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Agenda

 State space dynamics
* Definitions
* Modeling (kinematic and dynamic models)
* Special case: LTI systems and linearization

* Readings

* Chapter 1, sections 1.1 - 1.3 in D. Gammelli, J. Lorenzetti, K. Luo, G. Zardini,
M. Pavone. Principles of Robot Autonomy. 2026.
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State space models

« We can control a robot through the inputs to the system (e.g., motor torques,
rotor thrusts, etc.)

* The state of a robot is a collection of variables (e.g., position, velocity) that
change over time in response to the inputs

 Astate space model

x(t) = f(x(®),u(t))
is a mathematical description of how the state x evolves over time (i.e., x or
dx/ .)in response to the inputs u
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Example: double-integrator

* Suppose we can control the force pushing on a cart

 Newton’s second law tells us that F ﬂ
F = ms

* Letx = (s,v) withv = s,and u = /. Then we can write

=) =[y olx+[]]x

) g

f )
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Kinematic models

* Kinematic models are mathematical models that describe the motion of a
system without consideration of forces

» Kinematic models typically result from geometric constraints on the motion of a
system, before considering any forces

* For example, the “unicycle” with generalized coordinates q = (x,y, 8) should

not slip sideways, i.e.,
0 / .

(X) ( sin 0 )
y) \—cos0
[sinf —cosf 0]qg
G(q) This relation induces a kinematic model, as we will see shortly
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Holonomic and nonholonomic constraints

* More broadly, constraints on degrees of freedom come in various forms:
h(g) =0 9(¢.4) =0 G(@)q=0

holonomic nonholonomic semi-holonomic / Pfaffian

Pfaffian constraints are a special, yet common case of nonholonomic
constraints

Kinematic model of the
constrained system

d—k /
1= ub@ =@ b - bai@lu=Blou

J=1

* If G(q) has k rows (constraints) and d columns (DOFs), then

where {bj (q)}j:f Is a basis for admissible velocities, i.e., the null space of G(q).
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Back to unicycle example

* The “unicycle” with DOFs g = (x, y, 8) should not slip sideways, i.e.,

sin 6 y @v
() ( COSH) ——————————————————— o A /
[sin 6 —cos 0 0] g =

>

G(q) X
cos 6 0 cosfé O
q=|\sinf |u; +{0Ju, =|sinf8 O0|lu
0 1 0 1

 Physically, u; = vis the forward velocity of the wheel, and u, = w isits
rotational steering velocity
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Unicycle and differential drive models

T cos 6 0 T 5 (wi +wy)cos b
y|=|sinf |v+|0]|w y | = 5(wi +wy)sind
0 0 1 0 %(wr — wl)
Yn 4 YN A
unicycle differential drive
|’U| < Umax ’wl‘ < W} max
w| < Wmax ‘WT’ < Wr max
—XEN fN
: : r r
We can a!ternate between ’Fhese klnem.atlc v= (W +w) W= —(w, —w)
models via the one-to-one input mappings: 2 L
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Simple car model

Yva
X v cos 6 - .
: . states: (x, y,
y| = | vsind . t((i;))
: inputs: (v,
v + tan ¢
Xy
-
V] < Vmax, @] < Gmax < 9 — Simple car model
i
v € {—Vmax, Vmax |5 |@] < Pmax < B —— Reeds-Shepp car
iy
VU = Umax, |@] < Pmax < = ——  Dubins car

2

References:
* J.-P. Laumond. Robot motion planning and control. 1998.
« S.LaValle. Planning algorithms. 2006.
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From kinematic to dynamic models

« A kinematic state space model should be interpreted only as a subsystem of a
more general dynamical model

* Improvements to the previous kinematic models can be made by placing
integrators in front of action variables

» For example, for the unicycle model, one can set the speed as the integration of
an action a representing acceleration, that is

i =wvcosf, y=wvsinh, O=w, v=a
states: (x,y, 0, v) inputs: (w, a)
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Linear time-invariant models

In general, x = f(x,u) is nonlinear, which can make it difficult to analyze

Linear time-invariant (LTl) models take the form
x = Ax + Bu
with constant matrices A and B

* Forx = ax with x(0) = x,, the solution is x(t) = x,e®t. Ifa < 0, the system is
stable, i.e., x(t) converges to zero over time

For x = Ax with x(0) = x,, the solution is x(t) = xye4t, where et is the matrix
exponential

* Analogously to the scalar case, if Real(1) < 0 for each eigenvalue A of A4, then
the system is stable
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Example: PD control for a double-integrator

e Letx = (s,v) withv = s,andu = F/;,. Then

= ()=[_Ye+ [T

D S e
A B
P>
* Chooseu = —k,s — kav. Then S
. [0 1
X = —k, —Kq X

with eigenvalues A = —’C—zcl i%\/xdz — 4K, 1fk, > 0and k; > 0, then

Real(1) < 0 foreach eigenvalue, so the cart converges to a stand-stillats = 0

 This is nice, can we use linear control tools if the system is non-linear?
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Linearization

, . , offset slope delta
 Linearization approximates a f(x) 4 PN N

. . _ N L s B
nonlinear function f nearx by a f(x) ~ f(x(z))/+ a_;“(x(Z))(x — x2)

line, i.e., linear function a—

* The “slope” of the lineis the
derivative of f at x. The change in
f(x) near x is the slope multiplied
by the distance from x [

F00 = F(E®) + 3(0) (x - 29)
> X

f(x)

* The quality of the approximation
can vary with the linearization x@) x(2)
point X and distance from x
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Linearization of non-linear state-space models

* For the nonlinear system x = f(x,u), the linearization around (i, i) is

% ~ (%, ) +%(?z,az(x — %) +

N

5,

N

%, 1) (u — i)

A B
Since x and u can be vectors, we generalize derivatives to Jacobian matrices

 If (x,u) is anequilibrium,i.e., f(x,u) = 0, we can consider an LTI approximation
of the system near (X, ), with state Ax = x — X and input Au = u — u:

Ax = AAx + BAu

» When (x,u) is near (X, i), we can use tools from linear systems analysis and
control on nonlinear systems -- more on this later with LQR control!

9/28/2025 AA 174A | Lecture 3 14



Example: Inverted pendulum

* The dynamics are described by m#26 = mg#sin6 + u.
In state space form with x = (6, 6), they are

X2
x=f(xu) = (gsmx +—u)

32
* Since (x,u) = 0is an equilibrium, the linearization here is

1%, S
%H"‘u g/g 0 1m£2

* This is close to a double-integrator! We could try —u = — (% + ;cp) 6 — x40 to

stabilize the pendulum near the upright eqwllbrlum
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Example: Inverted pendulum

* We try #u = — (% + Kp) 6 — k46 to stabilize the

pendulum near the upright equilibrium:

Kn=1 Kg=1

30 -

M
o
1

=
o
1

0(t) [deg]

o
1

0 2 4 6 8 10
t
* We will later discuss how we actually simulate this

system on a computer
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Next time

x = sin(t)%x, x(0) = 1, At=0.5

Lt — true: x(t) =xoe((t—to)—sin(t—to)COS(t+to))/2
-—-= euler -
1001~~~ midpoint -
-== k4 '
80 A
< 60 -
X
40 A
20 A
O -
0 2 4 6 8 10
t
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