Principles of Robot Autonomy |

Trajectory Optimization

% 9 Stanford ASET
&%/ University

uuuuuuuuuuuuuuuuuuuu

Attendance Form

IEI" .,.,.-:r IEI

2
|!r o -
S

15

E .

Agenda

* Trajectory optimization
* Optimization-based methods
* Differential flatness

* Readings

* Chapter 2, section 2.1 and sections 2.3 - 2.4 in D. Gammelli, J. Lorenzetti, K.
Luo, G. Zardini, M. Pavone. Principles of Robot Autonomy. 2026.

10/6/2025 AA 174A | Lecture 5 3

The see-think-act cycle

Knowledge

Localiza(on

Map@Building

environmental@nodel
Iocallljinap

Informa(on

extrac(on

raw(@lata

Sensing

10/6/2025

posi(on

Mission@oals

Decision@naking

global@ap

-

See-think-act

Real@vorld
environment

AA 174A | Lecture 5

Mo(onplanning

trajectory

v

Trajectoryl
execu(on

~~—

This week’s

actuatorf

comr3ands fOCUS

Actua(on

Motion generation and control

Given the state space model of a robotic system, that is

x(t) = f(x(t),u(t),t)

how can we control its motion from an initial configuration to a
desired configuration?

10/6/2025 AA 174A | Lecture 5 5

Optimal control problem
The problem:

u

min h(X(tf),tf)—l—/tfg(X(t),U(t),t)dt

subject to x(t) = f(x(¢),u(t),t)
x(t) e X, u(t)eld

where x(t) € R™, u(t) € R™,and x(t,) = X,

 We'll focus on the case X = R" ; state constraints will be addressed in
the context of motion planning

10/6/2025 AA 174A | Lecture 5 6

Forms of optimal control

* |f a functional relationship of the form
u”(t) = m(x(t),t)
can be found, then the optimal control is said to be in closed-loop form

* If the optimal control law is determined as a function of time for a
specified initial state value

u*(t) = 1(x(tg), 1)
then the optimal control is said to be in open-loop form
e A gOOd Compromise: tWO-Step design / Reference trajectory

u(t) = uyq(t) + m(x(t), x(t) —xg4(t))
Reference control ‘ v ,
(open-loop)

Trajectory-tracking law Tracking error

(closed-loop)
10/6/2025 AA 174A | Lecture 5 7

-
Trajectory optimization

We want to find an open-loop
control trajectory

u*(t) = I(x(to), t)
that solves the optimal control problem (OCP)

t
min h(x(tf),t5) +] fg(x(t),u(t),t) dt ~ +——— cost(fuel consumption)

u to
subject to x(t) = f(x(t),u(t),t) - dynamics
u(t) eld . constraints

Similar to before, but focus is on open-loop control and we also remove state constraints (more general
formulations are possible though!)

10/6/2025 AA 174A | Lecture 5 8

Non-linear optimization

1-D f(z) cost (fuel consumption) f(z)

A

Optimization variable
(control input)

Unconstrained non-linear program:

min f(x)

xXcR™

* f usually assumed continuously differentiable (and often twice
continuously differentiable)

10/6/2025 AA 174A | Lecture 5

Local and global minima

 Avector x® is said an unconstrained local minimum if 3e > 0 such
that

Fx) < f(x), x|[x—x*] <e
* Avector x™ is said an unconstrained global minimum if
f(x") < f(x), VxeR™

* X" is a strict local/global minimum if the inequality is strict

10/6/2025 AA 174A | Lecture 5 10

Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors
« Assume f € C1, by using Taylor series expansion

f(x" + Ax) — f(x*) = Vf(x*) Ax
*If f € C?

f(x* + Ax) — f(x*) = Vf(x*) Ax + %AX,V2f(X*)AX

10/6/2025 AA 174A | Lecture 5 11

Necessary conditions for optimality

* We expect that if X" is an unconstrained local minimum, the first
order cost variation due to a small variation Ax is nonnegative, i.e.,

Vix*)Ax = Z 8{;2*)Aa:i >0

1=1
By taking Ax to be positive and negative multiples of the unit
coordinate vectors, we obtain conditions of the type

of(x") 0f(x")

* Equivalently we have the necessary condition

>0, and <0

Vf(x*) =0 (x™ is said a stationary point)

10/6/2025 AA 174A | Lecture 5 12

Computational methods

Key idea: iterative descent. We start at some point x° (initial guess)
and successively generate vectors x1, x4, ... such that f is decreased
at each iteration, i.e.,

FEF) < f(xF), k=0,1,..

15

1.0 4 / :BO
The hopeisto decrease f all the way _(;,f'_ml
toa minimum (=

-0.5 4

~1.0 4

=1.5 T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

10/6/2025 AA 174A | Lecture 5 13

Gradient method

Given x € R™ with Vf(x) # 0, consider the half line of vectors

X, =X —aV f(x), Va > 0

From first order Taylor expansion (a small) Vf(m/)/

Fka) m F(x) + V() (ko —X) = f) — 0| VF@IZ =] A
ol /‘33

So for & small enough f(x) is smaller than f(x)! | —

10/6/2025 AA 174A | Lecture 5 14

e
Gradient descent

//impart numpy as np)
import matplotlib.pyplot as plt
Define f(x) and its gradient
. ° e, o def f[}'("_, Kg}:
- Pick aninitial guess T and a stepsizea > 0 Valu = 1. * x1%%2 + 2. * x2%%2
return value
_ . . . def f gradient(xl, x2):
- For k=0,1,... execute the iteration: gradient = np.array((2 * x1, 4. * x2])
return gradient
Gradient Descent
num steps = 20
:L', a: a Vf(a':) stepsize = 0.1
— — " xB = np.ones(2)
k_l_l k k X5 = np.zeros((num steps+1l, 2))}
®s5[0], xk = xB, x0
for 1 in range(num_steps):

15 [xk = xk - stepsize * f gradient(xk[0], xk[l]}]
xs[i+1l] = xk # save result
1.0 4 # Plot
xs linspace = np.linspace(-1.5, 1.5, 100)
x1ls, x2s = np.meshgrid(xs_linspace, xs_linspace)
0.5 1 cs = plt.contourf(xls, x2s, f(xls, x2s),
cmap="'jet', levels=100, alpha=0.3)
plt.plot(xs[:, ©], xs[:, 1], 'ko--'")
0.0 gradient x0 = -f gradient(x0[0], x0[1])
plt.arrow(x0[0], x0[1],
208 S5e-2*gradient x0[0], 5e-2*gradient x0[1],
! width=0.025, color='k"')
plt.show()
~1.0 - \ /
15 . : . ; , Play with lecture 5 1l.ipynb
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 - -

10/6/2025 AA 174A | Lecture 5 15

Gradient descent: additional considerations

Tuning parameter: stepsize
Use a decreasing sequence
Select it automatically at each descent step to ensure that f(z,) < f(x)

Termination criteria: stop after fixed number of iterations or once
|f(@ei1) — flzr)l <€ or |z —ail <e

10/6/2025 AA 174A | Lecture 5 16

Back to trajectory optimization

min h(x(ts),ts) + / " g(x(t), u(t), t) dt

subject to x(t) = f(x(t), u(t),t)
u(t) el

* Two broad classes of methods (for more details, see AA203):

1. Direct methods: transcribe infinite problem into finite dimensional, nonlinear
programming (NLP) problem, and solve NLP = “First discretize, then optimize”

2. Indirect methods: attempt to find a minimum point “indirectly,” by solving the
necessary conditions of optimality = “First optimize, then discretize”

10/6/2025 AA 174A | Lecture 5 17

Direct methods: nonlinear programming transcription

tr
min j G0, u(b), £) dt

0

x(t) = f(x(t),u(t), t), t € [to, tf]
(OCP)

u(t) e U € R™, tE€ [to, tf]
x(0) = x,, x(tf) = X¢,

/'

Initial and final conditions

10/6/2025

Forward Euler time discretization

1. Selectadiscretization 0 =ty < t; < -~ <ty = tr forthe
interval [ty, tr] and, forevery i = 0, ..., N — 1, define
x;~x(t), u; ~u(t), t € (t;,t;+1] and xo~x(0)

2. Bydenoting h; = t;yq1 — t;, (OCP) is transcribed into the
following nonlinear, constrained optimization problem

N-1
mingy, u,) Z hig(X;,u;,t;)
i=0
(NLOP) X;., = X; + hf(x;,u;, t;), i=0,..,N—-1
u, el,i=0,..,N—1 ,xy = X¢,
AA 174A | Lecture 5 18

Direct methods: software packages

Some software packages:

- DIDO: http://www.elissarglobal.com/academic/products/
- PROPT: http://tomopt.com/tomlab/products/propt/

+ GPOPS: http://www.gpops2.com/

- CasADi: https://github.com/casadi/casadi/wiki

- ACADO: http://acado.github.io/

- Trajax: https://github.com/google/trajax

In addition to implementing efficient trajectory optimization algorithms, many of
these tools provide easier-to-use modeling languages for problem specification

10/6/2025 AA 174A | Lecture 5 19

http://www.elissarglobal.com/academic/products/
http://tomopt.com/tomlab/products/propt/
http://www.gpops2.com/
http://www.gpops2.com/
http://www.gpops2.com/
https://github.com/casadi/casadi/wiki
http://acado.github.io/
https://github.com/google/trajax

llustrative example: planar quadrotor

Ly
min/ T ()% 4 To(t)dt
O . .
, \ (energy objective)

subject to dynamics

Uy

— (Tl —|—T2) sin qb
m

Uy

Xz

Uy

Y

?-J.y — (Tﬁq;,i) cos¢p q
¢

w

W
(To—T1)4
B - Izz

Play with lecture 5 2.ipynb
10/6/2025 AA 174A | Lecture 5 20

Differential flatness

* Computing “good” feasible trajectories is often sufficient for
trajectory generation purposes, and typically much faster than
computing optimal ones

* A class of systems for which trajectory generation is particularly
easy are the so-called differentially flat systems

» Reference: M. J. Van Nieuwstadt and R. M. Murray. Real-time
trajectory generation for differentially flat systems. 1998.

10/6/2025 AA 174A | Lecture 5 21

Motivating example: simple car

Consider the problem of finding a feasible trajectory that satisfies the
simple car dynamics:

T = cosfv 7 = sin 6 v, éz%tangb

* State: (x,y,0)
* Inputs: (v, @)

Simple car

10/6/2025 AA 174A | Lecture 5 22

Structure of the dynamics for simple car steering

* Suppose we are given a (smooth) trajectory for the rear wheels of
the system, x(t) and y(t)
1. we can use this solution to solve for the angle of the car by writing
: oy :
gl g pan! (E)

€T cos 0 T

2. we can solve for the velocity

& = vcosf = v =1/ cosf (or v =19/sinf)

3. andfinally

0 = %tangb = ¢ = tan™* <LQ>

10/6/2025 AA 174A | Lecture 5 23

Structure of the dynamics for simple car steering

* Bottom line: all of the state variables and the inputs can be
determined by the trajectory of the rear wheels and its derivatives!

» We say that the system is differentially flat with flat outputz = (x, y)

 This provides a dramatic simplification for the purposes of
trajectory generation

10/6/2025 AA 174A | Lecture 5 24

Differential flatness

* Implication for trajectory generation: to
every curve t = Z(t) enough differentiable,
there corresponds a trajectory

. (x(t)) _ (ﬁ(Z(t),i(t), oy 200 (t))>
u(t) v(z(t),z(b), ..., 29 (£)))

that identically satisfies the system equations

« Thesimple caris differentially flat with the
position of the rear wheels as the flat output

10/6/2025 AA 174A | Lecture 5

1 1-1 correspondence

/\

z(t) e M
No dynamics!

From Nieuwstadt, Murray. 1998.

25

Practical implications

This leads to a simple, yet effective strategy for trajectory generation

1. Findthe initial and final conditions for the flat output:

Given Find
(to, x(to), u(to)) (z(to), 2(tg), ., 2D (tg))
(tr, x(tr), u(ts)) (z(tr), 2(tr), ., 29 (¢))

2. Build a smooth curve t — z(t) for t € [t, ts] by interpolation,
possibly satisfying further constraints

3. Deduce the corresponding trajectory t — (x(t),u(t))

10/6/2025 AA 174A | Lecture 5 26

More on step 2

» We can parameterize the flat output trajectory using a set of smooth
basis functions y; (t)

N
Z(t) =" afly;(t)
1=1

* and then solve (Problem 2(i-iv)in pset1)

[Y1(to) ta(to) ... n(to)] [2j(to) |
Pi(to) 2(to) .. Un(to) z;(to)

: : : _@[1?]_ ;
i) 0§ (t) .. wP(to)| 05| _ |49 (ko)
ilty) ha(ty) ... Un(tp) | | - zj(ts)
Ualty) - Walty) o Ut | |0 Zj(ty)

WO) .). 0),

For more details see: “Optimization-Based Control” by Richard Murray
10/6/2025 AA 174A | Lecture 5 27

Key points

* Nominal trajectories and inputs can be computed in a computationally-
efficient way (solving a set of algebraic equations)

» Other constraints on the system, such as input bounds, can be
transformed into the flat output space and (typically) become limits on
the curvature or higher order derivative properties of the curve

* |f there is a performance index for the system, this index can be
transformed and becomes a functional depending on the flat outputs and
their derivatives up to some order

* The existence of a general, computable criterion so as to decide if the
dynamical system X = f(x, u) is differentially flat remains open

10/6/2025 AA 174A | Lecture 5 28

The planar quadrotor is differentially flat!

b}
y -k
T p” Y
Y1 4\%\¢ —
. xr = T
i Ve = &
1| Uy _ Y
’I.]x —(Tl _|_;Zr_;2) sin qb /Uy — y
vl Uy
?-j.y — | (T -I—CZ;i) cos¢ q
0, W
CZJ (TQ_Tl)E
- - - Izz -

10/6/2025 AA 174A | Lecture 5

-
¢ = tan ! (— —
Yy-+g
i3 (5 +)
W = " ”
(5 +g)° + @7

x = [(z,2,%, Z)

u=1(2,%2,%2,2, zZ)

_

)

Play with lecture 5 2.ipynb

29

Next time

10/6/2025 AA 174A | Lecture 5 30

	Introduction
	Slide 1: Principles of Robot Autonomy I
	Slide 2: Attendance Form
	Slide 3: Agenda
	Slide 4: The see-think-act cycle
	Slide 5: Motion generation and control
	Slide 6: Optimal control problem
	Slide 7: Forms of optimal control
	Slide 8: Trajectory optimization
	Slide 9: Non-linear optimization
	Slide 10: Local and global minima
	Slide 11: Necessary conditions for optimality
	Slide 12: Necessary conditions for optimality
	Slide 13: Computational methods
	Slide 14: Gradient method
	Slide 15: Gradient descent
	Slide 16: Gradient descent: additional considerations
	Slide 17: Back to trajectory optimization
	Slide 18: Direct methods: nonlinear programming transcription
	Slide 19: Direct methods: software packages
	Slide 20: Illustrative example: planar quadrotor
	Slide 21: Differential flatness
	Slide 22: Motivating example: simple car
	Slide 23: Structure of the dynamics for simple car steering
	Slide 24: Structure of the dynamics for simple car steering
	Slide 25: Differential flatness
	Slide 26: Practical implications
	Slide 27: More on step 2
	Slide 28: Key points
	Slide 29: The planar quadrotor is differentially flat!
	Slide 30: Next time

