
Principles of Robot Autonomy I
Trajectory tracking



Attendance Form
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Agenda

• Trajectory tracking
• Based on differential flatness techniques

• Based on LQR techniques

• Readings
• Chapter 3, sections 3.1 – 3.3 in D. Gammelli, J. Lorenzetti, K. Luo, G. Zardini, 

M. Pavone. Principles of Robot Autonomy. 2026.
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Trajectory tracking

• Back to two-step design strategy

• Reference trajectory and control history (i.e., 𝐱𝑑 𝑡  and 𝐮𝑑 𝑡 ) are 
computed via open-loop techniques (e.g., differential flatness)

• For reference tracking (Problem 2(v-vi) in pset 1)
• Geometric (e.g., pursuit) strategies 

• Linearization (either approximate or exact) + linear structure 

• Non-linear control

• Optimization-based techniques (e.g., MPC)
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Differential flatness (recap)

• A nonlinear system ሶ𝐱 = 𝐟(𝐱, 𝐮) is differentially flat if there exists a 
set of outputs 𝐳 = α(𝐱, 𝐮, . . . , 𝐮(𝑝)) such that

• One can then use any interpolation scheme (e.g., piecewise 
polynomial (spline)) to plan the trajectory of 𝐳 in such a way as to 
satisfy the appropriate boundary conditions

• The evolution of the state variables 𝐱, together with the associated 
control inputs 𝐮, can then be computed algebraically from 𝐳
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Trajectory tracking for differentially flat systems

• Example: dynamically extended unicycle model

• The system is differentially flat with flat outputs (𝑥, 𝑦), in particular
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Trajectory tracking for differentially flat systems

• Then one can use the following virtual control law for trajectory 
tracking:

    where 𝑘𝑝𝑥 , 𝑘𝑑𝑥 , 𝑘𝑝𝑦 , 𝑘𝑑𝑦 > 0 are control gains

• Such a law guarantees exponential convergence to zero of the 
Cartesian tracking error 
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Trajectory tracking for differentially flat systems

• More broadly, suppose system is differentially flat: the full state and 
control trajectories can be computed from flat outputs (𝐳, ሶ𝐳, . . . , 𝐳 𝑞 )

• Define: 𝐳(𝑞+1) = 𝐰

• One can then design a tracking controller by using linear control 
techniques; in particular, for a given reference flat output 𝐳𝑑 , define 
the component-wise error 

𝑒𝑖: = 𝑧𝑖 − 𝑧𝑖,𝑑, which implies 𝑒𝑖
(𝑞+1)

= 𝑤𝑖 − 𝑤𝑖,𝑑

• For guaranteed convergence to zero of tracking error, one can set

𝑤𝑖 = 𝑤𝑖,𝑑 − σ𝑗=0
𝑞

𝑘𝑖,𝑗𝑒𝑖
(𝑗)

, 

with the gains {𝑘𝑖,𝑗} chosen so as to enforce stability
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LQR-based methods

• The previous approach only works for differentially flat systems 

• How can we control more general classes of systems?
• Nonlinear control techniques

• Linear-quadratic regulation (LQR) methods
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Linear-quadratic regulator (LQR)

• How can we regulate (i.e., drive to the origin) the linear system ሶ𝐱 𝑡 =
𝐴𝐱 𝑡 + 𝐵𝐮(𝑡) with minimum control effort?

• We define the optimal control problem

• The optimal solution is of the form 𝐮𝑡 = 𝐾𝑡𝐱𝑡  where 𝐾𝑡 = −𝑅−1𝐵′𝑃𝑡   and 
the matrix 𝑃𝑡  solves the continuous time Riccati diff. equation:

ሶ𝑃𝑡 = −𝐴′𝑃𝑡 − 𝑃𝑡𝐴 + 𝑃𝑡𝐵𝑅−1𝐵′𝑃𝑡 − 𝑄 with 𝑃𝑇 = 𝐹

• Note: this results holds even in the more general case ሶ𝐱 𝑡 = 𝐴(𝑡)𝐱 𝑡 +
𝐵(𝑡)𝐮(𝑡) (just plug 𝐴 𝑡  and 𝐵 𝑡  in the Riccati equation)
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Tracking LQR – linear case

• Consider the linear system ሶ𝐱 𝑡 = 𝐴𝐱 𝑡 + 𝐵𝐮(𝑡) and assume we 
would like to track a reference trajectory 𝐱𝑑 𝑡 , 𝐮𝑑 𝑡

𝑡

•  Define error variables 𝛿𝐱 𝑡 ≔ (𝐱 𝑡 − 𝐱𝑑 𝑡 ) and 𝛿𝐮 𝑡 ≔
(𝐮 𝑡 − 𝐮𝑑 𝑡 ), which leads to the dynamical system

𝛿 ሶ𝐱 𝑡 = 𝐴𝛿𝐱 𝑡 + 𝐵𝛿𝐮(𝑡)

• Define optimal control problem

• Optimal solution is 𝛿𝐮𝑡 = 𝐾𝑡  𝛿𝐱𝑡  (same 𝐾𝑡  as before), which leads 
to control 𝐮 𝑡 = 𝐮𝑑 𝑡 + 𝛿𝐮 𝑡
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Tracking LQR – nonlinear case

• Consider the non-linear system ሶ𝐱 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡 ) and assume we 
would like to track a reference trajectory 𝐱𝑑 𝑡 , 𝐮𝑑 𝑡

𝑡

• Key idea: make the system “linear” by linearizing around 
𝐱𝑑 𝑡 , 𝐮𝑑 𝑡

𝑡
:

ሶ𝐱 𝑡 ≈ 𝐟 𝐱𝑑 𝑡 , 𝐮𝑑 𝑡 +
𝜕𝐟

𝜕𝐱
𝐱𝑑 𝑡 , 𝐮𝑑 𝑡 𝐱 𝑡 − 𝐱𝑑 𝑡 +

𝜕𝐟

𝜕𝐮
𝐱𝑑 𝑡 , 𝐮𝑑 𝑡 𝐮 𝑡 − 𝐮𝑑 𝑡

ሶ = ሶ𝐱𝑑 𝑡 +  𝐴(𝑡) 𝐱 𝑡 − 𝐱𝑑 𝑡  +𝐵(𝑡) 𝐮 𝑡 − 𝐮𝑑 𝑡

• As before, we get a linear system in the error variables: 
𝛿 ሶ𝐱 𝑡 = 𝐴(𝑡)𝛿𝐱 𝑡 + 𝐵(𝑡)𝛿𝐮(𝑡)

• Optimal solution is 𝛿𝐮𝑡 = 𝐾𝑡  𝛿𝐱𝑡  which leads to control 𝐮 𝑡 = 
𝐮𝑑 𝑡 + 𝛿𝐮 𝑡   (where 𝐾𝑡  is again obtained from the Riccati eq.)
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Transferring results to discrete case

• Same ideas apply for discrete-time systems, i.e., 𝐱𝑘+1 = 𝐟 𝐱𝑘 , 𝐮𝑘

• Key difference:  control is 𝐮𝑘 = 𝐮𝑘
𝑑 + 𝛿𝐮𝑘, with 𝛿𝐮𝑘 = 𝐾𝑘  𝛿𝐱𝑘, where 

𝐾𝑘 = − 𝑅 + 𝐵𝑘
′ 𝑃𝑘+1𝐵𝑘

−1𝐵𝑘
′ 𝑃𝑘+1𝐴𝑘  and 𝑃𝑘  is iteratively obtained 

from the discrete-time Riccati equation:
𝑃𝑘= 𝐴𝑘

′ 𝑃𝑘+1𝐴𝑘 − 𝐴𝑘
′ 𝑃𝑘+1𝐵𝑘 𝑅 + 𝐵𝑘

′ 𝑃𝑘+1𝐵𝑘
−1𝐵𝑘

′ 𝑃𝑘+1𝐴𝑘 + 𝑄 with 𝑃𝑁 = 𝐹

• Similarly as before:

• 𝐴𝑘= 
𝜕𝐟

𝜕𝐱
𝐱𝑘

𝑑 , 𝐮𝑘
𝑑  and 𝐵𝑘= 

𝜕𝐟

𝜕𝐮
𝐱𝑘

𝑑 , 𝐮𝑘
𝑑  

• 𝑅, 𝑄, 𝐹 have the same interpretation as before, namely tracking penalty, 
control effort penalty, and final tracking error penalty
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Next time
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