
Principles of Robot Autonomy I
Course overview, intro to robotic systems and ROS



From automation…



…to autonomy
Waymo Self-Driving Car Apollo Robot at MPI  

Boston Dynamics – Spot Mini Zipline 

Astrobee - NASA

Intuitive DaVinci Surgical Robot









































Course goals

• To learn the theoretical, algorithmic, and implementation aspects of 
main techniques for robot autonomy. Specifically, the student will

1. Gain a fundamental knowledge of the “autonomy stack”  

2. Be able to apply such knowledge in applications using ROS
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See-think-act cycle for AVs

See

Think

Act

Waymo report, 2020

Note: other 
architectures are 
possible and 
subject of active 
R&D!



Course structure
• Four main topics:

1. Robot Operating System (week 1)

2. Controls & Motion Planning (weeks 2-4) -- act

3. Perception (weeks 5-8) -- see

4. State Estimation, Localization & SLAM (weeks 8-11) -- think

• Extensive use of the Robot Operating System (ROS)

• Requirements
• CS 106A or equivalent

• CME 100 or equivalent (for calculus, linear algebra)

• CME 102 or equivalent (for differential equations)

• CME 106 or equivalent (for probability theory)

• See also the pre-knowledge quiz on the course website

https://stanfordasl.github.io/PoRA-I/aa174a_aut2324/pdfs/pre_knowledge_assessment.pdf
https://stanfordasl.github.io/PoRA-I/aa174a_aut2324/pdfs/pre_knowledge_assessment.pdf
https://stanfordasl.github.io/PoRA-I/aa174a_aut2324/pdfs/pre_knowledge_assessment.pdf


Logistics
• Lectures: 

• Tuesdays and Thursdays, 10:30am – 11:50am (CODAB60)

• Sections
• 2-hour, once-a-week on Fridays

• Hands-on exercises that complement the lecture material, build familiarity 
with ROS, and develop skills necessary for working with hardware

• Link to the section sign-up sheet 

https://forms.gle/zFc2iv9EfsN6YHrn9
https://forms.gle/zFc2iv9EfsN6YHrn9


Logistics
• Office hours: 

• Prof. Pavone: Tuesdays, 1:00 – 2:00pm (Durand 261), after class, and by 
appointment. Office hours will start during the week of Sep 29.

• Course assistants: Wednesdays, 4:30 – 6:30pm (Durand 270), and Thursdays, 
4:30 – 6:30pm (Durand 270)

 

• Course websites: 
• For course content: https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/ 

• For course announcements: https://canvas.stanford.edu/courses/214652/

• For course-related questions: 
https://edstem.org/us/courses/87236/discussion/  

• For homework submissions: https://www.gradescope.com/courses/1137718  

• To contact the AA174A staff: aa174a-aut2526-staff@lists.stanford.edu 

https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/
https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/
https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/
https://canvas.stanford.edu/courses/214652/
https://edstem.org/us/courses/87236/discussion/
https://www.gradescope.com/courses/1137718
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu


Grading

• Course grade calculation
• (20%) final project 

• (60%) homework

• (20%) sections

• (extra 5%) participation on Piazza



Team
Instructor CAs

Collaborators
• Daniel Watzenig

Labs:

Yujung Jenny KimMilan Ganai

Jacky Kwok

Marco Pavone
Associate Professor AA, 
and CS/EE (by courtesy)

Labs



Courtesy of NASA JPL











Center for Automotive 
Research at Stanford

Autonomous Vehicle Research
at NVIDIA

https://research.nvidia.com/labs/avghttps://cars.stanford.edu/

https://research.nvidia.com/labs/avg
https://cars.stanford.edu/


Schedule



Turtlebot3

Velodyne LiDAR

Crazyflie

• Imagine you have a robot with sensors, motors, and AI. 

• How do you make all the pieces talk to each other - reliably, in real 
time, and in a way others can build on? 

• That's where ROS comes in!

https://github.com/ROBOTIS-GIT/turtlebot3/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/IMRCLab/crazyswarm2


Quadrotor



Manipulation



TurtleBot



The Challenge of Building Robots

• Robots are complex systems

oHardware

▪ Sensors (IMU, velocity, LiDAR, Camera, Microphone, …)

▪ Actuators (wheels, joints, grippers, valves, ...)

▪ Structures (Links, frame, …)

oSoftware

▪ Control

▪ Trajectory planning

▪ Object detection

▪ Localization

▪ …



What would we do without ROS?

• Write custom code to connect sensors and actuators.

• Reinvent tools for visualization, debugging, and simulation.

• Struggle with versioning, testing, and sharing code.



What is ROS?

• Middleware (Not an operating system)

• ROS provides:

o Launching different components

o Communication between components → Publish/subscribe messaging system.

o Reusable components → Packages for navigation, vision, motion planning

o Tools for visualization & debugging → RViz, Gazebo, rqt.

o Community & ecosystem → Thousands of open-source packages.



Perception

Depth Sensing with Lidar

Object Detection 
with OpenCV 



Localization and Mapping



Navigation

PR2 Navigation around 
a Fake Death

Waymo 
Navigation 
on Freeway



Manipulation

Manipulation with MoveIt!



Simulation and Visualization



Multidisciplinary Collaboration

• All disciplines come together

oMechanical engineers: Design the robot body and actuators 

oElectrical engineers: Design actuators, sensors, and control 

oComputer scientists / AI researchers: Implement perception and planning

oDesign experts: Build human-robot interfaces via ROS APIs.



Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025

ROS 1

ROS 2



Key takeaways

• ROS is a framework that connects all parts of a robot.

• It saves time, encourages collaboration, and accelerates innovation.

• ROS brings robot autonomy to reality.

• The ROS ecosystem is vast and growing.

• Next lecture: How ROS actually works — topics, nodes, packages, ...



Backup



Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025
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ROS 2



Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025

ROS 1

ROS 2



Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025

ROS 1

ROS 2



Why is ROS popular in academia?

⚫ Not reinventing the wheel is generally good

⚫ Robotics is hard! It’s great to offload some of the work to smart 
people

⚫ ROS is now 12 years
old and still going
strong



Robot Operating System – Overview

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

• Asynchronous Programming Model



Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software



Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

Turtlebot3
Velodyne LiDAR

Joysticks

Crazyflie

https://github.com/ROBOTIS-GIT/turtlebot3/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/ros-drivers/joystick_drivers
https://github.com/IMRCLab/crazyswarm2


Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

Gazebo Sim SLAM Toolbox

https://github.com/gazebosim/ros_gz
git@github.com:SteveMacenski/slam_toolbox.git


Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging



Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization
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Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

• Asynchronous 
Programming Model
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Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

• Asynchronous 
Programming Model

Let’s write some code!



Are there “Alternatives” to ROS?

⚫ LCM

⚫ Drake

⚫ Player

⚫ YARP

⚫ Orocos

⚫ MRPT

⚫ And many others!



Next time: fundamentals of ROS

Robot Operating System
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