https://arxiv.org/abs/
2204.05862

algorithms while maintaining our focus on key principles important for under-
standing and implementing new algorithms.

20.5.1 Value-based Methods

We begin our discussion on model-free reinforcement learning with value-based
methods, which, similarly to the Monte Carlo control algorithm presented in
Section 20.3.3, estimate the value function of a policy and use this estimate to
derive the optimal policy.

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862

354 reinforcement learning

Q-learning: One of the first breakthroughs in reinforcement learning was the
introduction of the Q-learning algorithm31. Q-learning is an algorithm that 31 C. J. C. H. Watkins and P. Dayan.

“Q-learning”. In: Machine Learning 8.3
(1992), pp. 279–292

learns the optimal action-value function, Q∗(x, u), via temporal-difference learn-
ing. Q-learning is an off-policy algorithm, where regardless of the behavior
policy used to interact with the environment, the learned action-value function,
Q(x, u), directly estimates the optimal action value function, Q∗(x, u). How-
ever, the behavior policy is relevant in characterizing which state-action pairs
are visited, and thus, which action values are updated. As long as the behav-
ior policy is sufficiently exploratory32, Q-learning will converge to the optimal 32 In the sense that we ensure all state-

action pairs continue to be visited in the
limit.

action-value function, Q∗(x, u).
Given a transition from the environment, (x, u, r, x′), Q-learning uses the

following update rule for the action-value function, Q(x, u):

Q(x, u)← Q(x, u) + α

(
r + γ max

u′
Q(x′, u′)−Q(x, u)

)
, (20.18)

where α > 0 is a tunable learning rate parameter. Regardless of the behavior
policy used to generate the transition, (x, u, r, x′), Equation (20.18) updates the
current action-value estimate, Q(x, u), towards the value of the greedy policy
with respect to the current Q-function given by r + γ maxu′ Q(x′, u′). In other
words, Q-learning recursively enforces the Bellman optimality equation for
the action-value function until convergence33. We can interpret Q-learning as 33 As we discussed in Section 20.2.4, the

fixed-point of the Bellman optimality
operator is unique and corresponds
to the optimal action-value function,
Q∗(x, u).

a sample-based approximation of Q-Value Iteration34, where we update the

34 In other words, Algorithm 20.2 with
action-value functions.

Q-function using a single sample of the Bellman optimality equation.
To ensure that the behavior policy is sufficiently exploratory, Q-learning typ-

ically employs an ϵ-greedy policy to select actions in the environment. Despite
its simplicity, the ϵ-greedy policy approach is a popular and effective explo-
ration strategy where the policy selects the greedy action with respect to the
current Q-function with probability 1− ϵ, and selects an action at random with
probability ϵ. This simple technique ensures that π(u | x) > 0 for all u and x,
which is a key requirement for the convergence of Q-learning. We provide a full
description of the Q-learning algorithm in Algorithm 20.5.

Value Function Approximation: So far, we have assumed that the state and action
spaces, X and U , are finite and small enough to be easily stored in a look-up
table and to allow for meaningful state-action space exploration within a reason-
able computation budget. However, in robotics applications, the state and action
spaces are often continuous or extremely high-dimensional, making it impracti-
cal to compactly store and efficiently update value functions. This challenge mo-
tivates us to consider methods that rely on parametrized function approximation.
Within this class of methods, we represent value functions by a parametric func-
tion, Qθ(x, u), or alternatively Vθ(x), with parameters θ. The goal of learning is
then to find the optimal parameters, θ∗, such that the value function estimator is
close to the optimal value function.

Function approximation has two key advantages. First, it allows us to rep-
resent value functions compactly, as the number of parameters, θ, is typically

principles of robot autonomy 355

Algorithm 20.5: Q-Learning

Data: Initial action values, Q(x, u), learning rate, α, discount factor, γ,
exploration rate, ϵ.

Result: Updated action values, Q(x, u).
for each episode do

Initialize the state, x0.
for each step in the episode do

Select an action, ut, using an ϵ-greedy policy with respect to
Q(xt, u).

Execute the action ut and observe the reward, rt, and the next state,
xt+1.

Update the action-value function using the transition
(xt, ut, rt, xt+1).

Q(xt, ut)← Q(xt, ut) + α (rt + γ maxu′ Q(xt+1, u′)−Q(xt, ut))

return Q(x, u) ≈ Q∗(x, u)

much smaller than the number of states and actions. Second, it enables the
value function estimator to generalize to unseen states and actions, potentially
reducing the amount of exploration required to learn a good policy35. While 35 In other words, if the function ap-

proximator is able to generalize success-
fully, the agent does not need to visit
every state-action pair.

there are many choices for the function approximator, including linear func-
tions, neural networks, and decision trees, we focus our discussion on differen-
tiable functions.

Given a dataset, D, of transitions, (x, u, r, x′), policy evaluation via function
approximation entails learning the parameters, θ, that minimize the loss func-
tion J(θ):

J(θ) = E(x,u,r,x′)∼D [Qπ(x, u)−Qθ(x, u)] . (20.19)

Intuitively, J(θ) measures the discrepancy between the estimated value function,
Qθ(x, u), and the target value function, Qπ(x, u), where Qπ(x, u) is the value
function under the policy π that generated the transitions in D. We can solve
this optimization problem with stochastic gradient descent, which uses the
update rule:

θ← θ+ ∆θ, (20.20)

where:

∆θ = α (Qπ(x, u)−Qθ(x, u))∇θQθ(x, u),

where ∇θQθ(x, u) is the gradient of the value function estimator with respect to
its parameters, θ.

In practice, however, the update rule in Equation (20.20) is not directly ap-
plicable since the true target value function, Qπ(x, u), is unknown. Leveraging
ideas from model-free control, we can replace the unknown value function with
an update target based on Monte Carlo, temporal-difference, or dynamic pro-
gramming methods. For example, we could use a Monte Carlo target to define

356 reinforcement learning

the update:
∆θ = α (Gt −Qθ(xt, ut))∇θQθ(xt, ut), (20.21)

where Gt = ∑T−1
t γtrt, or we could use a temporal-difference target:

∆θ = α (rt + γQθ(xt+1, ut+1)−Qθ(xt, ut))∇θQθ(xt, ut), (20.22)

where we would compute both the Monte Carlo and temporal-difference targets
from sampled interactions from applying the behavior policy in the environ-
ment.

Fitted Q-learning: A particularly popular algorithm that combines function
approximation with temporal-difference learning is the Fitted Q-Learning algo-
rithm. Fitted Q-Learning updates the parameters, θ, of a Q-function estimator
by applying the update rule in Equation (20.20) with:

∆θ = α

(
rt + γ max

u′
Qθ(xt+1, u′)−Qθ(xt, ut)

)
∇θQθ(xt, ut). (20.23)

It is important to note that the target rt + γ maxu′ Qθ(xt+1, u′) is equivalent to
the temporal-difference target used in Q-learning. Essentially, Fitted Q-Learning
mimics the update rule of Q-learning, but rather than directly updating the
action values to explicitly enforce the Bellman optimality equation, it updates
the parameters, θ, of the Q-function estimator to approximately enforce it. In
other words, rather than updating the entries of a look-up table representing
the value function, Fitted Q-learning updates the parameters, θ, to minimize the
error with respect to the fixed point of the Bellman optimality operator.

In this section, we discussed a few foundational examples of value-based
reinforcement learning methods. While these are only a subset of the vast lit-
erature in value-based methods, they convey the key ideas and challenges of
learning value functions for control. Specifically, these methods highlight the
central idea of approximating value functions from experience and leveraging
them to derive optimal policies. Key challenges include ensuring sufficient ex-
ploration, which we can address through strategies like ϵ-greedy policies, and
addressing stability and convergence of the learning process when using value
function approximators, particularly in high-dimensional or continuous spaces.
Value-based methods in reinforcement learning are fundamentally built on a
concise set of core principles, such as generalized policy iteration and (approx-
imate) value iteration, and differ primarily in their usage of value update tar-
gets36, function approximators, or behavior policies. Therefore, understanding 36 For instance, Monte Carlo, temporal-

difference, or dynamic programming
approaches.

these foundational concepts provides us a lens through which we can interpret
the majority of value-based algorithms.

20.5.2 Policy Optimization Methods

In contrast with value-based methods, policy optimization methods take an
alternative, model-free, approach to solving the reinforcement learning problem.

principles of robot autonomy 357

To better motivate policy optimization, we recall the reinforcement learning
objective from Section 20.1:

Vπ = Eτ∼pπ(τ)

[
T−1

∑
t=0

γtR(xt, ut)

]
.

Rather than learning a value function and deriving a policy from it, as in value-
based methods, policy optimization methods define a parameteric policy, πθ,
and directly optimize the parameters, θ, to maximize the reinforcement learning
objective, Vπ . In other words, the goal of policy optimization methods is to find
the optimal policy parameters, θ∗:

θ∗ = arg max
θ

V(θ), (20.24)

where, for simplicity, we use V(θ) to refer to the reinforcement learning ob-
jective, Vπθ , under policy πθ with parameters θ. Policy optimization methods
solve this optimization problem through a two-step approach. First, they es-
timate the gradient of the reinforcement learning objective with respect to the
policy parameters, ∇θV(θ), and then they update the parameters by applying
approximate gradient ascent on V(θ):

θ← θ+ α∇θV(θ), (20.25)

where α denotes the user-defined learning rate.
The first challenge that all policy optimization methods face is estimating the

gradient of the reinforcement learning objective. To simplify the notation, we
define the cumulative reward as R(τ) = ∑T−1

t=0 γtrt and assume γ = 137. By 37 The extension to the discounted case
is equivalent and relatively straightfor-
ward.

definition of expectation, we have:

V(θ) = Eτ∼pθ(τ) [R(τ)] =
∫

pθ(τ)R(τ)dτ, (20.26)

where pθ(τ) denotes the trajectory distribution induced by the policy πθ. Equa-
tion (20.26) allows us to write the gradient of the reinforcement learning objec-
tive as:

∇θV(θ) = ∇θ

∫
R(τ)pθ(τ)dτ =

∫
∇θpθ(τ)R(τ)dτ. (20.27)

However, we cannot compute this gradient directly because it depends on un-
known dynamics through the trajectory distribution, pθ(τ)

38. 38 Recall the definition of the tra-
jectory distribution is pθ(τ) =
p(x0)∏T

t=0 p(xt+1 | xt, ut)πθ(ut | xt).
To address this issue, we resort to the following useful identity:

pθ(τ)∇θ log pθ(τ) = pθ(τ)
∇θpθ(τ)

pθ(τ)
= ∇θpθ(τ), (20.28)

and use it to rewrite the gradient of the reinforcement learning objective in
Equation (20.27) as:

∇θV(θ) =
∫
∇θpθ(τ)R(τ)dτ

=
∫

pθ(τ)∇θ log pθ(τ)R(τ)dτ

= Eτ∼pθ(τ) [∇θ log pθ(τ)R(τ)] .

358 reinforcement learning

We can then approximate the expectation using Monte Carlo methods by
sampling from the trajectory distribution, pθ(τ), through interaction with the
environment. However, directly computing the gradient of the log-probability,
∇θ log pθ(τ), remains intractable. To address this, we recall the definition of the
trajectory distribution, pθ(τ):

pθ(τ) := p(x0)
T−1

∏
t=0

p(xt+1 | xt, ut)πθ(ut | xt), (20.29)

and therefore the log-probability is:

log pθ(τ) = log p(x0) +
T−1

∑
t=0

log p(xt+1 | xt, ut) + log πθ(ut | xt). (20.30)

By substituting Equation (20.30) into the gradient of the reinforcement learning
objective, we obtain:

∇θV(θ) = Eτ∼pθ(τ) [∇θ log pθ(τ)R(τ)]

= Eτ∼pθ(τ)

[
∇θ

(
log p(x0) +

T−1

∑
t=0

log p(xt+1 | xt, ut) + log πθ(ut | xt)

)
R(τ)

]
.

Notably, the terms log p(x0) and log p(xt+1 | xt, ut) do not depend on θ, and
thus we can ignore them when computing the gradient of the reinforcement
learning objective. Moreover, evaluating the gradient of the log-probability of
the action, log πθ(ut | xt), is tractable and we can easily compute it, for example
by using automatic differentiation tools.

This leads to the following expression for the gradient of the reinforcement
learning objective:

∇θV(θ) = Eτ∼pθ(τ)

[
T−1

∑
t=0
∇θ log πθ(ut | xt)R(τ)

]
, (20.31)

which is tractable to compute and which we can estimate using samples from
the environment. For example, given N episodes of interaction with the envi-
ronment, we can estimate the gradient of the reinforcement learning objective
as:

∇θV(θ) ≈ 1
N

N

∑
i=1

T−1

∑
t=0
∇θ log πθ(ui

t | xi
t)R(τi). (20.32)

This is a crucial result and lays the foundations for almost all policy optimiza-
tion algorithms in reinforcement learning.

REINFORCE: The derivations above directly lead to one of earliest examples of
policy optimization methods39 known as the REINFORCE algorithm40. At a high 39 In the reinforcement learning litera-

ture, these are often also referred to as
policy gradient methods.
40 R. J. Williams. “Simple statistical
gradient-following algorithms for
connectionist reinforcement learning”.
In: Machine Learning 8.3 (1992), pp. 229–
256

level, the REINFORCE algorithm estimates the gradient of the reinforcement
learning objective in Equation (20.32) using samples from the environment,
and after each episode updates the policy parameters, θ, in the direction of the
gradient. We outline the REINFORCE algorithm in Algorithm 20.6.

principles of robot autonomy 359

Algorithm 20.6: REINFORCE Algorithm
Data: Initial policy parameters, θ, learning rate, α

Result: Update policy parameters, θ

for each episode do
Generate a trajectory, τ = {x0, u0, r0, . . . , xT}, using the policy πθ in the
environment.

Compute the return, R(τ) = ∑T−1
t=0 rt.

θ← θ+ α∇θV(θ), where ∇θV(θ) is computed by Equation (20.32).
return θ

From Equation (20.31), we can see that the gradient is computed as the sum
of the gradients of the log-probabilities of the actions, weighted by the return of
the trajectory. The intuitive understanding of this expression is that by taking a
step in the direction of the policy gradient, we update the policy parameters to
increase the log-probability of the actions that lead to high returns, and decrease
the log-probability of the actions that lead to low returns. In other words, the
policy gradient formalizes the idea of trial and error learning, making good
behavior more likely and bad behavior less likely.

Policy optimization methods represent a popular and intuitive approach to
reinforcement learning and have several advantages and disadvantages com-
pared to value-based methods. A first key advantage of policy optimization
methods is that they can naturally handle both discrete and continuous action
spaces because we can compute the gradient of the policy using automatic dif-
ferentiation tools41. For example, in the case of continuous action spaces, we 41 Assuming the policy is parameterized

by a differentiable function.can parameterize the policy as a Gaussian distribution. Additionally, policy
optimization methods have the notable advantage of directly optimizing the re-
inforcement learning objective. This ensures that improvements to the policy are
measured against a well-defined metric, since better values of the reinforcement
learning objective imply a better policy. In contrast, value-based methods rely
on fixed-point iterations of value functions to satisfy the Bellman equation with
the goal to eventually converging to the optimal value function. While this ap-
proach is theoretically sound, it is unclear how suboptimal the policy is during
intermediate iterations.

Policy gradient methods also have some disadvantages. First, the policy op-
timization methods we have presented so far are inherently on-policy methods,
which can result in high sample inefficiency42. A second disadvantage is that 42 A number of off-policy policy opti-

mization algorithms have been intro-
duced to allow the policy to be updated
using experiences collected from dif-
ferent policies. These methods aim to
approximate the behavior of classical
on-policy algorithms while improving
sample efficiency. Despite this advan-
tage, they often introduce additional
complexities, such as the need for more
sophisticated exploration strategies and
managing the stability of the off-policy
updates.

the gradient defined in Equation (20.32) is a high-variance estimator of the true
gradient from Equation (20.31). In practice, this can lead to extremely noisy
updates and therefore slow convergence.

As we will see in the remainder of this section, a lot of research in the do-
main of policy optimization has focused on addressing these limitations to
develop sample-efficient and lower-variance policy optimization methods.

360 reinforcement learning

Actor-Critic Methods: Actor-critic methods represent an important extension
of policy optimization that reduces the high variance associated with policy
gradient estimates. Recall that we can express the policy gradient, with a slight
rearrangement of the summation terms, as:

∇θV(θ) =
1
N

N

∑
i=1

T−1

∑
t=0
∇θ log πθ(ui

t | xi
t)

(
T−1

∑
t′=t

ri
t′

)
.

We refer to the term ∑T−1
t′=t ri

t′ as the reward-to-go The reward-to-go is a one-
sample estimate of the true return, which is defined as the expected cumulative
reward under the trajectory distribution, Eτ∼pθ(τ)

[
∑T−1

t′=t rt′
]
. While conceptu-

ally straightforward, this reward-to-go estimate introduces significant variance,
leading to noisy policy gradient updates.

Actor-critic methods address this challenge by introducing a critic, which
is a parametric approximation of the value function. Since the value function
estimates the expected reward-to-go, the critic enables us to replace the high-
variance sample-based estimate with a lower-variance, learned approximation.
Concretely, the policy gradient becomes:

∇θV(θ) ≈ 1
N

N

∑
i=1

T−1

∑
t=0
∇θ log πθ(ui

t | xi
t)Qϕ(xi

t, ui
t), (20.33)

where Qϕ(xt, ut) is the critic’s estimate of the action-value function. We can
update the critic using any value estimation method, such as the value-based
methods with function approximation discussed in Section 20.5.1.

A particularly popular choice for the definition of the policy gradient in
actor-critic methods is through the advantage function:

Aπ(xt, ut) = Qπ(xt, ut)−Vπ(xt), (20.34)

which quantifies the relative merit of taking action ut in state xt, compared to
the average value of the state. Intuitively, the advantage function emphasizes
actions that are better than average while downplaying less promising ones. In
practice, we often approximate the advantage function to avoid estimating both
Qπ and Vπ , using:

Aπ(xt, ut) ≈ rt + γVπ(xt+1)−Vπ(xt). (20.35)

Incorporating the advantage function into the computation of the policy gradi-
ent results in the Advantage Actor-Critic (A2C)43 algorithm, which significantly 43 V. Mnih et al. “Asynchronous Meth-

ods for Deep Reinforcement Learning”.
In: Proceedings of The 33rd International
Conference on Machine Learning. 2016,
pp. 1928–1937

reduces variance and improves learning stability. Unlike REINFORCE, which
adjusts the policy solely based on raw returns, A2C leverages the advantage
function to normalize updates, focusing on actions that perform better than
expected.

In practice, actor-critic methods involve iterative updates of both the policy
parameters, θ, and the value function parameters, ϕ. At each step, we improve
the policy based on the estimated advantage and we refine the value function to

principles of robot autonomy 361

Algorithm 20.7: Advantage Actor Critic (A2C)
Data: Initial policy parameters, θ, and value function parameters, ϕ,

learning rates, αθ, αϕ, discount factor, γ

Result: Updated policy parameters, θ

for each episode do
Sample trajectories, τ = {x0, u0, r0, . . . , xT}, using πθ.
for t = 0 to T − 1 do

Compute the value target, for example using temporal-difference:
yt = rt + γVπ

ϕ (xt+1).
ϕ← ϕ + αϕ∇ϕ(yt −Vπ

ϕ (xt))2

Aπ
ϕ (xt, ut) = yt −Vπ

ϕ (xt)

θ← θ+ αθ∇θ log πθ(ut | xt)Aπ
ϕ (xt, ut)

return θ

better approximate future rewards. The pseudocode for A2C in Algorithm 20.7
highlights these alternating updates.

Actor-critic methods blend the strengths of policy optimization and value-
based approaches, achieving a balance between expressive policy representa-
tions and efficient variance reduction. However, the introduction of a critic also
adds computational complexity and tuning challenges that we must consider in
practical implementations.

20.5.3 Limitations of Model-free Reinforcement Learning

Despite their successes, model-free reinforcement learning methods suffer from
several challenges. The first challenge is sample efficiency. Model-free methods
typically require a large number of samples before being able to learn a good
policy, which can be prohibitively expensive in many real-world robotics ap-
plications. Next, in their standard form, model-free methods are inherently
designed to be single-task learners. Given the specification of a reward function
for a given task, model-free methods learn a policy that maximizes the expected
return solely for that task. This makes it difficult to transfer knowledge across
tasks. Finally, in many real-world applications, the reward signal can be sparse,
delayed, or noisy, making it difficult for model-free methods to learn a good
policy.

20.6 Model-based Reinforcement Learning

Model-based reinforcement learning methods aim to address the limitations of
model-free methods by learning a model of the environment. In this section, we
introduce two broad classes of model-based reinforcement learning methods:
model-based planning methods that learn a model and use it to plan and model-
based policy optimization methods that learn a model and use it to accelerate

362 reinforcement learning

model-free policy learning.

20.6.1 Model-based Planning

If we had access to a model of the dynamics, p(xt+1 | xt, ut), we could leverage
tools from model-based optimal control to compute an optimal action plan.
Based on this observation, the main idea behind model-based planning methods
is to learn an approximate model of the true dynamics model from data, and
then use this learned model to plan. For example, we could apply the following
high-level strategy:

1. Run a base policy, π0, in the environment and collect a dataset of transitions,
D = {(xt, ut, rt, xt+1)}.

2. Fit a dynamics model, pθ(xt, ut), to the observed data to minimize the pre-
diction error, for example by minimizing the mean squared error between the
predicted and true next state: minθ ∑(xt ,ut ,rt ,xt+1)∈D ∥pθ(xt, ut)− xt+1∥2.

3. Use the learned dynamics model to plan a sequence of actions for the agent
to execute.

Despite its simplicity, this scheme works for relatively well-behaved systems,
where the dataset, D, guarantees sufficient coverage of the state-action space,
and where the learned model, pθ, is accurate enough to enable effective plan-
ning44. However, in practice, learning an accurate model of the dynamics is 44 This scheme is essentially equivalent

to a task known as system identification.often challenging, especially when dealing with high-dimensional, non-linear,
and stochastic systems. Additionally, any inaccuracies in the learned model can
be exploited by the optimization-based process.

A popular approach to address this issue is to consider a measure of uncer-
tainty in the model’s predictions, and to use this uncertainty to inform the plan-
ning process. While there are many ways to quantify uncertainty, we consider
methods that aim to learn a posterior distribution over the model parameters. In
these methods, rather than learning a single estimate of the model parameters,
θ, through standard maximum likelihood estimation:

θ∗ = arg max
θ

log pθ(D | θ), (20.36)

where pθ(D | θ) is the likelihood of the data given the model parameters, we in-
stead aim to learn a posterior distribution, p(θ | D), over the model parameters.
In other words, we aim to learn a full distribution over the model parameters
that is consistent with the observed data, potentially capturing multiple plausi-
ble models that explain the data, and ultimately enabling us to reason about the
uncertainty in the model’s predictions. We can achieve this by applying Bayes’
rule to compute the posterior distribution45: 45 K. P. Murphy. Probabilistic Machine

Learning: An introduction. MIT Press,
2022

p(θ | D) = p(D | θ)p(θ)
p(D) , (20.37)

principles of robot autonomy 363

where p(D | θ) is the likelihood of the data given the model parameters, p(θ)
is the prior distribution over the model parameters, and p(D) is the marginal
likelihood of the data.

Once we have an estimate of the posterior distribution over the model param-
eters, we can apply it in the following model-based planning scheme:

1. Run a base policy, π0, in the environment and collect a dataset of transitions,
D = {(xt, ut, rt, xt+1)}.

2. Use D to estimate a posterior distribution, p(θ | D), over the model parame-
ters.

3. Sample a set of K plausible models, {θ1, . . . , θK} ∼ p(θ | D).

4. For each sampled model, θk, and given a candidate action plan, (u1, . . . , uT−1),
use the model to compute the expected return:

V(u1, . . . , uT−1) =
1
K

K

∑
k=1

T−1

∑
t=1

R(xt, ut),

where xt+1 ∼ pθk (xt+1 | xt, ut).

5. Execute the first action from the best plan according to the expected return.

This scheme allows us to leverage the uncertainty in the model’s predictions
by considering multiple plausible models and to reason about the expected re-
turn under each model rather than optimizing under a single model. Despite
its effectiveness, it is important to note that this scheme is just a high-level de-
scription of the model-based planning process, and there are many practical
considerations that we would need to address to make this approach work in
practice.

20.6.2 Model-based Policy Optimization

The second class of model-based reinforcement learning methods we consider is
model-based policy optimization. In contrast to model-based planning, which uses
the learned model to plan a sequence of actions, model-based policy optimiza-
tion uses the learned model to improve model-free policy learning.

Specifically, having a learned model allows us to consider two sources of
experience: real-world data collected by executing the policy in the environment
and synthetic data generated by the model. Given an MDP,M = (S ,A, p, r, γ),
and a learned model, pθ(xt+1, rt | xt, ut)46, we can consider two sources of 46 Here we consider the general case

where we learn both the next state
and the reward, but we can extend the
discussion to the case where we only
have to learn one of the two.

experience:

(xt, ut, rt, xt+1) ∼ Environment data,

(xt, ut, r̂t, x̂t+1) ∼ pθ(xt+1, rt | xt, ut).

The basic idea of model-based policy optimization is to use both sources of
experience to improve model-free policy learning. One of the earliest and most
popular methods in this category is the Dyna-Q algorithm47. 47 R. S. Sutton. “Dyna, an integrated

architecture for learning, planning, and
reacting”. In: SIGART Bull. 2.4 (1991),
pp. 160–163

364 reinforcement learning

Dyna-Q: The Dyna-Q algorithm is a model-based reinforcement learning algo-
rithm that improves the learning efficiency of Q-learning by using the learned
model to generate synthetic data48. The algorithm is based on the idea that 48 The term Dyna-Q derives from the

fact that the algorithm combines Q-
learning with model-based acceleration.
The term Dyna more generally refers
to the idea of using a learned model to
generate synthetic data for model-free
learning.

in addition to updating the Q-function using real-world data, we can also up-
date the Q-function using synthetic data generated by the learned model. At a
high-level, the algorithm alternates between three main steps. First, we perform
the “standard” Q-learning steps, where we update the Q-function using real-
world data. Next is a model learning step where we update the model using
real-world data. Finally, we have a model-based acceleration step where we up-
date the Q-function using synthetic data generated by the model. We provide a
description of this algorithm in Algorithm 20.8.

Algorithm 20.8: Dyna-Q

Data: Model, pθ(xt+1, rt | xt, ut), number of model-based acceleration
steps, n

Result: Updated model parameters, θ, action value function
Q(x, u) ≈ Q∗(x, u)

for each episode do
Initialize x0.
for each step t do

Select action ut = π(xt).
Observe reward rt and next state xt+1.
Q(xt, ut)← Q(xt, ut) + α (rt + γ maxu′ Q(xt+1, u′)−Q(xt, ut))

Update model parameters, θ, using sample (xt, ut, rt, xt+1).
for i = 1, . . . , n do

Sample xt, ut from real-world data.
Generate synthetic data: (x̂t+1, r̂t) ∼ pθ(xt+1, rt | xt, ut).
Q(xt, ut)← Q(xt, ut) + α (r̂t + γ maxu′ Q(x̂t+1, u′)−Q(xt, ut))

return θ, Q(x, u) ≈ Q∗(x, u)

The Dyna-Q algorithm is a simple yet powerful method that demonstrates
the potential of model-based reinforcement learning to improve the learning
efficiency of model-free algorithms.

20.6.3 Limitations of Model-based Reinforcement Learning

Model-based methods are an extremely active and promising area of research
in reinforcement learning, but they are also subject to several limitations. First,
model learning entails optimizing the parameters of the model to minimize
prediction error. However, this objective does not necessarily align with the
objective of the agent, which is to maximize the expected cumulative reward,
and this discrepancy can lead to suboptimal policies. Second, model-based
methods are sensitive to model errors, which can cause the agent to learn sub-
optimal policies or exploit the model errors to achieve high rewards, poten-

principles of robot autonomy 365

tially leading to catastrophic failures. Finally, learning an accurate model of the
environment is a challenging task, especially in complex environments with
high-dimensional state and action spaces.

20.7 The Promise of Learning from Interaction

In this chapter, we provided a comprehensive overview of the field of reinforce-
ment learning. Rather than presenting an exhaustive list of algorithms, we fo-
cused on a conceptual understanding of the key ideas and principles that under-
lie reinforcement learning (Section 20.3). In particular, we discussed how Monte
Carlo methods (Section 20.3.1) and temporal-difference learning (Section 20.3.2)
represent two foundational paradigms in reinforcement learning, and how we
can use these methods to estimate value functions and learn optimal policies.
Most importantly, we highlighted how these methods, together with dynamic
programming, define a full spectrum of possible approaches to the problem of
learning from interaction (Section 20.3.4). Finally, we also discussed concrete
examples of the main algorithmic families in reinforcement learning, including
model-free (Section 20.5) and model-based (Section 20.6) methods, and high-
lighted the key ideas behind some of the most popular algorithms within these
categories.

366 reinforcement learning

References

[4] Y. Bai et al. “Training a Helpful and Harmless Assistant with Reinforce-
ment Learning from Human Feedback”. In: (2022). url: https://arxiv.
org/abs/2204.05862.

[6] D. Bertsekas. Reinforcement learning and optimal control. Athena Scientific,
2019.

[39] S. Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In:
Journal of Machine Learning Research 17.39 (2016), pp. 1–40.

[45] V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learn-
ing”. In: Proceedings of The 33rd International Conference on Machine Learn-
ing. 2016, pp. 1928–1937.

[48] K. P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,
2022.

[65] D. Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[69] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT Press,
2018.

[70] R. S. Sutton. “Dyna, an integrated architecture for learning, planning, and
reacting”. In: SIGART Bull. 2.4 (1991), pp. 160–163.

[75] C. J. C. H. Watkins and P. Dayan. “Q-learning”. In: Machine Learning 8.3
(1992), pp. 279–292.

[76] R. J. Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Machine Learning 8.3 (1992),
pp. 229–256.

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862

21
Imitation Learning

In Chapter 18, we introduced a strategy for autonomous robot decision making
that requires a very manual and sometimes intractable process of specifying de-
sired actions from every possible state. Then, in Chapter 19 and Chapter 20, we
formulated the sequential decision making problem as an optimization problem
where we must specify a cost or reward function that we want the robot to min-
imize or maximize. This optimization-based approach is more general and scal-
able, but it still requires us to figure out how to appropriately embed our pref-
erences into the form of a mathematical function. Reward design can be very
challenging in practice, and by the nature of optimization-based approaches,
the cost or reward function can be inadvertently exploited in undesirable ways.
Additionally, in the reinforcement learning context, we require continuous and
exploratory interactions with the environment that could be costly or unsafe1 as 1 For example, some robots operate in

close collaboration with humans or
in other safety-critical environments
where the risk of exploring sub-optimal
actions is significant.

well as sophisticated learning algorithms that are able to learn from experience.
In practice, it can sometimes be easier, more efficient, or safer for human

experts to demonstrate the desired task or behavior than it is to precisely pro-
gram it, try to encode it in a cost function, or let the robot freely interact with
the environment. The goal of imitation learning in the context of robotics is to
leverage a limited set of expert demonstrations to accelerate or completely train
a robot to autonomously perform a desired behavior. In this chapter, we begin
in Section 21.1 by introducing the concept of imitation learning in the context
of robotics, provide a formal problem formulation, and discuss key design con-
siderations. We then present a canonical imitation learning approach known
as Behavioral Cloning in Section 21.2, which aims to directly learn a policy from
expert demonstrations. Lastly, in Section 21.3, we introduce Inverse Reinforcement
Learning (IRL), an alternative approach to imitation learning that learns a reward
function from expert demonstrations.

21.1 Imitation Learning in Robotics

Imitation learning is a class of methods that enable skills to be transferred from
an expert to a learner. In the context of robotics, the expert is typically a human
operator or a pre-existing control policy, and the learner is the robot that aims

368 imitation learning

to mimic the expert’s behavior. While the literature on imitation learning is vast,
in this section, we focus on core design decisions and concepts essential for
understanding and applying imitation learning to robotic systems.

We should consider several key aspects when designing an imitation learning
system. First, we should determine if imitation learning is the best approach for
the problem, since it might not always be the most suitable method for learning
a task. For example, reinforcement learning might be a more effective approach
if it is inexpensive for us to obtain samples from the environment2. Imitation 2 Such as if we have a good simulator for

the task because it could be very safe
and cheap to collect data.

learning also may not yield the desired performance if the expert’s behavior is
suboptimal or inconsistent. Second, we should be able to identify the features of
the demonstrations that we want the robot to actually learn to imitate. In many
cases, sensor or control input data recorded from the expert demonstration
may contain a large amount of information that is irrelevant for learning the
task. Third, we should determine how to select the expert, since the choice of
expert can significantly impact the quality of the learned behavior. In many
cases, the expert is a human operator who demonstrates the task. However,
the expert could also be a pre-existing control policy, a set of historical data,
or a mixture of multiple experts. Fourth, we should carefully select how to
represent the policy, since this can greatly influence the learning process. For
example, we can equivalently represent expert behavior at different levels of
abstraction, such as low-level motor commands, mid-level state trajectories,
or high-level symbolic actions. Additionally, different functional forms of the
policy3 can impact the expressiveness and generalization capabilities of the 3 For example, whether the policy is

defined as a linear function or a neural
network.

learned policy. Finally, the choice of the learning algorithm can significantly
impact the efficiency and performance of the imitation learning process. Many
algorithms have been proposed for imitation learning, each with strengths and
weaknesses. Understanding the characteristics of different algorithms and their
suitability for the given task is essential for designing an effective imitation
learning system.

21.1.1 Differences Among Imitation Learning, Supervised Learning, and Reinforce-
ment Learning

Imitation learning is often compared with supervised learning and reinforce-
ment learning, as all three paradigms involve learning from data. While these
methods share similarities, they also differ in several key aspects. Supervised
learning methods aim to learn a mapping from input data, such as camera im-
ages, to output labels, such as object categories, based on a dataset of input-
output pairs. While the imitation learning task of deriving a policy from a
dataset of expert demonstrations is closely related to supervised learning, there
are several key differences. First, in imitation learning, the solution may have
inherent structural properties, such as physical constraints or temporal depen-
dencies4, that are not present in standard supervised learning tasks. Second, 4 For example, in robot planning and

control we often have actuation limits
and the structure from the tempo-
rally sequential nature of the decision
making task.

in a traditional supervised learning setting, we assume that the source domain,

principles of robot autonomy 369

which includes the dataset used for training, and the target domain, which in-
cludes the test data, are the same. In imitation learning, we may not be able to
directly transfer the expert’s behavior to the learner’s environment. For exam-
ple, the embodiment of the expert may differ from the learner, such as if the
expert is a human and the learner is a robot, leading to expert demonstrations
of actions that are not directly executable by the robot. Imitation learning is also
typically exposed to the covariate shift problem, where the distribution of the
expert’s data may differ from the distribution of the learner’s data. Specifically,
the learner may encounter situations not represented in the expert’s demonstra-
tions, requiring it to generalize beyond the expert’s behavior. Lastly, obtaining
expert demonstrations can be costly or time-consuming, making data collection
a significant concern.

Imitation learning is also closely related to reinforcement learning, as both
paradigms involve learning a policy from data that maximizes a reward. How-
ever, reinforcement learning methods typically require a predefined reward
function to guide the robot’s behavior. In contrast, imitation learning assumes
that the expert directly provides optimal, or at least good, behavior, bypassing
the need for a reward function.

21.1.2 Problem Formulation

In imitation learning problems, we typically assume that we have access to a
dataset, D, of expert demonstrations. The dataset generally consists of a set of
trajectories and contexts, and we denote it mathematically as D = {(τi, si)}N

i=1
where N is the number of samples and τi = {xi,0, ui,0, . . . , xi,T} is a trajectory ex-
ecuted by the expert in a given context, si. The context, si, may represent a task
description, an environmental configuration, or any other relevant information
characterizing the expert’s behavior. Alternatively, the dataset may consist of
state-action pairs, where we would write D = {(xi, ui)}N

i=1.
Given this dataset, we can reproduce the expert’s behavior by learning a

mapping from contexts to trajectories or from states to actions:

π(s) = τ or π(x) = u.

We can learn these policies through supervised learning techniques using an
approach known as Behavioral Cloning5. 5 T. Osa et al. “An Algorithmic Perspec-

tive on Imitation Learning”. In: (2018).
url: https://arxiv.org/abs/1811.
06711

Alternatively, we can use the expert demonstrations to learn a reward func-
tion, R(x, u), that implicitly defines the expert’s behavior, and then infer a policy
that maximizes this reward:

π∗(x) = arg max
π

Vπ = arg max
π̂

Eτ∼p(τ)

[
T−1

∑
t=0

γtR(xt, ut)

]
,

where Vπ is the expected sum of future rewards for policy π where the expec-
tation is over possible trajectories, τ, that are distributed according to p(τ). This
approach is known as Inverse Reinforcement Learning (IRL)6 or Inverse Optimal 6 S. Arora and P. Doshi. “A survey

of inverse reinforcement learning:
Challenges, methods and progress”.
In: Artificial Intelligence 297 (2021),
p. 103500

https://arxiv.org/abs/1811.06711
https://arxiv.org/abs/1811.06711

370 imitation learning

Control (IOC).
Behavioral Cloning and IRL are the two primary approaches to imitation

learning, and each has its own distinct strengths and limitations. In the follow-
ing sections, we discuss these approaches in more detail and provide insights
into when each method is most appropriate.

21.2 Behavioral Cloning

Behavioral Cloning is an approach to imitation learning that learns a mapping7 7 Behavioral Cloning learns a policy
directly, rather than trying to model a
reward function, like IRL methods.

from states to actions or contexts to trajectories that mimics the expert’s behav-
ior. We formulate the Behavioral Cloning task as a supervised learning problem,
where we learn the policy, π, by solving a regression problem. We outline the
general procedure for Behavioral Cloning in Algorithm 21.1. The first step en-

Algorithm 21.1: Behavioral Cloning
Collect a dataset, D, of expert demonstrations.
Define a model architecture for the policy, πθ.
Define a loss function, L.
Optimize the loss function, L, with respect to the model parameters, θ.
return Trained policy, πθ.

tails collecting a dataset, D, of expert demonstrations, for example from logged
data from a human operator. Next, we define a model architecture for the pol-
icy, πθ, which can be a neural network, a linear model, or some other function
parameterized by θ. Our choice of model architecture depends on the task’s
complexity and the available data. For example, we should choose a model that
is expressive enough to capture the expert’s behavior but not so complex that it
can overfit to the data. In the next step, we define a loss function, L, that we op-
timize to determine the policy parameters, θ. The loss function should represent
a well-defined measure of discrepancy between the predicted actions and the
expert’s actions. Common choices for the loss function include mean squared
error, L-1 loss, Hinge loss, and Kullback-Leibler divergence. Finally, we optimize
the model parameters, θ, to minimize the loss function, L.

Behavioral cloning methods are an attractive approach to learning-based
decision making, primarily due to their simplicity, effectiveness, and broad
applicability. However, ensuring the learned policy performs reliably in real-
world settings presents significant challenges. One of the primary obstacles to
trustworthy deployment of policies learned through Behavioral Cloning is the
issue of covariate shift.

21.2.1 The Covariate Shift Problem

Covariate shift occurs when the distribution of the training data differs from the
distribution observed during deployment. In the context of Behavioral Cloning,

principles of robot autonomy 371

this problem arises when we allow the learned policy to interact with its en-
vironment in a closed-loop fashion. Although the robot’s policy is trained to
minimize the discrepancy between its own actions and the expert’s actions,
small errors are inevitable and can accumulate over time. As a result, the robot
may encounter regions of the state space not observed in the expert’s demon-
strations that we used to learn the robot’s policy. This distribution shift in the
observed states can lead to increasingly large errors, compounding over time
and potentially resulting in task failure.

While it is impractical to gather data covering all possible states a robot
might encounter, several strategies have been developed to mitigate the impact
of covariate shift. These strategies typically follow an iterative process that alter-
nates between updating the robot’s policy and targeted data collection based on
the robot’s current state distribution. In this section, we outline two primary ap-
proaches to address covariate shift: confidence-based methods and data aggregation
methods.

Confidence-Based Methods: In the class of confidence-based methods8, we equip 8 S. Chernova and M. Veloso. “Interac-
tive policy learning through confidence-
based autonomy”. In: Journal of Artificial
Intelligence Research 34.1 (2009), pp. 1–
25. issn: 1076-9757

the robot with a mechanism to estimate the uncertainty in its predicted actions.
This uncertainty estimate gives the robot the ability to identify situations where
its policy is likely to make errors, allowing for it to take corrective measures,
such as collecting more data for additional training. In some cases, data collec-
tion is also prompted by expert intervention, where the expert steps in to correct
the robot’s actions. At a high-level, methods based on this iterative process aim
to mitigate the effects of covariate shift by empirically aligning the policy with
the true state distribution. We provide a general framework of this approach in
Algorithm 21.2, but the specific implementation details may vary depending on
the task and the available data.

Algorithm 21.2: Confidence-based Methods
Data: Dataset of expert demonstrations, D, confidence estimatation

function, c(x), confidence threshold, c0

Result: Trained policy, πθ

Train a policy, πθ, on the dataset, D.
while true do

Observe the state, xt.
Compute the confidence estimate, c(xt).
if c(xt) < c0 or expert intervention is necessary then

Compute additional demonstration data, (xt, uexpert
t).

D ← D ∪ {(xt, uexpert
t)}.

Train the policy, πθ, on the updated dataset, D.
return Trained policy, πθ.

372 imitation learning

Data Aggregation Methods: Data aggregation methods are another primary class
of approaches within the context of Behavioral Cloning that address the covari-
ate shift problem. DAGGER9 is a well-known method for addressing the covari- 9 S. Ross, G. Gordon, and D. Bagnell.

“A Reduction of Imitation Learning
and Structured Prediction to No-Regret
Online Learning”. In: Proceedings of the
Fourteenth International Conference on
Artificial Intelligence and Statistics. 2011,
pp. 627–635

ate shift problem through data aggregation techniques. Specifically, DAGGER

seeks to reduce covariate shift by explicitly gathering expert demonstrations un-
der the state distribution induced by the robot. As we outline in Algorithm 21.3,
DAGGER follows an iterative two-step process. First, we allow the robot to inter-
act with the environment and observe states according to its own state distribu-
tion, and then we relabel these states using expert demonstrations.

Algorithm 21.3: DAGGER Algorithm

Data: Initial dataset of expert demonstrations, D, initial policy, π1
θ,

number of iterations, N
Result: Trained policy, πN

θ

for i = 1, 2, . . . , N do
Collect trajectories, τ = {(xt, urobot

t)}, using the policy πi
θ.

Gather dataset of states visited by the robot and actions given by the
expert, Di = {(xt, uexpert

t)}.
Aggregate the dataset, D ← D ∪Di.
Train the policy, πi+1

θ , on the updated dataset, D.

return Trained policy, πN
θ .

In its simplest form, DAGGER begins by initializing the policy, π1
θ, using a

set of previously collected expert demonstrations. The robot then interacts with
the environment with policy π1

θ, collecting trajectories, τ, that reflect the state
distribution under the current policy. We then relabel the actions of the trajecto-
ries using the expert’s actions for the visited states. Then, we use the relabeled
trajectories to train an updated policy, π2

θ, which we then employ to collect ad-
ditional trajectories under the state distribution induced by the updated policy.
We repeat this process for a fixed number of iterations, resulting in the final
trained policy, πN

θ .
By collecting expert demonstrations under the state distribution induced

by the robot’s current policy, DAGGER effectively reduces covariate shift and
enhances the performance of the learned policy. This method operates as a
form of interactive supervised learning, where the robot actively collects data
to refine its performance. This iterative process minimizes the amount of expert
data required, making it more effective across a range of tasks.

In summary, confidence-based methods and data aggregation techniques
both provide solutions for addressing the covariate shift problem in Behavioral
Cloning. While there are many variations of these methods, the core principles
we outline in Algorithm 21.2 and Algorithm 21.3 provide a foundational un-
derstanding of how to mitigate covariate shift through targeted data collection.
However, methods following these principles still suffer from other common

principles of robot autonomy 373

limitations of Behavioral Cloning, such as dependence on the quality of expert
demonstrations. In Section 21.2.2, we discuss approaches that leverage ideas
from Behavioral Cloning to learn from broader, and potentially suboptimal, sets
of expert demonstrations.

21.2.2 Reinforcement Learning via Supervised Learning (RvS)

Recent work10 has explored the idea of converting the reinforcement learn- 10 S. Emmons et al. “RvS: What is
Essential for Offline RL via Supervised
Learning?” In: 2021

ing problem, which we discussed in Chapter 20, into a conditional, filtered, or
weighted imitation learning problem. In this class of approaches, we use the
insight that rather than relying on optimal demonstrations, we can leverage a
broader set of demonstrations from suboptimal policies or from diverse, but
related, tasks. We often refer to these approaches as reinforcement learning via
supervised learning (RvS) methods. These approaches typically involve condi-
tioning on goals or reward values, but can also entail reweighting or filtering
demonstrations.

Filtering or Weighting Demonstrations: One common approach to RvS is to fil-
ter or weight the expert demonstrations based on their quality11 or relevance 11 For example, if they obtain higher

rewards.to the task. Revisiting the outline of the Behavioral Cloning algorithm in Al-
gorithm 21.1, we can consider a modification that involves filtering the expert
demonstrations based on their quality, as defined by the reward information.

A primitive approach could entail the following process. First, we rank the
expert demonstrations based on their return12: 12 The return of a trajectory is the sum of

rewards obtained along the trajectory.
We rank trajectories by their long-
term performance, rather than just the
immediate rewards, for better overall
behavior.

r(τ) =
T−1

∑
t=0

γtR(xt, ut).

Then, we filter the dataset, D, to include only the top k% of trajectories based on
their return:

D̃ = {τ ∈ D | r(τ) ≥ r̄}.
where r̄ is the return such that k percent of the set D has a return higher than
that amount. Finally, we train the policy, πθ, on the filtered dataset, D̃.

This represents a simple form of RvS, where we filter expert demonstrations
based on their return. A more sophisticated approach might involve weighting
each individual transition of a trajectory based on its reward, rather than filter-
ing entire trajectories. We can measure the quality of individual actions by using
its advantage13 or Q-value instead of its immediate reward. Once we have com- 13 Recall from Chapter 20 that the

advantage of an action is the difference
between the action-value function
and the value function, A(xt, ut) =
Q(xt, ut) − V(xt). Intuitively, the
advantage represents how much better
an action is compared to the average
action.

puted action weights, we incorporate them into the Behavioral Cloning process
by defining the loss function in Algorithm 21.1 as:

L(θ) = E(x,u)∼D̃ [− log πθ(u | x)A(x, u)] .

This is a modified version of the standard Behavioral Cloning loss where we
now weight the action probabilities, log πθ(u | x), by their advantage values,
A(x, u). This approach is known as advantage-weighted Behavioral Cloning and has
been shown to improve the performance of Behavioral Cloning in practice.

374 imitation learning

Goal or Reward Conditioning: Another common approach to RvS is to condition
the policy on a goal or reward value. This approach is particularly useful in
settings where the expert demonstrations are suboptimal or collected from a
different task. Consider a dataset of previously collected trajectories, D = {τi}.
Each trajectory, τi, might be described using different outcomes14, such as the 14 In other words, a condition that is

verified during or at the end of the
trajectory.

final state of the trajectory, the total reward obtained, or a specific state visited
during the trajectory. We denote a specific outcome occurring in a trajectory, τ,
as ω. The goal of conditioning-based RvS is to learn an outcome-conditioned
policy, πθ(u | x, ω), that optimizes:

L(θ) = E(x,u,ω)∼D [− log πθ(u | x, ω)] .

Goal and state-conditioned RvS are particularly relevant approaches where
the policy is conditioned on a specific state or goal outcome, ω = x ∈ X , that
the robot should reach. For example, in a robotic manipulation task, the robot
might be conditioned on reaching a specific configuration. Another common
form of conditioning is reward-conditioned RvS, where we condition the policy
on a specific reward value, ω = ∑T−1

t=0 R(xt, ut).
In both cases, conditioning on outcomes enables the robot to extract mean-

ingful information from suboptimal or diverse expert demonstrations, often
leading to improved performance in practice. For example, consider two poli-
cies, πθ1(u | x) and πθ2(u | x, ω), that are trained on the same dataset, D.
Suppose πθ1 is trained to imitate expert demonstrations that implicitly opti-
mize a specific reward function. This reward-centric approach restricts πθ1 to
behaviors that closely follow the expert’s trajectory distribution. On the other
hand, πθ2 is goal-conditioned and trained to achieve any specified goal state,
ω, independent of the underlying reward function. By explicitly incorporating
the goal into its policy, πθ2 decouples the process of achieving desired outcomes
from the reward structure. As a result, πθ2 is likely to generalize better to novel
tasks or unseen goal states, as it learns a flexible mapping from states and goals
to actions. In contrast, πθ1 remains constrained by the expert’s reward-aligned
demonstrations, making it less adaptable to scenarios with divergent or ambigu-
ous reward structures.

21.3 Inverse Reinforcement Learning

In the previous section, we discussed Behavioral Cloning as a form of imitation
learning that directly learns a policy from expert demonstrations. Inverse Re-
inforcement Learning (IRL)15 takes an orthogonal approach to imitation learn- 15 A. Ng and S. Russell. “Algorithms

for Inverse Reinforcement Learning”.
In: Proceedings of the Seventeenth Inter-
national Conference on Machine Learning.
2000, pp. 663–670

ing by attempting to recover a reward function from a policy, or from demon-
strations of a policy. In certain cases, identifying the reward function can offer
deeper insights into the task’s underlying structure, making it potentially more
informative than directly learning a policy. Additionally, a policy that is optimal
for the expert may not be optimal for the agent if they have different dynamics,
morphologies, or capabilities16. 16 Learned reward representations

can also potentially generalize across
different robot platforms that tackle
similar problems.

principles of robot autonomy 375

Example 21.3.1 (Inverse Reinforcement Learning vs Behavioral Cloning). Con-
sider a scenario where the robot’s objective is to drive across a city as quickly
as possible. In the context of imitation learning, we assume the reward function
is unknown, but an expert provides example routes to navigate the city. Behav-
ioral Cloning approaches attempt to replicate the expert’s actions, such as by
learning to turn right at a particular intersection. This strategy lacks robustness
since it can fail when the robot encounters intersections that the expert never
visited. IRL approaches offer a more generalizable alternative by focusing on
identifying key features of the expert’s trajectories, rather than just mimicking
actions. For example, instead of merely copying the expert’s turns, the robot
could learn to recognize useful patterns, such as preferring roads with higher
speed limits or fewer stop signs. The robot can then develop a policy that takes
routes with similar advantageous characteristics, even if they differ from the
exact paths the expert took.

Formally, the goal of IRL is to recover a reward function, R : X × U → R,
from a set of expert demonstrations, D = {τi}, where τi = {(x0, u0, . . . , xT)} is
an example trajectory. We parameterize the reward function by parameters w,
and therefore our goal is to recover the reward function by optimizing w to best
explain the expert demonstrations. We can then define a policy by optimizing
the learned reward function, for example using methods from the previous
chapters on sequential decision making and reinforcement learning.

In practice, many IRL algorithms require an iterative learning process consist-
ing of two primary steps that are repeated until convergence. First, we update
the reward function parameters, w. Then, we adjust the policy parameters, θ,
to maximize the current estimate of the reward function. While each IRL algo-
rithm has a different way of performing these steps, Algorithm 21.4 provides a
high-level overview of the general process.

Algorithm 21.4: High-level IRL Algorithm
Data: Expert demonstrations, D, initialized reward function parameters,

w, initialized policy parameters, θ

Result: Learned reward function parameters, w, learned policy
parameters, θ

while not converged do
Update the reward function parameters, w.
Update the policy parameters, θ, to maximize the current estimate of

the reward function.
return Optimized reward and policy parameters: w, θ.

One challenge in IRL is that the expert policy may be optimal for multiple
reward functions and therefore the problem of recovering the reward function
is inherently ill-posed. Numerous alternative objectives have been proposed to
address this issue, such as optimizing for the maximum margin between the
optimal and suboptimal policies, or maximum entropy formulations.

376 imitation learning

In the following sections, we first introduce the concept of feature expectation
and then discuss three popular IRL methods: apprenticeship learning, maxi-
mum margin planning, and maximum entropy IRL.

21.3.1 Feature Expectation

We start with an assumption that a true reward function, R∗, exists and that we
can express it as a linear combination of features:

R∗(x, u) = w∗⊤ϕ(x, u),

where ϕ : X × U → [0, 1]d is some vector of features17. In Chapter 20, we 17 To ensure that the rewards are
bounded by 1, we also assume that
∥w∗∥2 ≤ 1.

saw that the value function for a policy, π, which we define as the expected
cumulative discounted reward, is:

Vπ
T (x) = Eτ∼pπ(τ)

[
T−1

∑
t=0

γtR(xt, π(xt)) | x0 = x

]
. (21.1)

Using the reward function R(x, u) = w⊤ϕ(x, u), we can rewrite the value func-
tion as:

Vπ
T (x) = w⊤µ(π, x), (21.2)

where:

µ(π, x) = Eτ∼pπ(τ)

[
T−1

∑
t=0

γtϕ(xt, π(xt)) | x0 = x

]
,

where we refer to µ(π, x)18 as the feature expectation. 18 For brevity, we may also denote
µ(π, x) as simply µ(π).An important insight is that, by definition, the optimal expert policy, π∗, will

always yield a value function greater than or equal to that of any other policy
and therefore:

Vπ∗
T (x) ≥ Vπ

T (x), ∀x ∈ X , ∀π.

We can equivalently express this condition in terms of the feature expectation
as:

w∗⊤µ(π∗, x) ≥ w∗⊤µ(π, x), ∀x ∈ X , ∀π. (21.3)

Theoretically, we can derive the expert’s reward vector, w∗, by finding a vector,
w, that satisfies this inequality. However, this can potentially lead to ambigui-
ties, such as the fact that w = 0 trivially satisfies this condition. Reward ambi-
guity is a key challenge in IRL, and the algorithms we discuss in the following
sections provide techniques to address this issue.

21.3.2 Apprenticeship Learning

The apprenticeship learning algorithm19 addresses the problem of reward am- 19 P. Abbeel and A. Ng. “Apprenticeship
Learning via Inverse Reinforcement
Learning”. In: Proceedings of the Twenty-
First International Conference on Machine
Learning. 2004

biguity by finding a policy, π, such that the feature expectation induced by π is
close to that of the expert policy, π∗. Mathematically, the goal of apprenticeship
learning is to find a policy such that ∥µ(π, x) − µ(π∗, x)∥2 ≤ ϵ for all x ∈ X ,

principles of robot autonomy 377

where ϵ is a small positive constant. For such a policy, π, we would have that
for any w with ∥w∥2 ≤ 1:

|Vπ
T (x)−Vπ∗

T (x)| = |w⊤µ(π, x)−w⊤µ(π∗, x)|,
≤ ∥w∥2∥µ(π, x)− µ(π∗, x)∥2

≤ 1 · ϵ = ϵ,

(21.4)

where the first equality follows from the definition of the value function as a
function of the feature expectation in Equation (21.2), the first inequality follows
from the fact that |x⊤y| ≤ ∥x∥2∥y∥2 for any vectors x and y, and the second
inequality follows from the assumption that ∥w∥2 ≤ 1. In practice, this leads
to a practical reformulation of the IRL problem where as long as we match the
feature expectations, such that ∥µ(π, x)− µ(π∗, x)∥2 ≤ ϵ, the performance of the
learned policy will be comparable to the expert even if w does not match w∗.

Within this context, the IRL problem is reduced to finding a policy, π, that
induces feature expectations, µ(π), that are close to those of the expert, µ(π∗).
We provide a schematic overview of apprenticeship learning in Algorithm 21.5.
At iteration i in Algorithm 21.5, we have already found policies π0, π1, . . . , πi−1

Algorithm 21.5: Apprenticeship Learning

Data: Expert’s feature expectations, µ∗ = µ(π∗), initial policy, π0

Result: Learned parameters, w, and policy, π̂∗

i← 1
while true do

Compute µ(i−1) = µ(πi−1) (or approximate via Monte Carlo methods).
Compute t(i) = maxw:|w|2≤1 minj∈{0,...,(i−1)}w⊤

(
µ∗ − µ(j)

)
by solving:

(wi, ti)← max
w,t

t,

s.t. w⊤µ∗ ≥ w⊤µ(j) + t, ∀j ∈ {0, . . . , (i− 1)},
∥w∥2 ≤ 1.

(21.5)

if ti ≤ ϵ then
π̂∗ ←− best feature matching policy from {π0, . . . , πi−1}
ŵ∗ ←− wi

return π̂∗, ŵ∗

Compute an optimal policy, πi, for the reward function defined by ŵ.
i← i + 1

and the corresponding feature expectations µ(0), µ(1), . . . , µ(i−1). Within the in-
ner loop, we formulate the optimization problem defined by Equation (21.5)
to find the reward function vector, w, being optimized by the expert. Specif-
ically, from Equation (21.2), we can view the constraint w⊤µ∗ ≥ w⊤µ(j) + t
as Vπ∗

T (x0) ≥ V
πj
T (x0) + t. In other words, we are seeking to find the reward

function parameters, w, for which the expert does better by a margin of t than

378 imitation learning

any of the policies we previously found. We then compute a new policy20, πi, 20 For example, using reinforcement
learning methods from Chapter 20.that is optimal for the reward function wi. This process continues until the mar-

gin, ti, is less than a predefined threshold, ϵ, meaning that we have sufficiently
matched the expert’s feature expectations.

21.3.3 Maximum Margin Planning

Maximum margin planning (MMP)21 is a generalization of apprenticeship 21 N. Ratliff, J. A. Bagnell, and M. Zinke-
vich. “Maximum Margin Planning”.
In: Proceedings of the 23rd International
Conference on Machine Learning. 2006,
pp. 729–736

learning that aims to find a reward function that maximally separates the ex-
pert policy from a set of policies. Specifically, MMP modifies Equation (21.5)
from the apprenticeship learning algorithm as follows:

ŵ∗ = arg min
w,ξ

∥w∥2
2 + Cξ,

s.t. w⊤µ∗ ≥ w⊤µ(j) + m(π∗, π(j))− ξ, ∀j ∈ {0, . . . , (i− 1)},
(21.6)

where m(π, π′) is a distance function22 between any two policies π and π′, ξ 22 For example, m(π, π′) could represent
the number of states in which π and π′

disagree.
represents a slack variable allowing for constraint violations, and C is a hyper-
parameter used to penalize constraint violations. Intuitively, through this mod-
ified formulation, MMP enforces that the margin should be larger for policies
that are very different from π∗.

An advantage of the MMP formulation over the apprenticeship learning ap-
proach in Equation (21.5) arises when the expert is suboptimal. In such cases, it
may be impossible to find a reward vector, w, that makes the expert policy out-
perform all other policies This causes the apprenticeship learning optimization
problem defined by Equation (21.5) to return trivial values of wi = 0 and ti = 0.
In contrast, the MMP formulation incorporates slack variables that allow us to
compute a meaningful reward vector w when the expert is imperfect.

21.3.4 Maximum Entropy Inverse Reinforcement Learning

As we described in Section 21.3, the IRL problem in inherently ill-posed since
there are infinitely many reward functions that could explain the expert’s be-
havior. While maximum margin approaches are highly effective when there is a
single reward function that is clearly better than alternatives, in some cases, op-
timizing for a distribution of reward functions is more appropriate. Maximum
entropy inverse reinforcement learning (MaxEnt IRL)23 aims to find a distri- 23 B. D. Ziebart et al. “Maximum En-

tropy Inverse Reinforcement Learning”.
In: Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence. 2008,
pp. 1433–1438

bution over reward functions that explains the expert’s behavior that ideally
matches the feature expectations of the expert24 and has maximum entropy25.

24 Similar to maximum margin methods.
25 In other words, is as “random” as
possible.

We denote the distribution over trajectories induced by a policy, π, as pπ(τ),
and we can write the feature expectations in terms of this distribution as:

µ(π) = Eπ [f (τ)] =
∫

pπ(τ) f (τ)dτ,

where f (τ) = ∑T−1
t=0 γtϕ(xt, π(xt)). In practice, MaxEnt IRL proposes to learn a

principles of robot autonomy 379

policy that maximizes the entropy:

H(p(τ)) =
∫
−p(τ) log p(τ)dτ, (21.7)

subject to the constraints:∫
p(τ) f (τ)dτ =

∫
pπ∗(τ) f (τ)dτ,∫

p(τ)dτ = 1,
(21.8)

where the first constraint enforces the feature expectations of the robot and
expert policies to match, and the second constraint enforces p(τ) to represent a
valid probability distribution.

Among the distributions that satisfy the constraint
∫

p(τ) f (τ)dτ =
∫

pπ∗(τ) f (τ)dτ,
the maximum entropy distribution follows the exponential form:

p(τ) ∝ exp(w⊤ f (τ)).

Specifically, we can express the trajectory distribution as a function of w as:

p(τ | w) =
1

Z(w)
exp

(
w⊤ f (τ)

)
, (21.9)

where Z(w) is the partition function given by Z(w) =
∫

exp
(
w⊤ f (τ)

)
dτ.

However, Equation (21.9) only holds for deterministic environments where
the next state is fully determined by the current state and action. In stochastic
environments, the trajectory distribution is also influenced by the random envi-
ronment dynamics, and in this case we express the distribution over trajectories
as:

p(τ | w) =
1

Z(w)
exp

(
w⊤ f (τ)

)
∏

{xt+1,ut ,xt}∈τ

p(xt+1 | xt, ut). (21.10)

We can therefore obtain the parameter vector, w, for the reward function by
maximizing the likelihood of the observed data under the maximum entropy
distribution defined in Equation (21.10) as:

ŵ∗ = arg max
w
LMLE = arg max ∑

τ∈D
ln p(τ | w). (21.11)

380 imitation learning

References

[1] P. Abbeel and A. Ng. “Apprenticeship Learning via Inverse Reinforce-
ment Learning”. In: Proceedings of the Twenty-First International Conference
on Machine Learning. 2004.

[2] S. Arora and P. Doshi. “A survey of inverse reinforcement learning:
Challenges, methods and progress”. In: Artificial Intelligence 297 (2021),
p. 103500.

[9] S. Chernova and M. Veloso. “Interactive policy learning through confidence-
based autonomy”. In: Journal of Artificial Intelligence Research 34.1 (2009),
pp. 1–25. issn: 1076-9757.

[14] S. Emmons et al. “RvS: What is Essential for Offline RL via Supervised
Learning?” In: 2021.

[50] A. Ng and S. Russell. “Algorithms for Inverse Reinforcement Learning”.
In: Proceedings of the Seventeenth International Conference on Machine Learn-
ing. 2000, pp. 663–670.

[51] T. Osa et al. “An Algorithmic Perspective on Imitation Learning”. In:
(2018). url: https://arxiv.org/abs/1811.06711.

[55] N. Ratliff, J. A. Bagnell, and M. Zinkevich. “Maximum Margin Planning”.
In: Proceedings of the 23rd International Conference on Machine Learning. 2006,
pp. 729–736.

[56] S. Ross, G. Gordon, and D. Bagnell. “A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning”. In: Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. 2011, pp. 627–635.

[79] B. D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence.
2008, pp. 1433–1438.

https://arxiv.org/abs/1811.06711

Part V

Robot Software

22
Robot System Architectures

A robotic system is fundamentally a collection of sensors and actuators that
can interact with the environment to accomplish a set of tasks. While this def-
inition is simple, the systems required to implement this definition tend to be
extremely complex due to the infinite variability and uncertainty of real-world
environments and the diversity among sensors and actuators. Therefore, careful
and practical design of robotic systems is crucial for managing complexity, and
as a byproduct enabling robust and successful robotic operations. In this chap-
ter, we introduce some of the fundamental concepts, paradigms, and tools in the
design of robot system architectures to enable full robot autonomy while also
managing system complexity1. 1 D. Kortenkamp, R. Simmons, and D.

Brugali. “Robotic Systems Architec-
tures and Programming”. In: Springer
Handbook of Robotics. Springer, 2008,
pp. 283–302

22.1 Robot System Architectures

The primary objective of a robotic system is to accomplish a specific set of tasks,
but there are often many peripheral tasks that the robot must also be handle to
ensure it operates in a safe and robust way. For example, a robot’s goal may be
to pick up objects and place them in certain locations, but in order to accom-
plish this task the robot should also be aware of static and dynamic obstacles in
its environment, should be robust to sensor failures or sensor noise, and more.

Definition 22.1.1 (Robot Goal). Complete desired tasks while monitoring and
reacting to unexpected situations. Handle inputs and outputs from actuators
and sensors in real-time2. 2 Real-time requirements are crucial.

Some functions require near instanta-
neous reactions, such as on the order of
a millisecond.

The design of the robot’s system architecture is important for enabling the
robot to achieve its goal without requiring extremely complex software systems
for implementation. In general, we define the robot’s system architecture by two
major parts, the structure and the style. The structure defines how the system
is broken down into components, as well as how the components interact with
each other3. The style of the architecture refers to the computational concepts 3 The structure could be represented

visually as a diagram of boxes (com-
ponents) that are connected by arrows
(interactions).

that define the implementation of the design.
Generally speaking, there is no specific architecture that is optimal for ev-

ery robotic system. However, there are paradigms that have been proven to be

384 robot system architectures

useful, which we introduce in more detail in the following sections. In fact, any
given system architecture may consist of multiple types of structures or styles.
For a given robot, the specific choice of architecture should aim to reduce com-
plexity4 while not being overly restrictive and performance limiting. 4 For example, subsystem segmentation

can be useful for reusability as well as
validation and unit-testing.

22.2 Architecture Structures

The architecture’s structure defines how the system is subdivided into subsys-
tems and how the subsystems interact. Some form of hierarchical structure is a
common choice for this decomposition, where tasks at one level of the hierar-
chy are composed of a group of tasks from lower-levels of the hierarchy. This
structure reduces complexity through abstraction.

22.2.1 Sense-Plan-Act Architecture

The sense-plan-act architecture is one of the first structures developed, and con-
sists of three main subsystems: sensing, planning, and execution. These com-
ponents are organized in a sequential fashion, with sensor data being passed
to the planner, which then passes information to the controller, which gener-
ates actuator commands. This approach has significant drawbacks. First, the
planning component is a computational bottleneck that holds up the controller
subsystem, which might ideally operate at a higher frequency. Second, since the
controller does not have direct access to sensor data, the overall system is not
very reactive.

22.2.2 Subsumption Architecture

An alternative to the sense-plan-act architecture is the subsumption architec-
ture5. This architecture decomposes the overall desired robot behavior into 5 R. Brooks. “A robust layered control

system for a mobile robot”. In: IEEE
Journal on Robotics and Automation 2.1
(1986), pp. 14–23

sub-behaviors in a bottom-up fashion. In this hierarchical structure, the higher-
level behaviors subsume the lower-level behaviors. In other words, the high-level
behaviors can outsource smaller scale tasks to be handled by the low-level be-
haviors. From an implementation standpoint, we can view this architecture as
layers of finite state machines6 that all connect sensors to actuators, and where 6 Each finite state machine is referred to

as a behavior.multiple behaviors are evaluated in parallel. We would include an arbitration
mechanism to choose which of the behaviors is currently activated. For exam-
ple, an “explore” behavior may sit on top of, or in other words, subsume, a colli-
sion avoidance behavior, and the arbitration mechanism would decide when the
exploration behavior should be overridden by the collision avoidance behavior.

While this architecture is much more reactive than the sense-plan-act ar-
chitecture, there are also disadvantages. The primary disadvantage of this
approach is that there is no good way to do long-term planning or behavior
optimization.

principles of robot autonomy 385

22.2.3 Three-tiered Architecture

The three-tiered architecture is one of the most commonly used architectural de-
signs. This architecture contains a planning, an executive, and a behavioral
control level that are hierarchically linked.

1. Planning: The planning layer is at the highest-level of the hierarchy, and fo-
cuses on task-planning for long-term goals.

2. Executive: The executive layer is the middle layer of the hierarchy, connecting
the planner and the behavioral control layers. The executive specifies priori-
ties for the behavioral layer to accomplish a specific task. While the task may
come directly from the planning layer, the executive can also split higher-level
tasks into sub-tasks.

3. Behavioral control: At the lowest-level, the behavioral control layer handles
the implementation of low-level behaviors and is the interface to the robot’s
actuators and sensors.

The primary advantage of this architecture is that it combines benefits of the
behavioral-based subsumption architecture, which provides reactive planning,
with better long-term planning capabilities from the planning level. We now
discuss each of these levels in further detail. However, in practice, the division
among these levels is often quite blurred.

Behavioral Control Level: The components at the behavioral control level typi-
cally focus on small, localized behaviors or skills and directly interface with the
robot’s sensors and actuators7. These behaviors are typically situated, meaning 7 This layer includes algorithms from

classical control theory, such as PID
control and Kalman filtering.

that they only make sense with respect to a specific situation that the robot may
be in. Importantly, the behavioral control components should have an aware-
ness of the current situation to identify if the current situation is appropriate for
a specific behavior, but they are not typically responsible for knowing how to
change the situation, which is the responsibility of the executive level.

The tight interaction between the sensors and actuators in the behavioral
control level enables a high level of reactivity in this architecture. However,
high reactivity also requires that the behavioral control level not incorporate
algorithms with high computational complexity. In general, the algorithms at
this level should be able to operate many times per second.

Executive Level: The components of the executive level are responsible for
translating high-level plans into low-level behaviors, orchestrating when low-
level behaviors are executed, as well as monitoring for and handling exceptions.
This component is typically implemented as a hierarchical finite state machine
or by leveraging motion planning and decision making algorithms to break a
high-level task into a sequence of smaller tasks. To orchestrate the sequence and
timing for behaviors, the executive considers temporal constraints on behaviors,
such as whether two actions can be executed concurrently.

386 robot system architectures

Planning Level: Finally, the planning level focuses on high-level decision mak-
ing and planning for long-term behavior. This forward-thinking component is
crucial to optimize the long-term behavior of the robot. However, the implemen-
tation of the decisions from the planner are deferred to the executive layer. In
practice, it might also be useful to have multiple planning levels, for example to
split up mission level planning, which can be very abstract, with shorter horizon
planning8. 8 This split might also be useful for

computational performance reasons.

Example 22.2.1 (Office Mail Delivery Robot). To further explore the components
of the three-tiered robot system architecture, we can consider a robot whose
primary task is to deliver mail within an office setting. Tasks that we might
require this robot to perform include the ability to move through hallways and
rooms, avoid humans and other obstacles, open and close doors, announce a
delivery, find a particular room, and recharge its batteries.

Using a three-tiered architecture, the planner level would be in charge of
high-level decision making tasks. For example, the planner might specify the
delivery order for each piece of mail to optimize the overall efficiency, such as
by considering the relative locations of each delivery. The planner could also
choose when to schedule time for recharging.

Given a task from the planner, such as “Deliver package to Rm 009”, the
executive level coordinates how to accomplish the task. This might include sub-
tasks such as moving to the end of the hallway, opening the door, entering Rm
009, announcing delivery, and then waiting and monitoring to see if the package
is retrieved. If the package is never retrieved within a specified amount of time,
the executive level could also choose to carry on with the next set of tasks and
send a message to the planner that the task was not completed.

Finally, the behavioral control layer would execute the tasks specified by
the executive level. This might include controlling the robot’s wheels to move
across the hallway, avoiding obstacles along the way, or it could involve using
a manipulator to open a door. If the current task specified by the executive
is to open a door and the door is locked, the behavioral control level should
eventually recognize failure and report back to the executive level.

22.3 Architecture Styles

In addition to choosing the robot system architecture, another important task
is to choose the architecture’s style. An architecture’s style refers to the com-
putational structure that defines communication between components within
the architecture. For example, in the three-tiered architecture, the style defines
the method for communicating among the planning, executive, and behavioral
control levels, or even between components of each individual level. We typi-
cally refer to the implementation of the connection style as middleware, and we
refer to two of the most common architecture styles as client-server and publish-
subscribe.

principles of robot autonomy 387

22.3.1 Client-Server

Middleware based on the client-server style consists of message requests from
clients that the server responds to9. We can think of this type of connection style 9 In other words, there is a request-

response message pairing.as on-demand messaging. One of the disadvantages of this messaging style is
that the client typically waits for the response from the server before continuing,
leading to potential deadlocks, for example if the server crashes.

22.3.2 Publish-Subscribe

Middleware based on the publish-subscribe style uses asynchronous message
broadcasting from publishers, which other components of the system can sub-
scribe to as needed. One disadvantage of this approach is that the interfaces are
less well-defined10, but the main advantage is in reliability, since deadlocks can- 10 Interactions are only one-way.

not occur and therefore the system is robust to missing messages or messages
arriving out of order. The middleware ROS (Robot Operating System) is a very
popular publish-subscribe middleware used within the robotics community
today.

388 robot system architectures

References

[7] R. Brooks. “A robust layered control system for a mobile robot”. In: IEEE
Journal on Robotics and Automation 2.1 (1986), pp. 14–23.

[33] D. Kortenkamp, R. Simmons, and D. Brugali. “Robotic Systems Architec-
tures and Programming”. In: Springer Handbook of Robotics. Springer, 2008,
pp. 283–302.

23
The Robot Operating System

This chapter introduces the fundamentals of the Robot Operating System
(ROS)1,2, a popular framework for creating robot software. Unlike what its 1 L. Joseph. Robot Operating System

(ROS) for Absolute Beginners: Robotics
Programming Made Easy. Apress, 2018

2 M. Quigley, B. Gerkey, and W. D.
Smart. Programming Robots with ROS:
A Practical Introduction to the Robot
Operating System. O’Reilly Media, 2015

name suggests, ROS is not an operating system. Rather, ROS is a middleware
that encompasses tools, libraries and conventions to operate robots in a simpli-
fied and consistent manner across a wide variety of robotic platforms. ROS is
a critical tool in the field of robotics today, and is used in both academia and
industry.

In this chapter, we begin by introducing specific challenges in robot program-
ming that motivate the need for a middleware such as ROS. Afterwards, we
present a brief history of ROS to shed some light on its development and moti-
vations for its important features. Next, we discuss the fundamental operating
structure of ROS in further detail to provide insights into how ROS is operated
on real robotic platforms. Lastly, we present specific features and tools of the
ROS environment that greatly simplify robot software development. It is impor-
tant to note that ROS is an active project and is constantly changing, and there
are many free resources available for up-to-date documentation and examples.

23.1 Challenges in Robot Programming

Robot programming is a subset of computer programming, but it differs from
more classical software programming applications. One of the defining charac-
teristics of robot programming is the need to manage many different individual
hardware components that must operate in harmony3. In other words, robot 3 For example, the potentially many

sensors and actuators onboard the
robot.

software needs to not only run the “brain” of the robot to make decisions, but
also to handle multiple input and output devices at the same time. Therefore,
we look for the following features when developing software for robots:

1. Multitasking: A robot often consists of a number of sensors and actuators, and
therefore robot software needs to enable multitasking to work with different
input/output devices in different threads at the same time. Each thread also
needs to be able to communicate with other threads to exchange data.

2. Low Level Device Control: Robot software needs to be compatible with a wide

390 the robot operating system

variety of input and output devices, such as general purpose input/output
(GPIO) pins, USB, SPI, among others. We should also be able to support
multiple programming languages that are common among low-level devices,
such as C, C++ and Python.

3. High level Object Oriented Programming (OOP): In OOP, code is encapsulated,
inherited, and reused as multiple instances. Having the ability to reuse code
and develop programs in independent modules makes it easy to maintain
code for complex robots.

4. Availability of 3rd Party Libraries and Community Support: The ability to lever-
age third-party libraries and having community support can help expedite
software development and facilitate efficient software implementation.

23.2 A Brief History of ROS

Until the advent of ROS, it was difficult for individual robotics developers to
collaborate or share work among different teams, projects, or platforms. In
2007, early versions of ROS started to be conceived with the Stanford AI Robot
(STAIR) project, which had the vision that it should be free and open-source for
everyone to encourage collaboration and community development, it should
make core components4 of robotics readily available for anyone, and it should 4 Ranging from hardware to software

packages.integrate seamlessly with existing robotics frameworks5.
5 For example, OpenCV for computer
vision, SLAM packages for localiza-
tion and mapping, and the Gazebo
simulation software.

Development of ROS started to gain traction when Scott Hassan, a software
architect and entrepreneur, and his startup, Willow Garage, took over the project
to develop a standardized robotics development platform. While mostly self-
funded by Scott Hassan, ROS satiated the dire needs for a standardized robot
software development environment at the time. In 2009, ROS 0.4 was released,
and a working ROS robot with a mobile manipulation platform called PR2 was
developed. Eleven PR2 platforms were awarded to eleven universities across
the country for further collaboration on ROS development, and in 2010, ROS
1.0 was released. In 2012, the Open Source Robotics Foundation (OSRF) started
to supervise the future of ROS by supporting development, distribution, and
adoption of open software and hardware for use in robotics research, education,
and product development. In 2014, the first long-term support (LTS) release,
ROS Indigo Igloo, became available. Today, ROS has been around for many
years, and the platform has become what is closest to the industry standard in
robotics.

23.3 Characteristics of ROS

The ROS framework provides the following important capabilities:

1. Modularity: Robots can be complex systems, and ROS handles this complexity
through modularity. Specifically, we can independently develop each robot

principles of robot autonomy 391

Sensor Interface

Lidar

Radar

GPS & IMU

Wheel Encoder

Perception

Localization

Obstacle
Avoidance

Pose Estimation

Navigation

Top Level
Control

Path Planning

Vehicle Interface

Steering Control

Throttle/Brake
Control

User Interface

Wireless E-Stop

Visualizer GUI

Global Services

Vehicle Health State

Data Logger

Inter-process Control
Figure 23.1: Modular soft-
ware architectures help handle
the complexity of robot pro-
gramming. We can define the
interior units of each module
as ROS nodes that live within a
common package. Arrows de-
note communication pathways.

software component that performs a separate function in units called nodes.
Each node can share data with other nodes, and nodes act as the basic build-
ing blocks of ROS. We can develop different functional capabilities in units
called packages that can contain a number of nodes defined from source code,
configuration files, and data files, and we can distribute and install packages
on other computers. This architecture of nodes and packages is visualized in
Figure 23.1, where the interior blocks can represent nodes that are organized
into packages.

2. Message Passing: ROS provides a message passing interface that allows nodes
to communicate with each other. For example, one node might detect edges
in a camera image, then send this information to an object recognition node,
which in turn can send information about detected obstacles to a navigation
module. ROS passes messages using a publish/subscribe structure, which we
show graphically in Figure 23.2. This message passing scheme allows mes-
sages to be passed between ROS nodes through a shared virtual “chat room”
called a ROS topic.

3. Built-in Algorithms: A lot of popular robotics algorithms are already built-in
and available as off-the-shelf packages. For example, the ROS community has
developed libraries for PID control, SLAM, and path planners such as A* and
Dijkstra6. These built-in algorithms can significantly reduce time needed to 6 The documentation for these packages

can be readily found online.prototype a robot.

392 the robot operating system

Figure 23.2: The ROS publish/-
subscribe (pub/sub) model.4. Third-party Libraries and Community Support: The ROS framework is devel-

oped with pre-existing third-party libraries in mind. We can integrate many
popular libraries, such as OpenCV for computer vision and the Point Cloud
Library (PCL), with a couple lines of code. In addition, ROS is supported by
active developers all over the world and there are several forums for ques-
tions and discussion.

23.4 Robot Programming with ROS

As we mentioned before, ROS uses a publish/subscribe message passing
scheme for communicating among nodes, as we show in Figure 23.2. There
are several primary features of ROS that are crucial to support this communi-
cation structure: nodes that define individual components that send or receive
information7, messages that are objects for holding information that is communi- 7 In other words, a unit of computation.

cated between nodes, and topics that are virtual “chat rooms” where messages
are shared8. 8 In ROS2, there are other options

including services and actions, which
have slightly more communication
structure, such as defining request and
response structures.

23.4.1 Nodes

Definition 23.4.1 (Node). A node is a process that performs a unit of compu-
tation. Nodes are combined together to communicate with one another using
streaming topics, RPC services, and the Parameter Server.

Nodes are the basic building block of ROS that enables object-oriented robot
software development. Each robot component is developed as an individual
encapsulated unit of nodes, which are later reused and inherited, and a typical
robot control system will be comprised of many nodes. The use of indepen-
dent nodes, and their ability to be reused and inherited, greatly simplifies the
complexity of the overall software stack.

For example, suppose a robot is equipped with a camera and you want to
find an object in the environment and drive to it. Examples of nodes that we
might develop for this task are a camera node that takes the image and pre-

principles of robot autonomy 393

processes it, an edge_detection node that takes the pre-processed image data
and runs an edge detection algorithm, a path_planning node that plans a path
between two points, and so on.

At the individual level, nodes are responsible for publishing or subscribing
to certain pieces of information that are shared among all other nodes.

23.4.2 Messages

Definition 23.4.2 (Messages). Nodes can communicate with each other by pub-
lishing simple data structures to topics. These data structures are called mes-
sages, and when a node sends a message there is no expectation of receiving a
response9. 9 Unlike other ROS structures that we

don’t dive into in this chapter, such as
services and actions.We define a message object by a set of field types and field names. The field

type defines the type of information the message stores and the name is how
the nodes access the information. For example, suppose a node wants to publish
two integers, x and y. A message definition might look like:

int32 x

int32 y

where int32 is the field type and x/y is the field name. While int32 is a prim-
itive field type, we can also define more complex field types for specific appli-
cations. For example, suppose a sensor packet node publishes sensor data as
an array of user-defined SensorData objects. This message, which we could call
SensorPacket, could have the following fields:

time stamp

SensorData[] sensors

uint32 length

In this case, SensorData is a user-defined field type and the empty bracket [] is
appended to indicate that field is an array of SensorType objects.

More generally, field types can be either one of the standard primitive types,
such as an integer, floating point, or boolean, arrays of primitive types, or other
user-defined types. Messages can also include arbitrarily nested structures and
arrays. Primitive message types available in ROS are listed below in Table 23.1.
The first column contains the message type, the second column contains the
serialization type of the data in the message, and the third column contains the
numeric type of the message in Python.

23.4.3 Topics

Definition 23.4.3 (Topics). Topics are named units over which nodes exchange
messages using a publish/subscribe system.

A given topic will have a specific message type associated with it, and any
node that either publishes or subscribes to the topic must be equipped to handle

394 the robot operating system

Primitive Type Serialization Python
bool (1) unsigned 8-bit int bool
int8 signed 8-bit int int
uint8 unsigned 8-bit int int (3)
int16 signed 16-bit int int
uint16 unsigned 16-bit int int
int32 signed 32-bit int int
uint32 unsigned 32-bit int int
int64 signed 64-bit int long
uint64 unsigned 64-bit int long
float32 32-bit IEEE float float
float64 64-bit IEEE float float
string ascii string (4) str
time secs/nsecs unsigned 32-bit ints rospy.Time

Table 23.1: Built-in ROS Mes-
sages

that type of message. Any number of nodes can publish or subscribe to a given
topic. Fundamentally, topics are for unidirectional, streaming communication.
This is not well suited for all types of communication, such as communication
that demands a response like a service routine.

principles of robot autonomy 395

References

[25] L. Joseph. Robot Operating System (ROS) for Absolute Beginners: Robotics
Programming Made Easy. Apress, 2018.

[53] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with ROS: A
Practical Introduction to the Robot Operating System. O’Reilly Media, 2015.

References

[1] P. Abbeel and A. Ng. “Apprenticeship Learning via Inverse Reinforce-
ment Learning”. In: Proceedings of the Twenty-First International Conference
on Machine Learning. 2004.

[2] S. Arora and P. Doshi. “A survey of inverse reinforcement learning:
Challenges, methods and progress”. In: Artificial Intelligence 297 (2021),
p. 103500.

[3] U. M. Ascher and R. D. Russell. “Reformulation of boundary value prob-
lems into “standard” form”. In: SIAM Review 23.2 (1981), pp. 238–254.

[4] Y. Bai et al. “Training a Helpful and Harmless Assistant with Reinforce-
ment Learning from Human Feedback”. In: (2022). url: https://arxiv.
org/abs/2204.05862.

[5] D. Bertsekas. Nonlinear Programming. Athena Scientific, 2016.

[6] D. Bertsekas. Reinforcement learning and optimal control. Athena Scientific,
2019.

[7] R. Brooks. “A robust layered control system for a mobile robot”. In: IEEE
Journal on Robotics and Automation 2.1 (1986), pp. 14–23.

[8] Nicolas Carion et al. “End-to-End Object Detection with Transformers”.
In: Computer Vision – ECCV 2020. Springer International Publishing, 2020,
pp. 213–229.

[9] S. Chernova and M. Veloso. “Interactive policy learning through confidence-
based autonomy”. In: Journal of Artificial Intelligence Research 34.1 (2009),
pp. 1–25. issn: 1076-9757.

[10] Roy De Maesschalck, Delphine Jouan-Rimbaud, and Désiré L Massart.
“The mahalanobis distance”. In: Chemometrics and intelligent laboratory
systems 50.1 (2000), pp. 1–18.

[11] Frank Dellaert and Michael Kaess. “Square root SAM: Simultaneous
localization and mapping via square root information smoothing”. In: The
International Journal of Robotics Research 25.12 (2006), pp. 1181–1203.

[12] A. Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale”. In: International Conference on Learning
Representations. 2021.

https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862

398 REFERENCES

[13] G. Dudek and M. Jenkin. “Inertial Sensors, GPS, and Odometry”. In:
Springer Handbook of Robotics. Springer, 2008, pp. 477–490.

[14] S. Emmons et al. “RvS: What is Essential for Offline RL via Supervised
Learning?” In: 2021.

[15] Martin A. Fischler and Robert C. Bolles. “Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography”. In: Commun. ACM 24.6 (1981), pp. 381–395.

[16] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2011.

[17] A. Fusiello, E. Trucco, and A. Verri. “A compact algorithm for rectification
of stereo pairs”. In: Machine Vision and Applications 12.1 (2000), pp. 16–22.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[19] F. Gustafsson. Statistical Sensor Fusion. Studentlitteratur, 2013, p. 554.

[20] C. Harris and M. Stephens. “A combined corner and edge detector”. In:
4th Alvey Vision Conference. 1988.

[21] R. Hartley and A. Zisserman. “Camera Models”. In: Multiple View Geome-
try in Computer Vision. Academic Press, 2002.

[22] J. Hertling. “Numerical Methods for Two-Point Boundary Value Problems
(Herbert B. Keller)”. In: SIAM Review 12.2 (1970), pp. 313–315.

[23] Jonathan P. How. Lecture Notes for Principles of Optimal Control. 2008.

[24] L. Janson et al. “Fast Marching Tree: A Fast Marching Sampling-Based
Method for Optimal Motion Planning in Many Dimensions”. In: Int.
Journal of Robotics Research 34.7 (2015), pp. 883–921.

[25] L. Joseph. Robot Operating System (ROS) for Absolute Beginners: Robotics
Programming Made Easy. Apress, 2018.

[26] L. Kaelbling et al. 6.01SC: Introduction to Electrical Engineering and Com-
puter Science I. MIT OpenCourseWare. 2011.

[27] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. “iSAM: Incre-
mental smoothing and mapping”. In: IEEE Transactions on Robotics 24.6
(2008), pp. 1365–1378.

[28] S. Karaman and E. Frazzoli. “Sampling-based Algorithms for Optimal
Motion Planning”. In: Int. Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[29] L. E. Kavraki et al. “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”. In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580.

[30] M. Kelly. “An Introduction to Trajectory Optimization: How to Do Your
Own Direct Collocation”. In: SIAM Review 59.4 (2017), pp. 849–904.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

principles of robot autonomy 399

[31] D. E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,
2004.

[32] M. J. Kochenderfer, T. A. Wheeler, and K. H. Wray. Algorithms for Decision
Making. MIT Press, 2022.

[33] D. Kortenkamp, R. Simmons, and D. Brugali. “Robotic Systems Architec-
tures and Programming”. In: Springer Handbook of Robotics. Springer, 2008,
pp. 283–302.

[34] Rainer Kümmerle et al. “g 2 o: A general framework for graph optimiza-
tion”. In: 2011 IEEE international conference on robotics and automation. IEEE.
2011, pp. 3607–3613.

[35] S. M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge Univer-
sity Press, 2006.

[36] S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning. 1998.

[37] John J Leonard and Hugh F Durrant-Whyte. “Simultaneous map building
and localization for an autonomous mobile robot.” In: IROS. Vol. 3. 1991,
pp. 1442–1447.

[38] J. Levine. Analysis and Control of Nonlinear Systems: A Flatness-based Ap-
proach. Springer, 2009.

[39] S. Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In:
Journal of Machine Learning Research 17.39 (2016), pp. 1–40.

[40] C. Loop and Z. Zhang. “Computing rectifying homographies for stereo
vision”. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition. Vol. 1. 1999, pp. 125–131.

[41] David G Lowe. “Object recognition from local scale-invariant features”.
In: Proceedings of the seventh IEEE international conference on computer vision.
Vol. 2. Ieee. 1999, pp. 1150–1157.

[42] T. Lozano Perez. “Spatial planning: a configuration space approach”. In:
Autonomous Robot Vehicles. 1990.

[43] Feng Lu and Evangelos Milios. “Robot pose estimation in unknown envi-
ronments by matching 2d range scans”. In: Journal of Intelligent and Robotic
systems 18.3 (1997), pp. 249–275.

[44] K. M. Lynch and K. C. Park. Modern Robotics: Mechanics, Planning, and
Control. Cambridge University Press, 2017. Chap. 8.

[45] V. Mnih et al. “Asynchronous Methods for Deep Reinforcement Learn-
ing”. In: Proceedings of The 33rd International Conference on Machine Learn-
ing. 2016, pp. 1928–1937.

[46] Michael Montemerlo et al. “FastSLAM: A factored solution to the simul-
taneous localization and mapping problem”. In: Aaai/iaai 593598.2 (2002),
pp. 593–598.

400 REFERENCES

[47] H. P. Moravec. “Towards automatic visual obstacle avoidance”. In: 5th
International Joint Conference on Artificial Intelligence. 1977.

[48] K. P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press,
2022.

[49] R. M. Murray. Optimization-Based Control. California Institute of Technol-
ogy, 2009.

[50] A. Ng and S. Russell. “Algorithms for Inverse Reinforcement Learning”.
In: Proceedings of the Seventeenth International Conference on Machine Learn-
ing. 2000, pp. 663–670.

[51] T. Osa et al. “An Algorithmic Perspective on Imitation Learning”. In:
(2018). url: https://arxiv.org/abs/1811.06711.

[52] N. Perveen, D. Kumar, and I. Bhardwaj. “An overview on template
matching methodologies and its applications”. In: International Journal
of Research in Computer and Communication Technology 2.10 (2013), pp. 988–
995.

[53] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with ROS: A
Practical Introduction to the Robot Operating System. O’Reilly Media, 2015.

[54] A. Rao. “A Survey of Numerical Methods for Optimal Control”. In: Ad-
vances in the Astronautical Sciences 135 (2010).

[55] N. Ratliff, J. A. Bagnell, and M. Zinkevich. “Maximum Margin Planning”.
In: Proceedings of the 23rd International Conference on Machine Learning. 2006,
pp. 729–736.

[56] S. Ross, G. Gordon, and D. Bagnell. “A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning”. In: Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. 2011, pp. 627–635.

[57] D. Scharstein and R. Szeliski. “High-accuracy stereo depth maps using
structured light”. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Vol. 1. 2003.

[58] E. Schmerling, L. Janson, and M. Pavone. “Optimal sampling-based mo-
tion planning under differential constraints: the driftless case”. In: IEEE
International Conference on Robotics and Automation. 2015, pp. 2368–2375.

[59] M. D. Shuster. “Survey of attitude representations”. In: Journal of the Astro-
nautical Sciences 41.4 (1993), pp. 439–517.

[60] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer-Verlag,
2007.

[61] B. Siciliano et al. Robotics: Modelling, Planning and Control. Springer Pub-
lishing Company, Incorporated, 2008. Chap. 7.

[62] B. Siciliano et al. Robotics: Modelling, Planning and Control. Springer Pub-
lishing Company, Incorporated, 2008.

https://arxiv.org/abs/1811.06711

principles of robot autonomy 401

[63] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. Springer
Publishing Company, Incorporated, 2008. Chap. 2.

[64] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

[65] D. Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[66] D. Simon. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches.
John Wiley & Sons, 2006.

[67] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Pearson, 1991.

[68] Randall Smith, Matthew Self, and Peter Cheeseman. “Estimating un-
certain spatial relationships in robotics”. In: Autonomous robot vehicles.
Springer, 1990, pp. 167–193.

[69] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT Press,
2018.

[70] R. S. Sutton. “Dyna, an integrated architecture for learning, planning, and
reacting”. In: SIGART Bull. 2.4 (1991), pp. 160–163.

[71] R. Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[72] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[73] Bill Triggs et al. “Bundle adjustment—a modern synthesis”. In: Vision
Algorithms: Theory and Practice: International Workshop on Vision Algorithms
Corfu, Greece, September 21–22, 1999 Proceedings. Springer. 2000, pp. 298–
372.

[74] R. Tsai. “A Versatile Camera Calibration Technique for High-accuracy 3D
Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses”.
In: IEEE Journal on Robotics and Automation 3.4 (1987), pp. 323–344.

[75] C. J. C. H. Watkins and P. Dayan. “Q-learning”. In: Machine Learning 8.3
(1992), pp. 279–292.

[76] R. J. Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Machine Learning 8.3 (1992),
pp. 229–256.

[77] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolu-
tional Networks”. In: European Conference on Computer Vision (ECCV).
Springer, 2014, pp. 818–833.

[78] Z. Zhang. “A Flexible New Technique for Camera Calibration”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000).

[79] B. D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence.
2008, pp. 1433–1438.

	I Robot Motion Planning and Control
	Modeling Robot Dynamics
	State Space Models
	Kinematics and Dynamics
	Wheeled Robot Motion Models
	Simulating Robot Dynamics
	Summary
	Exercises

	Open-Loop Control & Trajectory Optimization
	The Optimal Control Problem
	Indirect Methods
	Direct Methods
	Differentially Flat Systems
	Summary
	Exercises

	Closed-Loop Control & Trajectory Tracking
	Linear Closed-loop Control
	Nonlinear Closed-loop Control
	Trajectory Tracking Control
	Exercises

	Search-Based Motion Planning
	Grid-based Motion Planners
	Combinatorial Motion Planning
	Exercises

	Sampling-Based Motion Planning
	Probabilistic Roadmap (PRM)
	Rapidly-exploring Random Trees (RRT)
	Theoretical Results for PRM and RRT
	Fast Marching Tree Algorithm (FMT*)
	Kinodynamic Planning
	Deterministic Sampling-Based Motion Planning
	Exercises

	II Robot Perception
	Introduction to Robot Sensors
	Sensor Classifications
	Sensor Performance
	Common Sensors on Mobile Robots
	Computer Vision

	Camera Models and Calibration
	Perspective Projection
	Camera Calibration: Direct Linear Method
	Camera Auto-Calibration
	Challenges
	Exercises

	Stereo Vision and Structure From Motion
	Stereo Vision
	Structure From Motion (SFM)

	Image Processing
	Image Filtering
	Image Feature Detection
	Image Descriptors
	Exercises

	Information Extraction
	Geometric Feature Extraction
	Object Recognition

	Deep Learning Architectures for Perception
	Convolutional Neural Networks (CNNs)
	Vision Transformers (ViTs)
	PointNet and Point Cloud Processing
	3D Convolutions: VoxelNet and PointPillars
	Multi-modal Fusion Approaches

	Object Detection and Recognition
	2D Object Detection Foundations
	3D Object Detection
	Semantic and Instance Segmentation
	Exercise: Exploring YOLO Object Detector

	III Robot Localization
	Introduction to Localization and Filtering
	Preliminary Concepts in Probability
	Markov Models
	Bayes Filter

	Approximate Filters for State Estimation
	The Gaussian Distribution
	Kalman Filter
	Extended Kalman Filter (EKF)
	Non-parametric Filters: From Grids to Particles
	Histogram Filter
	Particle Filter
	Exercises

	Robot Localization
	A Taxonomy of Robot Localization Problems
	Robot Localization via Bayesian Filtering
	Markov Localization
	Extended Kalman Filter (EKF) Localization
	Monte Carlo Localization (MCL)
	Exercises

	Simultaneous Localization and Mapping (SLAM)
	SLAM Paradigms
	Front-End
	Examples by Sensing Modality
	Mathematical foundations of SLAM
	Extended Kalman Filter SLAM
	Particle Filter-Based SLAM
	Graph SLAM
	Factor Graph SLAM
	Advanced and Emerging Methods
	Exercises

	Sensor Fusion and Object Tracking
	A Taxonomy of Sensor Fusion
	Bayesian Approach to Sensor Fusion
	Practical Challenges in Sensor Fusion
	Object Tracking

	IV Robot Decision Making
	Finite State Machines
	Finite State Machines
	Finite State Machine Architectures
	Implementation Details

	Sequential Decision Making
	Deterministic Decision Making Problem
	Stochastic Decision Making Problem
	Markov Decision Processes
	Limitations of Dynamic Programming

	Reinforcement Learning
	The Reinforcement Learning Problem
	Dynamic Programming Methods
	Reinforcement Learning Paradigms
	A Taxonomy of Reinforcement Learning
	Model-free Reinforcement Learning
	Model-based Reinforcement Learning
	The Promise of Learning from Interaction

	Imitation Learning
	Imitation Learning in Robotics
	Behavioral Cloning
	Inverse Reinforcement Learning

	V Robot Software
	Robot System Architectures
	Robot System Architectures
	Architecture Structures
	Architecture Styles

	The Robot Operating System
	Challenges in Robot Programming
	A Brief History of ROS
	Characteristics of ROS
	Robot Programming with ROS

	References

