
Principles of Robot Autonomy I
Robotic sensors and introduction to computer vision



Agenda
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• Agenda
• Overview of key performance characteristics for robotic sensors

• Overview of main sensors for robot autonomy, e.g. proprioceptive / 
exteroceptive, passive / active 

• Intro to computer vision 

• Readings:

• Chapters 7 and 8.1 in PoRA lecture notes



Sensors for mobile robots
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Example: self-driving cars
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Classification of sensors

• Proprioceptive: measure values internal to the robot
• E.g.: motor speed, robot arm joint angles, and battery voltage

• Exteroceptive: acquire information from the robot’s environment
• E.g.: distance measurements and light intensity  

• Passive: measure ambient environmental energy entering the sensor
• Challenge: performance heavily depends on the environment
• E.g.: temperature probes and cameras

• Active: emit energy into the environment and measure the reaction
• Challenge: might affect the environment
• E.g.: ultrasonic sensors and laser rangefinders
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Sensor performance: design specs

• Dynamic range: ratio between the maximum and minimum input 
values (for normal sensor operation)

• Resolution: minimum difference between two values that can be 
detected by a sensor

• Linearity: whether or not the sensor’s output response depends 
linearly on the input 

• Bandwidth or frequency: speed at which a sensor provides readings 
(in Hertz) 
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Sensor performance: in situ specs
• Sensitivity: ratio of output change to input change

• Cross-sensitivity: sensitivity to quantities that are unrelated to the 
target quantity

• Error: difference between the sensor output m and the true value v
error ≔ 𝑚 − 𝑣

• Accuracy: degree of conformity between the sensor’s measurement 
and the true value

accuracy ≔ 1 − |error|/𝑣

• Precision: reproducibility of the sensor results
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Sensor errors

• Systematic errors: caused by factors that can in theory be modeled; 
they are deterministic
• E.g.: calibration errors

• Random errors: cannot be predicted with sophisticated models; 
they are stochastic
• E.g.: spurious range-finding errors

• Error analysis: performed via a probabilistic analysis
• Common assumption: symmetric, unimodal (and often Gaussian) 

distributions; convenient, but often a coarse simplification  

• Error propagation characterized by the error propagation law

10/21/2024 AA174A | Lecture 8 9



An ecosystem of sensors
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• Encoders

• Heading sensors

• Accelerometers and IMU

• Beacons

• Active ranging

• Cameras 



Encoders

• Encoder: an electro-mechanical device that 
converts motion into a sequence of digital 
pulses, which can be converted to relative or 
absolute position measurements
• proprioceptive sensor

• can be used for robot localization
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Wheel encoder
Credit: Pololu

• Fundamental principle of optical encoders: use 
a light shining onto a photodiode through slits 
in a metal or glass disc

Credit: Honest Sensor



Heading sensors

• Used to determine robot’s orientation, it can be:
1. Proprioceptive, e.g.,  gyroscope (heading sensor that preserves its 

orientation in relation to a fixed reference frame) 
2. Exteroceptive, e.g.,  compass (shows direction relative to the geographic 

cardinal directions)

• Fusing measurements with velocity information, one can obtain a 
position estimate (via integration) -> dead reckoning
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• Fundamental principle of mechanical 
gyroscopes: angular momentum associated 
with spinning wheel keeps the axis of 
rotation inertially stable

Credit: SNS



Accelerometer and IMU
• Accelerometer: device that measures all external forces acting upon it

• Mechanical accelerometer: essentially, a spring-mass-damper system
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with m mass of proof mass, c damping coefficient, 
k spring constant; in steady state

• Modern accelerometers use MEMS (cantilevered 
beam + proof mass); deflection measured via 
capacitive or piezoelectric effects 



Credit: SNS

Inertial Measurement Unit (IMU)
• Definition: device that uses gyroscopes and accelerometers to 

estimate the relative position, orientation, velocity, and 
acceleration of a moving vehicle with respect to an inertial frame 

• Drift is a fundamental problem: to cancel drift, periodic references 
to external measurements are required  
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Beacons

• Definition: signaling devices 
with precisely known positions

• Early examples: stars, 
lighthouses

• Modern examples: GPS, 
motion capture systems
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Active ranging

• Provide direct measurements of distance to objects in vicinity

• Key elements for both localization and environment reconstruction

• Main types:
1. Time-of-flight active ranging sensors (e.g., ultrasonic and laser rangefinder)

2. Geometric active ranging sensors (optical triangulation and structured light)
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Credit: 
https://electrosome.c
om/hc-sr04-
ultrasonic-sensor-pic/



Time-of-flight active ranging
• Fundamental principle: time-of-flight ranging makes use of the 

propagation of the speed of sound or of an electromagnetic wave

• Travel distance is given by 

where d is the distance traveled, c is the speed of the wave 
propagation, and t is the time of flight 

• Propagation speeds:
• Sound: 0.3 m/ms

• Light: 0.3 m/ns

• Performance depends on several factors, e.g., uncertainties in 
determining the exact time of arrival and interaction with the target
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Geometric active ranging

• Fundamental principle: use geometric properties in the 
measurements to establish distance readings

• The sensor projects a known light pattern (e.g., point, line, or 
texture); the reflection is captured by a receiver and, together with 
known geometric values, range is estimated via triangulation   

• Examples:
• Optical triangulation (1D sensor)

• Structured light (2D and 3D sensor)
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Credit: Matt Fisher



Several other sensors are available

• Classical, e.g.:
• Radar (possibly using Doppler effect to produce velocity data)

• Tactile sensors

• Emerging technologies:
• Artificial skins

• Neuromorphic cameras
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Introduction to computer vision
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• Aim
• Learn about cameras and camera models
• Learn about the outputs of perception and what they might be used for

• Readings
• Siegwart, Nourbakhsh, Scaramuzza. Introduction to Autonomous Mobile 

Robots. Section 4.2.3.
• D. A. Forsyth and J. Ponce [FP]. Computer Vision: A Modern Approach (2nd 

Edition). Prentice Hall, 2011. Chapter 1.
• R. Hartley and A. Zisserman [HZ]. Multiple View Geometry in Computer 

Vision. Academic Press, 2002. Chapter 6.1.



Vision
• Vision: ability to interpret the surrounding environment using light in 

the visible spectrum reflected by objects in the environment

• Human eye: provides enormous amount of information, ~millions of 
bits per second

• Cameras (e.g., CCD, CMOS): capture light ->  convert to digital image  
-> process to get relevant information (from geometric to semantic)
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Computer Vision Pipeline

10/21/2024 AA174A | Lecture 8 22

Scene 
Representation

Digital image 
(array of pixel values)

Car

Car

Car

Real-world scene Sensing device

Relevant information



10/21/2024 AA174A | Lecture 8 23

Scene 
Representation

Digital image 
(array of pixel values)

Information Extraction:
• Features – e.g. edges, 

corners, texture, colors, etc. 
• 3D structure

Car

Car

Car

Real-world 
scene

Relevant 
information



10/21/2024 AA174A | Lecture 8 24

Scene 
Representation

Digital image 
(array of pixel values)

Interpretation: 
• Object detection
• Object tracking
• Image registration
• Image segmentation

Car

Car

Car

Real-world 
scene

Relevant 
information



Object Detection

• Goal: Detect instances of semantic objects of a certain class
• E.g. pedestrian detection, face detection
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• Approaches:
• Traditional methods, e.g.:

• Scale-invariant feature transform (SIFT)

• Histogram of Oriented Gradients (HOG) 

• Learning-based:
• Using region proposals

• Without region proposals: You Only Look 
Once (YOLO), Single Shot Detector (SSD) 



Object Tracking

• Goal: Follow and locate a specific object across a sequence of 
images or video frames

• Applications: Autonomous driving, surveillance, augmented reality, 
medical imaging, sports analysis, etc.

• Approaches: 
• Traditional methods, e.g. mean-shift tracking or Kalman filters

• Learning-based methods, e.g. Siamese networks or recurrent neural 
networks (RNNs) 
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Image Registration

• Goal: Transform different sets of data into one coordinate system

• Examples: 
• Data from multiple photographs (e.g. with different viewpoints)

• Data from different sensors (e.g. LIDAR and RGB camera)
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Source: 
Mathworks

Example of LIDAR-
camera registration 
shown in Notebook 9!



Image Segmentation

• Semantic segmentation: 
• Label each pixel in the image with 

a category label

• Doesn’t differentiate instances, 
only cares about pixels 

• Instance segmentation: 
• Label each pixel with its object 

instance

• Identifies individual objects within 
each category
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Source:
Stanford CS 231n 
lecture slides



Information extraction and interpretation can 
also be done with LIDAR data! 
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From Scenes to Digital Images
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• Light is reflected by the object and scattered in all directions

• If we simply add a photoreceptive surface, the captured image will be 
extremely blurred

How to capture an image of the world?
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Photoreceptive surface



• Idea: add a barrier to block off most of the rays

• Pinhole camera: a camera without a lens but with a tiny aperture, a 
pinhole 

Pinhole camera
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• Very old idea (several thousands of years BC)

• First clear description from Leonardo Da Vinci (1502)

• Oldest known published drawing of a camera obscura by Gemma 
Frisius (1544)

A long history
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• Perspective projection creates inverted images

• Sometimes it is convenient to consider a virtual image associated 
with a plane lying in front of the pinhole

• Virtual image not inverted but otherwise equivalent to the actual one

Pinhole camera
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Pinhole of aperture

Focal length f

Credit: FP Chapter 1



• Since P, O, and p are collinear: 𝑂𝑝 = 𝜆𝑂𝑃 for some 𝜆 ∈ 𝑅

• Also, z=f, hence

Image center

Optical axis

Pinhole

Pinhole perspective
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Image plane

Perspective

Credit: FP Chapter 1



Issues with pinhole camera

• Larger aperture -> greater 
number of light rays that pass 
through the aperture -> blur

• Smaller aperture -> fewer 
number of light rays that pass 
through the aperture -> 
darkness (+ diffraction)

• Solution: add a lens to replace 
the aperture!
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Lenses

• Lens: an optical element that focuses light by means of refraction
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Next time: camera models & calibration
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