
Principles of Robot Autonomy I
Trajectory Optimization



Attendance Form
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Agenda

• Trajectory optimization
• Optimization-based methods

• Differential flatness

• Readings
• Chapter 2, section 2.1 and sections 2.3 – 2.4 in D. Gammelli, J. Lorenzetti, K. 

Luo, G. Zardini, M. Pavone. Principles of Robot Autonomy. 2026.
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Motion generation and control

Given the state space model of a robotic system, that is
ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡

5

how can we control its motion from an initial configuration to a 
desired configuration?
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The problem:

where 𝐱 𝑡 ∈ 𝑅𝑛, 𝐮 𝑡 ∈ 𝑅𝑚, and 𝐱 𝑡0 = 𝐱0

• We’ll focus on the case               ; state constraints will be addressed in 
the context of motion planning 

Optimal control problem
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Forms of optimal control
• If a functional relationship of the form

can be found, then the optimal control is said to be in closed-loop form 

• If the optimal control law is determined as a function of time for a 
specified initial state value

then the optimal control is said to be in open-loop form 

• A good compromise: two-step design 

Tracking error

Reference trajectory

Reference control
(open-loop)

Trajectory-tracking law
(closed-loop) 
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Trajectory optimization

We want to find an open-loop 
control trajectory

 that solves the optimal control problem (OCP)

8

dynamics

constraints

cost (fuel consumption)
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Similar to before, but focus is on open-loop control and we also remove state constraints (more general 
formulations are possible though!)
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1-D 2-D

Non-linear optimization
cost (fuel consumption) cost

Optimization variable 
(control input)
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Unconstrained non-linear program:

• 𝑓 usually assumed continuously differentiable (and often twice 
continuously differentiable)



• A vector 𝐱∗ is said an unconstrained local minimum if ∃𝜖 > 0 such 
that

• A vector 𝐱∗ is said an unconstrained global minimum if

• 𝐱∗ is a strict local/global minimum if the inequality is strict

10/6/2025 AA 174A | Lecture 5 10

Local and global minima



Necessary conditions for optimality

Key idea: compare cost of a vector with cost of its close neighbors

• Assume 𝑓 ∈ 𝐶1, by using Taylor series expansion

• If 𝑓 ∈ 𝐶2
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Necessary conditions for optimality

• We expect that if 𝐱∗ is an unconstrained local minimum, the first 
order cost variation due to a small variation Δ𝐱 is nonnegative, i.e., 

• By taking Δ𝐱 to be positive and negative multiples of the unit 
coordinate vectors, we obtain conditions of the type

• Equivalently we have the necessary condition 
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Computational methods

Key idea: iterative descent. We start at some point x0 (initial guess) 
and successively generate vectors x1, x2, … such that 𝑓 is decreased 
at each iteration, i.e.,
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The hope is to decrease 𝑓 all the way 
to a minimum



From first order Taylor expansion (𝛼 small)

So for 𝛼 small enough 𝑓(𝐱α) is smaller than 𝑓(𝐱)!

Gradient method

Given x ∈ ℝ𝑛 with ∇𝑓 𝐱 ≠ 0, consider the half line of vectors
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• Pick an initial guess        and a stepsize 𝛼 > 0 

• For                             execute the iteration:

15

Gradient descent
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Play with lecture_5_1.ipynb



Gradient descent: additional considerations
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• Tuning parameter: stepsize
• Use a decreasing sequence 
• Select it automatically at each descent step to ensure that 

• Termination criteria: stop after fixed number of iterations or once
                                           or  



Back to trajectory optimization
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• Two broad classes of methods (for more details, see AA203):

1. Direct methods: transcribe infinite problem into finite dimensional, nonlinear 
programming (NLP) problem, and solve NLP  ⇒ “First discretize, then optimize”

2. Indirect methods: attempt to find a minimum point “indirectly,” by solving the 
necessary conditions of optimality ⇒ “First optimize, then discretize”



Direct methods: nonlinear programming transcription
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min න
𝑡0

𝑡𝑓

𝑔 𝐱 𝑡 , 𝐮 𝑡 , 𝑡  𝑑𝑡

ሶ𝐱(𝑡) = 𝐟 𝐱 𝑡 , 𝐮 𝑡 , 𝑡 ,  𝑡 ∈ [𝑡0, 𝑡𝑓]
(OCP)

𝐮 𝑡 ∈ 𝑈 ⊆ ℝ𝑚,   𝑡 ∈ [𝑡0, 𝑡𝑓]

Forward Euler time discretization

1. Select a discretization 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑡𝑓 for the 

interval [𝑡0, 𝑡𝑓] and, for every 𝑖 = 0, … , 𝑁 − 1, define                   

𝐱𝑖~𝐱 𝑡  , 𝐮𝑖 ~ 𝐮 𝑡  , 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1] and 𝐱0~𝐱 0

2. By denoting ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖, (OCP) is transcribed into the 
following nonlinear, constrained optimization problem

min(𝐱𝑖,𝐮𝑖) ෍

𝑖=0

𝑁−1

ℎ𝑖𝑔(𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖)

𝐱𝑖+1 = 𝐱𝑖 + ℎ𝑖𝐟 𝐱𝑖 , 𝐮𝑖 , 𝑡𝑖 , 𝑖 = 0, … , 𝑁 − 1
(NLOP)

𝐮𝑖 ∈ 𝑈 , 𝑖 = 0, … , 𝑁 − 1 , 𝐱𝑁 = 𝐱𝑡𝑓

𝐱 0 =  𝐱0,  𝐱 𝑡𝑓 = 𝐱𝑡𝑓

Initial and final conditions



Direct methods: software packages

Some software packages:
• DIDO: http://www.elissarglobal.com/academic/products/ 

• PROPT:  http://tomopt.com/tomlab/products/propt/

• GPOPS:  http://www.gpops2.com/ 

• CasADi:  https://github.com/casadi/casadi/wiki

• ACADO: http://acado.github.io/

• Trajax: https://github.com/google/trajax 

In addition to implementing efficient trajectory optimization algorithms, many of 
these tools provide easier-to-use modeling languages for problem specification
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Illustrative example: planar quadrotor
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(energy objective)

subject to dynamics

Play with lecture_5_2.ipynb



Differential flatness

• Computing “good” feasible trajectories is often sufficient for 
trajectory generation purposes, and typically much faster than 
computing optimal ones

• A class of systems for which trajectory generation is particularly 
easy are the so-called differentially flat systems

• Reference: M. J. Van Nieuwstadt and R. M. Murray. Real‐time 
trajectory generation for differentially flat systems. 1998.
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Motivating example: simple car 

Consider the problem of finding a feasible trajectory that satisfies the 
simple car dynamics:

• State: (𝑥, 𝑦, 𝜃)

• Inputs: (𝑣, 𝜙) 
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Simple car



Structure of the dynamics for simple car steering

• Suppose we are given a (smooth) trajectory for the rear wheels of 
the system, 𝑥(𝑡) and 𝑦(𝑡)

1. we can use this solution to solve for the angle of the car by writing

2. we can solve for the velocity

3. and finally
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Structure of the dynamics for simple car steering
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• Bottom line: all of the state variables and the inputs can be 
determined by the trajectory of the rear wheels and its derivatives!

• We say that the system is differentially flat with flat output 𝐳 = (𝑥, 𝑦)

• This provides a dramatic simplification for the purposes of 
trajectory generation  



Differential flatness
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ሶ𝐱 = 𝐟(𝐱, 𝐮)

𝐳 𝑡 ∈ 𝑀

• Implication for trajectory generation: to 
every curve 𝑡 → 𝐳(𝑡) enough differentiable, 
there corresponds a trajectory

 

𝑡 →
𝐱(𝑡)
𝐮(𝑡)

=
𝛽(𝐳 𝑡 , ሶ𝐳 𝑡 , … , 𝐳 𝑞 (𝑡))

𝛾(𝐳 𝑡 , ሶ𝐳 𝑡 , … , 𝐳 𝑞 (𝑡)))

    that identically satisfies the system equations

• The simple car is differentially flat with the 
position of the rear wheels  as the flat output

From Nieuwstadt, Murray. 1998.

No dynamics!



Practical implications

This leads to a simple, yet effective strategy for trajectory generation

1. Find the initial and final conditions for the flat output: 

2. Build a smooth curve 𝑡 → 𝐳(𝑡) for 𝑡 ∈ [𝑡0, 𝑡𝑓] by interpolation, 
possibly satisfying further constraints

3. Deduce the corresponding trajectory 𝑡 → (𝐱 𝑡 , 𝐮(𝑡))
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Given Find

(𝑡0, 𝐱 𝑡0 , 𝐮(𝑡0)) (𝐳 𝑡0 , ሶ𝐳 𝑡0 , … , 𝐳 𝑞 (𝑡0))

(𝑡𝑓, 𝐱 𝑡𝑓 , 𝐮(𝑡𝑓)) (𝐳 𝑡𝑓 , ሶ𝐳 𝑡𝑓 , … , 𝐳 𝑞 (𝑡𝑓))



More on step 2
• We can parameterize the flat output trajectory using a set of smooth 

basis functions 𝜓𝑖(𝑡)

• and then solve (Problem 2(i - iv) in pset 1)
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For more details see: “Optimization-Based Control” by Richard Murray



Key points

• Nominal trajectories and inputs can be computed in a computationally-
efficient way (solving a set of algebraic equations)

• Other constraints on the system, such as input bounds, can be 
transformed into the flat output space and (typically) become limits on 
the curvature or higher order derivative properties of the curve

• If there is a performance index for the system, this index can be 
transformed and becomes a functional depending on the flat outputs and 
their derivatives up to some order

• The existence of a general, computable criterion so as to decide if the 
dynamical system ሶ𝐱 = 𝐟(𝐱, 𝐮) is differentially flat remains open 
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The planar quadrotor is differentially flat! 
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Play with lecture_5_2.ipynb



Next time
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