
Principles of Robot Autonomy I
Course overview, intro to robotic systems and ROS

From automation…

…to autonomy
Waymo Self-Driving Car Apollo Robot at MPI

Boston Dynamics – Spot Mini Zipline

Astrobee - NASA

Intuitive DaVinci Surgical Robot

Course goals

• To learn the theoretical, algorithmic, and implementation aspects of
main techniques for robot autonomy. Specifically, the student will

1. Gain a fundamental knowledge of the “autonomy stack”

2. Be able to apply such knowledge in applications using ROS

The see-think-act cycle

Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

See-think-act cycle for AVs

See

Think

Act

Waymo report, 2020

Note: other
architectures are
possible and
subject of active
R&D!

Course structure
• Four main topics:

1. Robot Operating System (week 1)

2. Controls & Motion Planning (weeks 2-4) -- act

3. Perception (weeks 5-8) -- see

4. State Estimation, Localization & SLAM (weeks 8-11) -- think

• Extensive use of the Robot Operating System (ROS)

• Requirements
• CS 106A or equivalent

• CME 100 or equivalent (for calculus, linear algebra)

• CME 102 or equivalent (for differential equations)

• CME 106 or equivalent (for probability theory)

• See also the pre-knowledge quiz on the course website

https://stanfordasl.github.io/PoRA-I/aa174a_aut2324/pdfs/pre_knowledge_assessment.pdf
https://stanfordasl.github.io/PoRA-I/aa174a_aut2324/pdfs/pre_knowledge_assessment.pdf
https://stanfordasl.github.io/PoRA-I/aa174a_aut2324/pdfs/pre_knowledge_assessment.pdf

Logistics
• Lectures:

• Tuesdays and Thursdays, 10:30am – 11:50am (CODAB60)

• Sections
• 2-hour, once-a-week on Fridays

• Hands-on exercises that complement the lecture material, build familiarity
with ROS, and develop skills necessary for working with hardware

• Link to the section sign-up sheet

https://forms.gle/zFc2iv9EfsN6YHrn9
https://forms.gle/zFc2iv9EfsN6YHrn9

Logistics
• Office hours:

• Prof. Pavone: Tuesdays, 1:00 – 2:00pm (Durand 261), after class, and by
appointment. Office hours will start during the week of Sep 29.

• Course assistants: Wednesdays, 4:30 – 6:30pm (Durand 270), and Thursdays,
4:30 – 6:30pm (Durand 270)

• Course websites:
• For course content: https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/

• For course announcements: https://canvas.stanford.edu/courses/214652/

• For course-related questions:
https://edstem.org/us/courses/87236/discussion/

• For homework submissions: https://www.gradescope.com/courses/1137718

• To contact the AA174A staff: aa174a-aut2526-staff@lists.stanford.edu

https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/
https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/
https://stanfordasl.github.io/PoRA-I/aa174a_aut2526/
https://canvas.stanford.edu/courses/214652/
https://edstem.org/us/courses/87236/discussion/
https://www.gradescope.com/courses/1137718
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu
mailto:aa174a-aut2526-staff@lists.stanford.edu

Grading

• Course grade calculation
• (20%) final project

• (60%) homework

• (20%) sections

• (extra 5%) participation on Piazza

Team
Instructor CAs

Collaborators
• Daniel Watzenig

Labs:

Yujung Jenny KimMilan Ganai

Jacky Kwok

Marco Pavone
Associate Professor AA,
and CS/EE (by courtesy)

Labs

Courtesy of NASA JPL

Center for Automotive
Research at Stanford

Autonomous Vehicle Research
at NVIDIA

https://research.nvidia.com/labs/avghttps://cars.stanford.edu/

https://research.nvidia.com/labs/avg
https://cars.stanford.edu/

Schedule

Turtlebot3

Velodyne LiDAR

Crazyflie

• Imagine you have a robot with sensors, motors, and AI.

• How do you make all the pieces talk to each other - reliably, in real
time, and in a way others can build on?

• That's where ROS comes in!

https://github.com/ROBOTIS-GIT/turtlebot3/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/IMRCLab/crazyswarm2

Quadrotor

Manipulation

TurtleBot

The Challenge of Building Robots

• Robots are complex systems

oHardware

▪ Sensors (IMU, velocity, LiDAR, Camera, Microphone, …)

▪ Actuators (wheels, joints, grippers, valves, ...)

▪ Structures (Links, frame, …)

oSoftware

▪ Control

▪ Trajectory planning

▪ Object detection

▪ Localization

▪ …

What would we do without ROS?

• Write custom code to connect sensors and actuators.

• Reinvent tools for visualization, debugging, and simulation.

• Struggle with versioning, testing, and sharing code.

What is ROS?

• Middleware (Not an operating system)

• ROS provides:

o Launching different components

o Communication between components → Publish/subscribe messaging system.

o Reusable components → Packages for navigation, vision, motion planning

o Tools for visualization & debugging → RViz, Gazebo, rqt.

o Community & ecosystem → Thousands of open-source packages.

Perception

Depth Sensing with Lidar

Object Detection
with OpenCV

Localization and Mapping

Navigation

PR2 Navigation around
a Fake Death

Waymo
Navigation
on Freeway

Manipulation

Manipulation with MoveIt!

Simulation and Visualization

Multidisciplinary Collaboration

• All disciplines come together

oMechanical engineers: Design the robot body and actuators

oElectrical engineers: Design actuators, sensors, and control

oComputer scientists / AI researchers: Implement perception and planning

oDesign experts: Build human-robot interfaces via ROS APIs.

Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025

ROS 1

ROS 2

Key takeaways

• ROS is a framework that connects all parts of a robot.

• It saves time, encourages collaboration, and accelerates innovation.

• ROS brings robot autonomy to reality.

• The ROS ecosystem is vast and growing.

• Next lecture: How ROS actually works — topics, nodes, packages, ...

Backup

Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025

ROS 1

ROS 2

Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025

ROS 1

ROS 2

Robot Operating System – History

2019 - 2021 2020 - 2023 2022 - 2027 2017 - Present

2014 - 2019 2016 - 2021 2018 - 2023 2020 - 2025

ROS 1

ROS 2

Why is ROS popular in academia?

⚫ Not reinventing the wheel is generally good

⚫ Robotics is hard! It’s great to offload some of the work to smart
people

⚫ ROS is now 12 years
old and still going
strong

Robot Operating System – Overview

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

• Asynchronous Programming Model

Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

Turtlebot3
Velodyne LiDAR

Joysticks

Crazyflie

https://github.com/ROBOTIS-GIT/turtlebot3/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/ros-drivers/velodyne/tree/ros2
https://github.com/ros-drivers/joystick_drivers
https://github.com/IMRCLab/crazyswarm2

Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

Gazebo Sim SLAM Toolbox

https://github.com/gazebosim/ros_gz
git@github.com:SteveMacenski/slam_toolbox.git

Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

• Asynchronous
Programming Model

Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

Robot Operating System – ROS2

• Community & Ecosystem
• Hardware Drivers

• Software

• Tooling
• Visualization

• Debugging

• Asynchronous
Programming Model

Let’s write some code!

Are there “Alternatives” to ROS?

⚫ LCM

⚫ Drake

⚫ Player

⚫ YARP

⚫ Orocos

⚫ MRPT

⚫ And many others!

Next time: fundamentals of ROS

Robot Operating System

	Introduction
	Slide 1: Principles of Robot Autonomy I
	Slide 2: From automation…
	Slide 3: …to autonomy
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Course goals
	Slide 24: The see-think-act cycle
	Slide 25: See-think-act cycle for AVs
	Slide 26: Course structure
	Slide 27: Logistics
	Slide 28: Logistics
	Slide 29: Grading
	Slide 30: Team
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Center for Automotive Research at Stanford
	Slide 37: Schedule

	Intro to ROS
	Slide 38
	Slide 39: Quadrotor
	Slide 40: Manipulation
	Slide 41: TurtleBot
	Slide 42: The Challenge of Building Robots
	Slide 43: What would we do without ROS?
	Slide 44: What is ROS?
	Slide 45: Perception
	Slide 46: Localization and Mapping
	Slide 47: Navigation
	Slide 48: Manipulation
	Slide 49: Simulation and Visualization
	Slide 50: Multidisciplinary Collaboration
	Slide 51: Robot Operating System – History
	Slide 52: Key takeaways
	Slide 53: Backup
	Slide 54: Robot Operating System – History
	Slide 55: Robot Operating System – History
	Slide 56: Robot Operating System – History
	Slide 57: Why is ROS popular in academia?
	Slide 58: Robot Operating System – Overview
	Slide 59: Robot Operating System – ROS2
	Slide 60: Robot Operating System – ROS2
	Slide 61: Robot Operating System – ROS2
	Slide 62: Robot Operating System – ROS2
	Slide 63: Robot Operating System – ROS2
	Slide 64: Robot Operating System – ROS2
	Slide 65: Robot Operating System – ROS2
	Slide 66: Are there “Alternatives” to ROS?
	Slide 67: Next time: fundamentals of ROS

