
Principles of Robot Autonomy I
State space dynamics – definitions and modeling



Agenda

• State space dynamics
• Definitions 

• Modeling (kinematic and dynamic models)

• Special case: LTI systems and linearization

• Readings
• Chapter 1, sections 1.1 – 1.3 in D. Gammelli, J. Lorenzetti, K. Luo, G. Zardini, 

M. Pavone. Principles of Robot Autonomy. 2026.
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State space models

• We can control a robot through the inputs to the system (e.g., motor torques, 
rotor thrusts, etc.)

• The state of a robot is a collection of variables (e.g., position, velocity) that 
change over time in response to the inputs

• A state space model
ሶ𝑥(𝑡) = 𝑓 𝑥(𝑡), 𝑢(𝑡)

is a mathematical description of how the state 𝑥 evolves over time (i.e., ሶ𝑥 or 
Τ𝑑𝑥

𝑑𝑡) in response to the inputs 𝑢
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Example: double-integrator

• Suppose we can control the force pushing on a cart

• Newton’s second law tells us that
  𝐹 = 𝑚 ሷ𝑠

• Let 𝑥 = (𝑠, 𝑣) with 𝑣 = ሶ𝑠, and 𝑢 = Τ𝐹
𝑚. Then we can write

ሶ𝑥 =
𝑣
𝑢

=
0 1
0 0

𝑥 +
0
1

𝑢

𝑓(𝑥,𝑢)

𝑠

𝑚
𝐹
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Kinematic models
• Kinematic models are mathematical models that describe the motion of a 

system without consideration of forces

• Kinematic models typically result from geometric constraints on the motion of a 
system, before considering any forces

• For example, the “unicycle” with generalized coordinates 𝑞 = (𝑥, 𝑦, 𝜃) should 
not slip sideways, i.e.,

 
ሶ𝑥
ሶ𝑦

∙
sin 𝜃

− cos 𝜃
= 0

  sin 𝜃 −cos 𝜃 0

𝐺(𝑞)

ሶ𝑞 = 0
x

y ✓

This relation induces a kinematic model, as we will see shortly
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Holonomic and nonholonomic constraints

• More broadly, constraints on degrees of freedom come in various forms:
ℎ 𝑞 = 0

holonomic

 𝑔 𝑞, ሶ𝑞 = 0

nonholonomic

 𝐺 𝑞 ሶ𝑞 = 0

semi−holonomic / Pfaffian

Pfaffian constraints are a special, yet common case of nonholonomic 
constraints

• If 𝐺 𝑞  has 𝑘 rows (constraints) and 𝑑 columns (DOFs), then

ሶ𝑞 =  ෍
𝑗=1

𝑑−𝑘

𝑢𝑗𝑏𝑗 𝑞 = 𝑏1(𝑞) 𝑏2(𝑞) ⋯ 𝑏𝑑−𝑘(𝑞) 𝑢 = 𝐵 𝑞 𝑢

where 𝑏𝑗(𝑞)
𝑗=1

𝑑−𝑘
 is a basis for admissible velocities, i.e., the null space of 𝐺(𝑞).

Kinematic model of the 
constrained system
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Back to unicycle example

• The “unicycle” with DOFs 𝑞 = (𝑥, 𝑦, 𝜃) should not slip sideways, i.e.,

 
ሶ𝑥
ሶ𝑦

∙
sin 𝜃

− cos 𝜃
= 0

  sin 𝜃 −cos 𝜃 0

𝐺(𝑞)

ሶ𝑞 = 0

ሶ𝑞 =
cos 𝜃
sin 𝜃

0
𝑢1 +

0
0
1

𝑢2 =
cos 𝜃 0
sin 𝜃 0

0 1
𝑢

• Physically, 𝑢1 = 𝑣 is the forward velocity of the wheel, and 𝑢2 = 𝜔 is its 
rotational steering velocity

x

y ✓
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Unicycle and differential drive models

unicycle differential drive

We can alternate between these kinematic 
models via the one-to-one input mappings: 
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Simple car model

References: 

• J.-P. Laumond. Robot motion planning and control. 1998. 

• S. LaValle. Planning algorithms. 2006.

Simple car model

Reeds-Shepp car

Dubins car

states: (𝑥, 𝑦, 𝜃)

inputs: (𝑣, 𝜙)
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From kinematic to dynamic models

• A kinematic state space model should be interpreted only as a subsystem of a 
more general dynamical model 

• Improvements to the previous kinematic models can be made by placing 
integrators in front of action variables

• For example, for the unicycle model, one can set the speed as the integration of 
an action 𝑎 representing acceleration, that is

states: 𝑥, 𝑦, 𝜃, 𝑣                inputs: (𝜔, 𝑎)
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Linear time-invariant models

• In general, ሶ𝑥 = 𝑓 𝑥, 𝑢  is nonlinear, which can make it difficult to analyze

• Linear time-invariant (LTI) models take the form
ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢

with constant matrices 𝐴 and 𝐵

• For ሶ𝑥 = 𝛼𝑥 with 𝑥 0 = 𝑥0, the solution is 𝑥 𝑡 = 𝑥0𝑒𝛼𝑡. If 𝛼 < 0, the system is 
stable, i.e., 𝑥(𝑡) converges to zero over time

• For ሶ𝑥 = 𝐴𝑥 with 𝑥 0 = 𝑥0, the solution is 𝑥 𝑡 = 𝑥0𝑒𝐴𝑡, where 𝑒𝐴𝑡  is the matrix 
exponential

• Analogously to the scalar case, if Real(𝜆) < 0 for each eigenvalue 𝜆 of 𝐴, then 
the system is stable
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Example: PD control for a double-integrator

• Let 𝑥 = (𝑠, 𝑣) with 𝑣 = ሶ𝑠, and 𝑢 = Τ𝐹
𝑚. Then

                  ሶ𝑥 =
𝑣
𝑢

=
0 1
0 0

𝐴

𝑥 +
ด
0
1

𝐵

𝑢

• Choose 𝑢 = −𝜅𝑝𝑠 − 𝜅𝑑𝑣. Then

ሶ𝑥 =
0 1

−𝜅𝑝 −𝜅𝑑
𝑥

with eigenvalues 𝜆 = −𝜅𝑑
2

± 1

2
𝜅𝑑

2 − 4𝜅𝑝. If 𝜅𝑝 > 0 and 𝜅𝑑 > 0, then

 Real(𝜆) < 0 for each eigenvalue , so the cart converges to a stand-still at 𝑠 = 0

• This is nice, can we use linear control tools if the system is non-linear?

𝑠

𝑚
𝐹
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Linearization

𝑓(𝑥) ≈ 𝑓 ҧ𝑥 2 + 𝜕𝑓
𝜕𝑥

ҧ𝑥 2 𝑥 − ҧ𝑥 2

𝑥(1) 𝑥(2)
𝑥

𝑓(𝑥)

𝑓(𝑥) ≈ 𝑓 ҧ𝑥 1 + 𝜕𝑓
𝜕𝑥

ҧ𝑥 1 𝑥 − ҧ𝑥 1

slope deltaoffset
𝑓(𝑥)• Linearization approximates a 

nonlinear function 𝑓 near ҧ𝑥 by a 
line, i.e., linear function

• The “slope” of the line is the 
derivative of 𝑓 at ҧ𝑥. The change in 
𝑓( ҧ𝑥) near ҧ𝑥 is the slope multiplied 
by the distance from ҧ𝑥

• The quality of the approximation 
can vary with the linearization 
point ҧ𝑥 and distance from ҧ𝑥
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Linearization of non-linear state-space models

• For the nonlinear system ሶ𝑥 = 𝑓 𝑥, 𝑢 , the linearization around  ҧ𝑥, ത𝑢  is

ሶ𝑥 ≈ 𝑓 ҧ𝑥, ത𝑢 +
𝜕𝑓

𝜕𝑥
ҧ𝑥, ത𝑢

𝐴

𝑥 − ҧ𝑥 +
𝜕𝑓

𝜕𝑢
ҧ𝑥, ത𝑢

𝐵

𝑢 − ത𝑢

Since 𝑥 and 𝑢 can be vectors, we generalize derivatives to Jacobian matrices

• If ҧ𝑥, ത𝑢  is an equilibrium, i.e., 𝑓 ҧ𝑥, ത𝑢 = 0, we can consider an LTI approximation 
of the system near ҧ𝑥, ത𝑢 , with state ∆𝑥 = 𝑥 − ҧ𝑥 and input ∆𝑢 = 𝑢 − ത𝑢:

ሶΔ𝑥 = 𝐴Δ𝑥 + 𝐵Δ𝑢

• When (𝑥, 𝑢) is near ҧ𝑥, ത𝑢 , we can use tools from linear systems analysis and 
control on nonlinear systems -- more on this later with LQR control!

AA 174A | Lecture 3 9/28/2025 14



Example: Inverted pendulum

• The dynamics are described by 𝑚ℓ2 ሷ𝜃 = 𝑚𝑔ℓ sin 𝜃 + 𝑢.
In state space form with 𝑥 = (𝜃, ሶ𝜃), they are

ሶ𝑥 = 𝑓 𝑥, 𝑢 =
𝑥2

𝑔
ℓ

sin 𝑥1 + 1
𝑚ℓ2𝑢

• Since 𝑥, 𝑢 = 0 is an equilibrium, the linearization here is 

ሶ𝑥 ≈
ሶ𝜃

𝑔
ℓ
𝜃 + 𝑢

=
0 1
ൗ

𝑔
ℓ 0 𝑥 +

0
ൗ1

𝑚ℓ2
𝑢

• This is close to a double-integrator! We could try 1

𝑚ℓ2𝑢 = −
𝑔

ℓ
+ 𝜅𝑝 𝜃 − 𝜅𝑑

ሶ𝜃 to 

stabilize the pendulum near the upright equilibrium

𝑚𝑔 𝜃

𝑢

ℓ
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• We try 1

𝑚ℓ2𝑢 = −
𝑔

ℓ
+ 𝜅𝑝 𝜃 − 𝜅𝑑

ሶ𝜃 to stabilize the 

pendulum near the upright equilibrium:

• We will later discuss how we actually simulate this 
system on a computer

Example: Inverted pendulum

𝑚𝑔 𝜃

𝑢

ℓ

AA 174A | Lecture 3 9/28/2025 16



Next time
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