
Principles of Robot Autonomy I
Motion planning I: graph search algorithms

Attendance Form

10/13/2025 AA 174A | Lecture 3 2

10/13/2025 AA 174 | Lecture 7

Agenda

10/13/2025 AA 174 | Lecture 7

• Agenda
• Introduction to motion planning

• Search-based algorithms for motion planning

• Configuration spaces and combinatorial motion planning

• Readings:
• Chapter 4, sections 4.1 – 4.2 in D. Gammelli, J. Lorenzetti, K. Luo, G. Zardini, M.

Pavone. Principles of Robot Autonomy. 2026.

Motion planning

10/13/2025 AA 174 | Lecture 7

Problem definition: Compute sequence of actions that drives a robot from
an initial condition to a terminal condition while avoiding obstacles,
respecting motion constraints, and possibly optimizing a cost function

The see-think-act cycle

Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

AA 174 | Lecture 710/13/2025

10/13/2025 AA 174 | Lecture 7

More examples of motion planning

10/13/2025 AA 174 | Lecture 7

• Steering autonomous vehicles

• Controlling humanoid robot

• Surgery planning

• Protein folding

• …

Some history

10/13/2025 AA 174 | Lecture 7

• Formally defined in the 1970s

• Development of exact, combinatorial solutions in the 1980s

• Development of sampling-based methods in the 1990s

• Deployment on real-time systems in the 2000s

• Current research: inclusion of differential and logical constraints,
planning under uncertainty, parallel implementation, and more

Simplest setup

10/13/2025

• Assume 2D workspace:

• is the obstacle region with polygonal boundary

• Robot is a rigid polygon

• Problem: given initial placement of robot, compute how to gradually move it into a
desired goal placement so that it never touches the obstacle region

AA 174 | Lecture 7

Popular approaches

10/13/2025 AA 174 | Lecture 7

• Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it
toward the goal and push it away from obstacles

• Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a
graph-search algorithm (Dijkstra, A*, …)

• Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

• Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses
collision detection algorithms to probe and incrementally search the C-space
for a solution, rather than completely characterizing all of the 𝐶free structure

Grid-based approaches

• Discretize the continuous world into a grid

• Each grid cell is either free or forbidden

• Robot moves between adjacent free cells

• Goal: find sequence of free cells from start to goal

• Mathematically, this corresponds to pathfinding
in a discrete graph 𝐺 = 𝑉, 𝐸

• Each vertex 𝑣 ∈ 𝑉 represents a free cell

• Edges 𝑣, 𝑢 ∈ 𝐸 connect adjacent grid cells

10/13/2025 AA 174 | Lecture 7

Graph search algorithms

10/13/2025 AA 174 | Lecture 7

• Having determined decomposition, how to find “best” path?

• Label-Correcting Algorithms: 𝐶(𝑞): cost-of-arrival from 𝑞𝐼 to 𝑞

FRONTIER/ALIVE/PRIORITY QUEUE

Node 𝑞

Nodes 𝑞′ ∈ 𝑆𝑢𝑐𝑐(𝑞)

𝐶 𝑞 + 𝐶 𝑞, 𝑞′ ≤ min 𝐶 𝑞′ , UPPER ?

Yes ⇒ 𝐶 𝑞′ ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞′

𝑞′ ≠ 𝑞𝐺?

Label correcting algorithm

10/13/2025 AA 174 | Lecture 7

Step 1. Remove a node 𝑞 from frontier queue and for each child 𝑞′ of 𝑞, execute
step 2

Step 2. If 𝐶 𝑞 + 𝐶 𝑞, 𝑞′ ≤ min 𝐶 𝑞′ , UPPER , set 𝐶 𝑞′ ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞′

and set 𝑞 to be the parent of 𝑞′. In addition, if 𝑞′≠ 𝑞𝐺 , place 𝑞′ in the frontier
queue if it is not already there, while if 𝑞′= 𝑞𝐺 , set UPPER to the new value
𝐶 𝑞 + 𝐶 𝑞, 𝑞𝐺

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞, except for the label of the origin
node, which is set to 0

GetNext() ?

10/13/2025 AA 174 | Lecture 7

Depth-First-Search (DFS): Maintain 𝑄 as a stack – Last in/first out

• Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain 𝑄 as a list – First
in/first first out

• Update cost for all edges up to current depth before proceeding to
greater depth

• Can deal with negative edge (transition) costs

Best-First (BF, Dijkstra): Greedily select next q: 𝑞 = argmin𝑞∈𝑄𝐶(𝑞)

• Node will enter the frontier queue at most once

• Requires costs to be non-negative

Correctness and improvements

10/13/2025 AA 174 | Lecture 7

If a feasible path exists from 𝑞𝐼 to 𝑞𝐺 , then algorithm terminates in finite time with
𝐶 𝑞𝐺 equal to the optimal cost of traversal, 𝐶∗ 𝑞𝐺 .

Theorem

* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A*: Improving Dijkstra

10/13/2025 AA 174 | Lecture 7

• Dijkstra orders by optimal “cost-to-arrival”

• Faster results if order by “cost-to-arrival”+ (approximate) “cost-to-go”

• That is, strengthen test
𝐶 𝑞 + 𝐶 𝑞, 𝑞′ ≤ UPPER

to
𝐶 𝑞 + 𝐶 𝑞, 𝑞′ + ℎ(𝑞′) ≤ UPPER

where ℎ 𝑞 is a heuristic for optimal cost-to-go (specifically, a positive
underestimate)

• In this way, fewer nodes will be placed in the frontier queue

• This modification still guarantees that the algorithm will terminate with a
shortest path

• Many variations are possible… see (Problem 2 in pset 2)

Grid-based approaches: summary

• Pros:
• Simple and easy to use
• Fast (for some problems)

• Cons:
• Resolution dependent

• Not guaranteed to find solution if grid resolution is not small enough

• Limited to simple robots
• Grid size is exponential in the number of DOFs

10/13/2025 AA 174 | Lecture 7

Back to continuous motion planning

10/13/2025

• Assume 2D workspace:

• is the obstacle region with polygonal boundary

• Robot is a rigid polygon

• Problem: Given initial placement of robot, compute how to gradually move it into
a desired goal placement so that it never touches the obstacle region

AA 174 | Lecture 7

Back to continuous motion planning

Key point: motion planning problem described in the real-world, but it really lives
in another space -- the configuration (C-) space!

10/13/2025 AA 174 | Lecture 7

Configuration space

• C- space: captures all degrees of freedom (all rigid body transformations)

• More in detail, let be a polygonal robot (e.g., a triangle)

• The robot can rotate by angle 𝜃 or translate

• Every combination 𝑞 = 𝑥𝑡 , 𝑦𝑡 , 𝜃 yields a unique robot placement: configuration

• So C- space is a subset of

• Note: 𝜃 ± 2𝜋 yields equivalent rotations ⇒ C- space is:

• Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)

10/13/2025 AA 174 | Lecture 7

Configuration free space

• The subset ℱ ⊆ 𝒞 of all collision free configurations is the free
space

10/13/2025 AA 174 | Lecture 7

obstacle

forbidden space

free space

10/13/2025 AA 174 | Lecture 7

Bottom line: explicitly computing C free spaces in
high-dimensional settings is hard!

10/13/2025 AA 174 | Lecture 7

Planning in C-space

• Let 𝑅 𝑞 ⊂ 𝑊 denote set of points in the world occupied by robot
when in configuration 𝑞

• Robot in collision ⇔ 𝑅 𝑞 ∩ 𝑂 ≠ ∅

• Accordingly, free space is defined as: 𝐶free = 𝑞 ∈ 𝐶 𝑅 𝑞 ∩ 𝑂 = ∅

• Path planning problem in C-space: compute a continuous path:
𝜏: 0,1 → 𝐶free, with 𝜏 0 = 𝑞𝐼 and 𝜏 1 = 𝑞𝐺

10/13/2025 AA 174 | Lecture 7

Combinatorial planning

10/13/2025 AA 174 | Lecture 7

• Combinatorial approaches to motion planning find
paths through continuous configuration space
without resorting to approximations

• Key idea: compute a roadmap, which provides a
discrete representation of continuous motion
planning problem without losing any of the original
connectivity information needed to solve it

• Such approaches are typically complete (i.e.,
guaranteed to find a solution), but are typically
limited to small number of DOFs due to the
challenge of exactly computing C free spaces

A roadmap is a graph in which each vertex is a
configuration in 𝐶free and each edge is a path
through 𝐶free that connects a pair of vertices

Next time: sampling-based planning

10/13/2025 AA 174 | Lecture 7

	Slide 1: Principles of Robot Autonomy I
	Slide 2: Attendance Form
	Slide 3
	Slide 4: Agenda
	Slide 5: Motion planning
	Slide 6: The see-think-act cycle
	Slide 7
	Slide 8: More examples of motion planning
	Slide 9: Some history
	Slide 10: Simplest setup
	Slide 11: Popular approaches
	Slide 12: Grid-based approaches
	Slide 13: Graph search algorithms
	Slide 14: Label correcting algorithm
	Slide 15: GetNext() ?
	Slide 16: Correctness and improvements
	Slide 17: A*: Improving Dijkstra
	Slide 18: Grid-based approaches: summary
	Slide 19: Back to continuous motion planning
	Slide 20: Back to continuous motion planning
	Slide 21: Configuration space
	Slide 22: Configuration free space
	Slide 23
	Slide 24
	Slide 25: Planning in C-space
	Slide 26: Combinatorial planning
	Slide 27: Next time: sampling-based planning

