Principles of Robot Autonomy |

Motion planning I: graph search algorithms

% 9 Stanford ASET
Univer SIt)r' .

Attendance Form

IEI" .,.,.-:r IEI

2
|!r o -
S

15

E .

Autonomous Systems Lab

OPEN HOUSE

October 16th, 2025 @ 4pm

Durand Building, Room 023
Food provided!

Zoom link:

Schedule

4PM Introduction by Professor Mareo Pavone

4:05PM 5 minute lightning talks about the lab's research directions and applications

* Foundation Models for Next-Generation Autonomy Stacks

s Test-Time Sealing and Reasoning for Robotics

& Physical AI Safety: Monitoring, Alignment, and Guardrails

& Data Flywheels and Datae Attrvibution

* Blending Al and Optimization/Control

& Application domaing: Space Robotics, Manipulators, Quadrupeds, and more

4:35PM Open discussion. Opportunity to ask questions about the lab, specific research directions,

clagses, research experience, or anything else.

If time permits, we can inelude a tour of the lab and the Space Roboties Facility.

10/13/2025 AA 174 | Lecture 7

Agenda

* Agenda
* Introduction to motion planning
 Search-based algorithms for motion planning
 Configuration spaces and combinatorial motion planning

* Readings:

Chapter 4, sections 4.1 — 4.2 in D. Gammelli, J. Lorenzetti, K. Luo, G. Zardini, M.
Pavone. Principles of Robot Autonomy. 2026.

10/13/2025 AA 174 | Lecture 7

Motion planning

Problem definition: Compute sequence of actions that drives a robot from
an initial condition to a terminal condition while avoiding obstacles,
respecting motion constraints, and possibly optimizing a cost function

10/13/2025 AA 174 | Lecture 7

The see-think-act cycle

Knowledge Mission@oals

Localiza(on posi(on Decision@naking

Map@Building global@ap Mo(oniplanning
environmental@nodel trajectory
local@na
i v
Informa(on » Trajectoryl
extrac(on execu(on
actuator@@
rawiiata . commands
| See-think-act
Sensing Actua(on

Real@vorld
environment

10/13/2025 AA 174 | Lecture 7

More examples of motion planning

Steering autonomous vehicles

Controlling humanoid robot '
Surgery planning ,

Protein folding

10/13/2025 AA 174 | Lecture 7

Some history

« Formally defined in the 1970s
- Development of exact, combinatorial solutions in the 1980s
» Development of sampling-based methods in the 1990s

« Deployment on real-time systems in the 2000s

Current research: inclusion of differential and logical constraints,
planning under uncertainty, parallel implementation, and more

10/13/2025 AA 174 | Lecture 7

Simplest setup

« Assume 2D workspace:) C R?
O C W isthe obstacle region with polygonal boundary
* Robotisarigid polygon

* Problem: given initial placement of robot, compute how to gradually move itinto a
desired goal placement so that it never touches the obstacle region

10/13/2025 AA 174 | Lecture 7

Popular approaches

Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it
toward the goal and push it away from obstacles

Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a
graph-search algorithm (Dijkstra, A*, ...)

Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses

collision detection algorithms to probe and incrementally search the C-space
for a solution, rather than completely characterizing all of the C¢.., Structure

10/13/2025 AA 174 | Lecture 7

Grid-based approaches

Discretize the continuous world into a grid
Each grid cell is either free or forbidden
Robot moves between adjacent free cells

Goal: find sequence of free cells from start to goal N
Mathematically, this corresponds to pathfinding
in adiscrete graph G = (V,E) |
Each vertex v € V represents a free cell ,/
Edges (v,u) € E connect adjacent grid cells

10/13/2025 AA 174 | Lecture 7

Graph search algorithms

Having determined decomposition, how to find “best” path?

Label-Correcting Algorithms: C(q): cost-of-arrival from q; to g

Yes= C(q') :=C(q) + C(q,q")

q * qg?

-

o

I

C(q) +C(q,q9") < min(C(q'), UPPER) ?

Node q t‘

— /
® '7_" \ Nodes q' € Succ(q)

FRONTIER/ALIVE/PRIORITY QUEUE

10/13/2025

AA 174 | Lecture 7

Label correcting algorithm

Step 1. Remove a node g from frontier queue and for each child g’ of g, execute
step 2

Step 2. 1f C(q) + C(q,q") < min(C(q'), UPPER), set C(q") :== C(q) + C(q,q")
and set g to be the parent of q'. In addition, if '+ g, place g’ in the frontier
queue if it is not already there, while if g'= g, set UPPER to the new value

C(q) +C(q,q¢)

Step 3. If the frontier queue is empty, terminate, else goto step 1

Initialization: set the labels of all nodes to oo, except for the label of the origin
node, which is setto 0

10/13/2025 AA 174 | Lecture 7

———————N—,
GetNext() ?

Depth-First-Search (DFS): Maintain Q as a stack - Last in/first out
* Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain Q as a list - First

O
in/first first out R/Q@\ _

» Update cost forall edges up to current depth before proceeding to /? O W ?9\® =
greater depth & @ oﬂ L L]

. . . *$ 90 D OROO
« Can deal with negative edge (transition) costs A A

Best-First (BF, Dijkstra): Greedily select next g: ¢ = argming¢,C(q)

* Node will enter the frontier queue at most once

* Requires costs to be non-negative

10/13/2025 AA 174 | Lecture 7

Correctness and improvements

Theorem

If a feasible path exists from g; to g, then algorithm terminates in finite time with
C(qc) equal to the optimal cost of traversal, C*(qg.).

Wasted effort?

]

* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

10/13/2025 AA 174 | Lecture 7

A*: Improving Dijkstra

* Dijkstra orders by optimal “cost-to-arrival”
 Faster results if order by “cost-to-arrival”+ (approximate) “cost-to-go”

* Thatis, strengthen test
C(q) + C(q,q") < UPPER

to
C(q) +C(q,q') + h(q") < UPPER

where h(q) is a heuristic for optimal cost-to-go (specifically, a positive
underestimate)

* In this way, fewer nodes will be placed in the frontier queue

» This modification still guarantees that the algorithm will terminate with a
shortest path

« Many variations are possible... see (Problem 2 in pset 2)

10/13/2025 AA 174 | Lecture 7

Grid-based approaches: summary

* Pros:

* Simple and easy to use
* Fast (for some problems)

e Cons:

* Resolution dependent
* Not guaranteed to find solution if grid resolution is not small enough

* Limited to simple robots
* Grid sizeis exponential in the number of DOFs

10/13/2025 AA 174 | Lecture 7

Back to continuous motion planning

. Assume 2D workspace: W C R?
- O C Wistheobstacle region with polygonal boundary
Robotis a rigid polygon

Problem: Given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region

10/13/2025

AA 174 | Lecture 7

Back to continuous motion planning

Key point: motion planning problem described in the real-world, but it really lives
in another space -- the configuration (C-) space!

10/13/2025 AA 174 | Lecture 7

Configuration space

C- space: captures all degrees of freedom (all rigid body transformations)

More in detail, let R C R? be a polygonal robot (e.g., a triangle)

The robot can rotate by angle 6 or translate (z+, y:) C R?

Every combination g = (x;, y;,) yields a uniqgue robot placement: configuration
So C- spaceis a subset of R?

Note: 6 + 2m yields equivalent rotations = C- space is: R? x S

Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)

d=2 d=4

10/13/2025 AA 174 | Lecture 7

Configuration free space

. The subset F < C of all collision free configurations is the free
space

N\ Tree space

obstacle

forbidden spagé

10/13/2025 AA 174 | Lecture 7

10/13/2025 AA 174 | Lecture 7

Bottom line: explicitly computing C free spaces in
high-dimensional settings is hard!

10/13/2025 AA 174 | Lecture 7

Planning in C-space

Let R(q) € W denote set of points in the world occupied by robot
when in configuration g

. Robotin collisione R(g) N0 # @
. Accordingly, free space is defined as: Cee = {q € C|R(q) N 0 = 0}

- Path planning problem in C-space: compute a continuous path:
7:10,1] = Ceree, With 7(0) = g; and (1) = g,

AA 174 | Lecture 7

10/13/2025

Combinatorial planning

Combinatorial approaches to motion planning find
paths through continuous configuration space
without resorting to approximations

Key idea: compute a roadmap, which provides a
discrete representation of continuous motion
planning problem without losing any of the original
connectivity information needed to solve it

Such approaches are typically complete (i.e.,

guaranteed to find a solution), but are typically Aroadmap is a graph in which each vertex s a
limited to small number of DOFs due to the configurationin Cree and each edge s a path
through Cfee that connects a pair of vertices

challenge of exactly computing C free spaces

10/13/2025 AA 174 | Lecture 7

Next time: sampling-based planning

10/13/2025 AA 174 | Lecture 7

	Slide 1: Principles of Robot Autonomy I
	Slide 2: Attendance Form
	Slide 3
	Slide 4: Agenda
	Slide 5: Motion planning
	Slide 6: The see-think-act cycle
	Slide 7
	Slide 8: More examples of motion planning
	Slide 9: Some history
	Slide 10: Simplest setup
	Slide 11: Popular approaches
	Slide 12: Grid-based approaches
	Slide 13: Graph search algorithms
	Slide 14: Label correcting algorithm
	Slide 15: GetNext() ?
	Slide 16: Correctness and improvements
	Slide 17: A*: Improving Dijkstra
	Slide 18: Grid-based approaches: summary
	Slide 19: Back to continuous motion planning
	Slide 20: Back to continuous motion planning
	Slide 21: Configuration space
	Slide 22: Configuration free space
	Slide 23
	Slide 24
	Slide 25: Planning in C-space
	Slide 26: Combinatorial planning
	Slide 27: Next time: sampling-based planning

