
Principles of Robot Autonomy I
Trajectory Optimization

Attendance Form

10/6/2025 AA 174A | Lecture 3 2

Agenda

• Trajectory optimization
• Optimization-based methods

• Differential flatness

• Readings
• Chapter 2, section 2.1 and sections 2.3 – 2.4 in D. Gammelli, J. Lorenzetti, K.

Luo, G. Zardini, M. Pavone. Principles of Robot Autonomy. 2026.

10/6/2025 AA 174A | Lecture 5 3

Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

The see-think-act cycle

This week’s
focus

10/6/2025 AA 174A | Lecture 5 4

Motion generation and control

Given the state space model of a robotic system, that is
ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡

5

how can we control its motion from an initial configuration to a
desired configuration?

10/6/2025 AA 174A | Lecture 5

The problem:

where 𝐱 𝑡 ∈ 𝑅𝑛, 𝐮 𝑡 ∈ 𝑅𝑚, and 𝐱 𝑡0 = 𝐱0

• We’ll focus on the case ; state constraints will be addressed in
the context of motion planning

Optimal control problem

AA 174A | Lecture 5 610/6/2025

Forms of optimal control
• If a functional relationship of the form

can be found, then the optimal control is said to be in closed-loop form

• If the optimal control law is determined as a function of time for a
specified initial state value

then the optimal control is said to be in open-loop form

• A good compromise: two-step design

Tracking error

Reference trajectory

Reference control
(open-loop)

Trajectory-tracking law
(closed-loop)

AA 174A | Lecture 5 710/6/2025

Trajectory optimization

We want to find an open-loop
control trajectory

 that solves the optimal control problem (OCP)

8

dynamics

constraints

cost (fuel consumption)

10/6/2025 AA 174A | Lecture 5

Similar to before, but focus is on open-loop control and we also remove state constraints (more general
formulations are possible though!)

9

1-D 2-D

Non-linear optimization
cost (fuel consumption) cost

Optimization variable
(control input)

10/6/2025 AA 174A | Lecture 5

Unconstrained non-linear program:

• 𝑓 usually assumed continuously differentiable (and often twice
continuously differentiable)

• A vector 𝐱∗ is said an unconstrained local minimum if ∃𝜖 > 0 such
that

• A vector 𝐱∗ is said an unconstrained global minimum if

• 𝐱∗ is a strict local/global minimum if the inequality is strict

10/6/2025 AA 174A | Lecture 5 10

Local and global minima

Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors

• Assume 𝑓 ∈ 𝐶1, by using Taylor series expansion

• If 𝑓 ∈ 𝐶2

10/6/2025 AA 174A | Lecture 5 11

Necessary conditions for optimality

• We expect that if 𝐱∗ is an unconstrained local minimum, the first
order cost variation due to a small variation Δ𝐱 is nonnegative, i.e.,

• By taking Δ𝐱 to be positive and negative multiples of the unit
coordinate vectors, we obtain conditions of the type

• Equivalently we have the necessary condition

10/6/2025 AA 174A | Lecture 5 12

Computational methods

Key idea: iterative descent. We start at some point x0 (initial guess)
and successively generate vectors x1, x2, … such that 𝑓 is decreased
at each iteration, i.e.,

10/6/2025 AA 174A | Lecture 5 13

The hope is to decrease 𝑓 all the way
to a minimum

From first order Taylor expansion (𝛼 small)

So for 𝛼 small enough 𝑓(𝐱α) is smaller than 𝑓(𝐱)!

Gradient method

Given x ∈ ℝ𝑛 with ∇𝑓 𝐱 ≠ 0, consider the half line of vectors

10/6/2025 AA 174A | Lecture 5 14

• Pick an initial guess and a stepsize 𝛼 > 0

• For execute the iteration:

15

Gradient descent

10/6/2025 AA 174A | Lecture 5

Play with lecture_5_1.ipynb

Gradient descent: additional considerations

10/6/2025 AA 174A | Lecture 5 16

• Tuning parameter: stepsize
• Use a decreasing sequence
• Select it automatically at each descent step to ensure that

• Termination criteria: stop after fixed number of iterations or once
 or

Back to trajectory optimization

10/6/2025 AA 174A | Lecture 5 17

• Two broad classes of methods (for more details, see AA203):

1. Direct methods: transcribe infinite problem into finite dimensional, nonlinear
programming (NLP) problem, and solve NLP ⇒ “First discretize, then optimize”

2. Indirect methods: attempt to find a minimum point “indirectly,” by solving the
necessary conditions of optimality ⇒ “First optimize, then discretize”

Direct methods: nonlinear programming transcription

10/6/2025 AA 174A | Lecture 5 18

min න
𝑡0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 , 𝑡 ∈ [𝑡0, 𝑡𝑓]
(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚, 𝑡 ∈ [𝑡0, 𝑡𝑓]

Forward Euler time discretization

1. Select a discretization 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑡𝑓 for the

interval [𝑡0, 𝑡𝑓] and, for every 𝑖 = 0, … , 𝑁 − 1, define

𝐱𝑖~𝐱 𝑡 , 𝐮𝑖 ~ 𝐮 𝑡 , 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1] and 𝐱0~𝐱 0

2. By denoting ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖, (OCP) is transcribed into the
following nonlinear, constrained optimization problem

min(𝐱𝑖,𝐮𝑖) ෍

𝑖=0

𝑁−1

ℎ𝑖𝑔(𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖)

𝐱𝑖+1 = 𝐱𝑖 + ℎ𝑖𝐟 𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖 , 𝑖 = 0, … , 𝑁 − 1
(NLOP)

𝐮𝑖 ∈ 𝑈 , 𝑖 = 0, … , 𝑁 − 1 , 𝐱𝑁 = 𝐱𝑡𝑓

𝐱 0 = 𝐱0, 𝐱 𝑡𝑓 = 𝐱𝑡𝑓

Initial and final conditions

Direct methods: software packages

Some software packages:
• DIDO: http://www.elissarglobal.com/academic/products/

• PROPT: http://tomopt.com/tomlab/products/propt/

• GPOPS: http://www.gpops2.com/

• CasADi: https://github.com/casadi/casadi/wiki

• ACADO: http://acado.github.io/

• Trajax: https://github.com/google/trajax

In addition to implementing efficient trajectory optimization algorithms, many of
these tools provide easier-to-use modeling languages for problem specification

1910/6/2025 AA 174A | Lecture 5

http://www.elissarglobal.com/academic/products/
http://tomopt.com/tomlab/products/propt/
http://www.gpops2.com/
http://www.gpops2.com/
http://www.gpops2.com/
https://github.com/casadi/casadi/wiki
http://acado.github.io/
https://github.com/google/trajax

Illustrative example: planar quadrotor

10/6/2025 AA 174A | Lecture 5 20

(energy objective)

subject to dynamics

Play with lecture_5_2.ipynb

Differential flatness

• Computing “good” feasible trajectories is often sufficient for
trajectory generation purposes, and typically much faster than
computing optimal ones

• A class of systems for which trajectory generation is particularly
easy are the so-called differentially flat systems

• Reference: M. J. Van Nieuwstadt and R. M. Murray. Real‐time
trajectory generation for differentially flat systems. 1998.

10/6/2025 AA 174A | Lecture 5 21

Motivating example: simple car

Consider the problem of finding a feasible trajectory that satisfies the
simple car dynamics:

• State: (𝑥, 𝑦, 𝜃)

• Inputs: (𝑣, 𝜙)

10/6/2025 AA 174A | Lecture 5 22

Simple car

Structure of the dynamics for simple car steering

• Suppose we are given a (smooth) trajectory for the rear wheels of
the system, 𝑥(𝑡) and 𝑦(𝑡)

1. we can use this solution to solve for the angle of the car by writing

2. we can solve for the velocity

3. and finally

10/6/2025 AA 174A | Lecture 5 23

Structure of the dynamics for simple car steering

10/6/2025 AA 174A | Lecture 5 24

• Bottom line: all of the state variables and the inputs can be
determined by the trajectory of the rear wheels and its derivatives!

• We say that the system is differentially flat with flat output 𝐳 = (𝑥, 𝑦)

• This provides a dramatic simplification for the purposes of
trajectory generation

Differential flatness

10/6/2025 AA 174A | Lecture 5 25

ሶ𝐱 = 𝐟(𝐱, 𝐮)

𝐳 𝑡 ∈ 𝑀

• Implication for trajectory generation: to
every curve 𝑡 → 𝐳(𝑡) enough differentiable,
there corresponds a trajectory

𝑡 →
𝐱(𝑡)
𝐮(𝑡)

=
𝛽(𝐳 𝑡 , ሶ𝐳 𝑡 , … , 𝐳 𝑞 (𝑡))

𝛾(𝐳 𝑡 , ሶ𝐳 𝑡 , … , 𝐳 𝑞 (𝑡)))

 that identically satisfies the system equations

• The simple car is differentially flat with the
position of the rear wheels as the flat output

From Nieuwstadt, Murray. 1998.

No dynamics!

Practical implications

This leads to a simple, yet effective strategy for trajectory generation

1. Find the initial and final conditions for the flat output:

2. Build a smooth curve 𝑡 → 𝐳(𝑡) for 𝑡 ∈ [𝑡0, 𝑡𝑓] by interpolation,
possibly satisfying further constraints

3. Deduce the corresponding trajectory 𝑡 → (𝐱 𝑡 , 𝐮(𝑡))

10/6/2025 AA 174A | Lecture 5 26

Given Find

(𝑡0, 𝐱 𝑡0 , 𝐮(𝑡0)) (𝐳 𝑡0 , ሶ𝐳 𝑡0 , … , 𝐳 𝑞 (𝑡0))

(𝑡𝑓, 𝐱 𝑡𝑓 , 𝐮(𝑡𝑓)) (𝐳 𝑡𝑓 , ሶ𝐳 𝑡𝑓 , … , 𝐳 𝑞 (𝑡𝑓))

More on step 2
• We can parameterize the flat output trajectory using a set of smooth

basis functions 𝜓𝑖(𝑡)

• and then solve (Problem 2(i - iv) in pset 1)

10/6/2025 AA 174A | Lecture 5 27

For more details see: “Optimization-Based Control” by Richard Murray

Key points

• Nominal trajectories and inputs can be computed in a computationally-
efficient way (solving a set of algebraic equations)

• Other constraints on the system, such as input bounds, can be
transformed into the flat output space and (typically) become limits on
the curvature or higher order derivative properties of the curve

• If there is a performance index for the system, this index can be
transformed and becomes a functional depending on the flat outputs and
their derivatives up to some order

• The existence of a general, computable criterion so as to decide if the
dynamical system ሶ𝐱 = 𝐟(𝐱, 𝐮) is differentially flat remains open

10/6/2025 AA 174A | Lecture 5 28

The planar quadrotor is differentially flat!

10/6/2025 AA 174A | Lecture 5 29

Play with lecture_5_2.ipynb

Next time

10/6/2025 AA 174A | Lecture 5 30

	Introduction
	Slide 1: Principles of Robot Autonomy I
	Slide 2: Attendance Form
	Slide 3: Agenda
	Slide 4: The see-think-act cycle
	Slide 5: Motion generation and control
	Slide 6: Optimal control problem
	Slide 7: Forms of optimal control
	Slide 8: Trajectory optimization
	Slide 9: Non-linear optimization
	Slide 10: Local and global minima
	Slide 11: Necessary conditions for optimality
	Slide 12: Necessary conditions for optimality
	Slide 13: Computational methods
	Slide 14: Gradient method
	Slide 15: Gradient descent
	Slide 16: Gradient descent: additional considerations
	Slide 17: Back to trajectory optimization
	Slide 18: Direct methods: nonlinear programming transcription
	Slide 19: Direct methods: software packages
	Slide 20: Illustrative example: planar quadrotor
	Slide 21: Differential flatness
	Slide 22: Motivating example: simple car
	Slide 23: Structure of the dynamics for simple car steering
	Slide 24: Structure of the dynamics for simple car steering
	Slide 25: Differential flatness
	Slide 26: Practical implications
	Slide 27: More on step 2
	Slide 28: Key points
	Slide 29: The planar quadrotor is differentially flat!
	Slide 30: Next time

