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Motion planning I: graph search algorithms 
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Agenda

10/13/2025 AA 174 | Lecture 7

• Agenda
• Introduction to motion planning

• Search-based algorithms for motion planning

• Configuration spaces and combinatorial motion planning

• Readings:
• Chapter 4, sections 4.1 – 4.2 in D. Gammelli, J. Lorenzetti, K. Luo, G. Zardini, M. 

Pavone. Principles of Robot Autonomy. 2026.



Motion planning
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Problem definition: Compute sequence of actions that drives a robot from 
an initial condition to a terminal condition while avoiding obstacles, 
respecting motion constraints, and possibly optimizing a cost function
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More examples of motion planning
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• Steering autonomous vehicles

• Controlling humanoid robot

• Surgery planning

• Protein folding

• …



Some history
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• Formally defined in the 1970s

• Development of exact, combinatorial solutions in the 1980s

• Development of sampling-based methods in the 1990s 

• Deployment on real-time systems in the 2000s

• Current research: inclusion of differential and logical constraints, 
planning under uncertainty, parallel implementation, and more 



Simplest setup
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• Assume 2D workspace: 

• is the obstacle region with polygonal boundary

• Robot is a rigid polygon

• Problem: given initial placement of robot, compute how to gradually move it into a 
desired goal placement so that it never touches the obstacle region 
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Popular approaches
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• Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it 
toward the goal and push it away from obstacles

• Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a 
graph-search algorithm (Dijkstra, A*, …)

• Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

• Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses 
collision detection algorithms to probe and incrementally search the C-space 
for a solution, rather than completely characterizing all of the 𝐶free structure



Grid-based approaches

• Discretize the continuous world into a grid

• Each grid cell is either free or forbidden

• Robot moves between adjacent free cells

• Goal: find sequence of free cells from start to goal

• Mathematically, this corresponds to pathfinding 
in a discrete graph 𝐺 = 𝑉, 𝐸

• Each vertex 𝑣 ∈ 𝑉 represents a free cell

• Edges 𝑣, 𝑢 ∈ 𝐸 connect adjacent grid cells

10/13/2025 AA 174 | Lecture 7



Graph search algorithms
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• Having determined decomposition, how to find “best” path?

• Label-Correcting Algorithms: 𝐶(𝑞): cost-of-arrival from 𝑞𝐼 to 𝑞

FRONTIER/ALIVE/PRIORITY QUEUE

Node 𝑞

Nodes 𝑞′ ∈ 𝑆𝑢𝑐𝑐(𝑞)

𝐶 𝑞 + 𝐶 𝑞, 𝑞′ ≤ min 𝐶 𝑞′ , UPPER ?

Yes ⇒ 𝐶 𝑞′ ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞′

𝑞′ ≠ 𝑞𝐺?



Label correcting algorithm
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Step 1. Remove a node 𝑞 from frontier queue and for each child 𝑞′ of 𝑞, execute 
step 2

Step 2. If 𝐶 𝑞 + 𝐶 𝑞, 𝑞′ ≤ min 𝐶 𝑞′ , UPPER , set 𝐶 𝑞′ ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞′

and set 𝑞 to be the parent of 𝑞′. In addition, if 𝑞′≠ 𝑞𝐺 , place 𝑞′ in the frontier 
queue if it is not already there, while if 𝑞′= 𝑞𝐺 , set UPPER to the new value 
𝐶 𝑞 + 𝐶 𝑞, 𝑞𝐺

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞, except for the label of the origin 
node, which is set to 0



GetNext() ?
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Depth-First-Search (DFS): Maintain 𝑄 as a stack – Last in/first out

• Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain 𝑄 as a list – First 
in/first first out

• Update cost for all edges up to current depth before proceeding to 
greater depth

• Can deal with negative edge (transition) costs

Best-First (BF, Dijkstra): Greedily select next q: 𝑞 = argmin𝑞∈𝑄𝐶(𝑞)

• Node will enter the frontier queue at most once

• Requires costs to be non-negative



Correctness and improvements
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If a feasible path exists from 𝑞𝐼 to 𝑞𝐺 , then algorithm terminates in finite time with 
𝐶 𝑞𝐺 equal to the optimal cost of traversal, 𝐶∗ 𝑞𝐺 .

Theorem

* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm



A*: Improving Dijkstra
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• Dijkstra orders by optimal “cost-to-arrival”

• Faster results if order by “cost-to-arrival”+ (approximate) “cost-to-go”

• That is, strengthen test
𝐶 𝑞 + 𝐶 𝑞, 𝑞′ ≤ UPPER

to
𝐶 𝑞 + 𝐶 𝑞, 𝑞′ + ℎ(𝑞′) ≤ UPPER

where ℎ 𝑞 is a heuristic for optimal cost-to-go (specifically, a positive 
underestimate)

• In this way, fewer nodes will be placed in the frontier queue

• This modification still guarantees that the algorithm will terminate with a 
shortest path

• Many variations are possible… see (Problem 2 in pset 2)



Grid-based approaches: summary 

• Pros: 
• Simple and easy to use
• Fast (for some problems)

• Cons:
• Resolution dependent

• Not guaranteed to find solution if grid resolution is not small enough

• Limited to simple robots 
• Grid size is exponential in the number of DOFs
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Back to continuous motion planning
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• Assume 2D workspace: 

• is the obstacle region with polygonal boundary

• Robot is a rigid polygon

• Problem: Given initial placement of robot, compute how to gradually move it into 
a desired goal placement so that it never touches the obstacle region 
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Back to continuous motion planning

Key point: motion planning problem described in the real-world, but it really lives 
in another space -- the configuration (C-) space!
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Configuration space

• C- space: captures all degrees of freedom (all rigid body transformations)

• More in detail, let                    be a polygonal robot (e.g., a triangle)

• The robot can rotate by angle 𝜃 or translate 

• Every combination 𝑞 = 𝑥𝑡 , 𝑦𝑡 , 𝜃 yields a unique robot placement: configuration

• So C- space is a subset of 

• Note: 𝜃 ± 2𝜋 yields equivalent rotations ⇒ C- space is: 

• Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)
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Configuration free space

• The subset ℱ ⊆ 𝒞 of all collision free configurations is the free 
space
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obstacle

forbidden space

free space
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Bottom line: explicitly computing C free spaces in 
high-dimensional settings is hard!
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Planning in C-space

• Let 𝑅 𝑞 ⊂ 𝑊 denote set of points in the world occupied by robot 
when in configuration 𝑞

• Robot in collision ⇔ 𝑅 𝑞 ∩ 𝑂 ≠ ∅

• Accordingly, free space is defined as: 𝐶free = 𝑞 ∈ 𝐶 𝑅 𝑞 ∩ 𝑂 = ∅

• Path planning problem in C-space: compute a continuous path: 
𝜏: 0,1 → 𝐶free, with 𝜏 0 = 𝑞𝐼 and 𝜏 1 = 𝑞𝐺
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Combinatorial planning
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• Combinatorial approaches to motion planning find 
paths through continuous configuration space 
without resorting to approximations

• Key idea: compute a roadmap, which provides a 
discrete representation of continuous motion 
planning problem without losing any of the original 
connectivity information needed to solve it

• Such approaches are typically complete (i.e., 
guaranteed to find a solution), but are typically 
limited to small number of DOFs due to the 
challenge of exactly computing C free spaces

A roadmap is a graph in which each vertex is a 
configuration in 𝐶free and each edge is a path 
through 𝐶free that connects a pair of vertices 



Next time: sampling-based planning
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