
Principles of Robot Autonomy I
State space dynamics – computation and simulation



Agenda

• State space dynamics
• Simulation / numerical integration

• Efficient computation (auto-differentiation) 

• Readings
• N/A
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Simulation

• Suppose we have a state space model for our robot and have fixed 𝑢 𝑡 , i.e.,
ሶ𝑥(𝑡) = 𝑓 𝑥(𝑡), 𝑢(𝑡) = 𝑓 𝑥, 𝑡

where we “embedded” 𝑢(𝑡) within 𝑓 for simplicity (and keep using “𝑓” with a 
slight abuse of notation). This is an ordinary differential equation (ODE) in 𝑥(𝑡)

• Given an initial condition 𝑥 𝑡0 = 𝑥0, solving ሶ𝑥(𝑡) = 𝑓 𝑥(𝑡), 𝑡  for a trajectory 
𝑥(𝑡) is an initial value problem (IVP)

• If 𝑓 is Lipschitz continuous in 𝑥 and continuous in 𝑡, then the trajectory 𝑥(𝑡) 
exists and is unique

• Simulation of a system simply means solving an IVP for 𝑥(𝑡)
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Numerical integration

• Simulating a system ODE is done by marching forward in time from the initial 
condition 𝑥 𝑡0 = 𝑥0

• According to the Fundamental Theorem of Calculus,

𝑥 𝑡 = 𝑥 𝑡0 + න
𝑡0

𝑡

𝑓 𝑥 𝜏 , 𝜏 𝑑𝜏 = 𝑥 𝑡0 + ෍
𝑘=0

𝑁−1

න
𝑡𝑘

𝑡𝑘+1

𝑓 𝑥 𝜏 , 𝜏 𝑑𝜏

for timestamps 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁  with 𝑡𝑁 = 𝑡. This is time discretization

• Numerical integration refers to how we compute each discrete step; for 
example, from 𝑡 to 𝑡 + ∆𝑡, we could apply the Euler step

𝑥 𝑡 + ∆𝑡 ≈ 𝑥 𝑡 + ∆𝑡 ∙ 𝑓 𝑥 𝑡 , 𝑡
which treats the dynamics as constant from 𝑡 to 𝑡 + ∆𝑡
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Numerical integration methods

• Euler (just use the slope at the beginning of the interval):
𝑥 𝑡 + ∆𝑡 ≈ 𝑥 𝑡 + ∆𝑡 ∙ 𝑓 𝑥 𝑡 , 𝑡

• Midpoint (use the slope after an Euler step to the middle of the interval):

𝑥 𝑡 + ∆𝑡 ≈ 𝑥 𝑡 + ∆𝑡 ∙ 𝑓 𝑥 𝑡 +
∆𝑡

2
𝑓 𝑥 𝑡 , 𝑡 , 𝑡 +

∆𝑡

2

• Runge-Kutta-4 (RK4) (use a weighted average of four slopes across the interval):

𝑥 𝑡 + ∆𝑡 ≈ 𝑥 𝑡 +
∆𝑡

6
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4

𝑘1 = 𝑓 𝑥 𝑡 , 𝑡  𝑘2 = 𝑓 𝑥 𝑡 + ∆𝑡
2

𝑘1, 𝑡 + ∆𝑡
2

𝑘3 = 𝑓 𝑥 𝑡 + ∆𝑡
2

𝑘2, 𝑡 + ∆𝑡
2

𝑘4 = 𝑓(𝑥 𝑡 + ∆𝑡𝑘3, 𝑡 + ∆𝑡)
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Truncation error

• Higher-order integration schemes use more function evaluations to reduce 
“local” (i.e., one-step) and “global” (i.e., accumulated) truncation error.

• Local / global truncation errors 
for each method:

oEuler:    𝒪 ∆𝑡2  / 𝒪 ∆𝑡

omidpoint:    𝒪 ∆𝑡3  / 𝒪 ∆𝑡2

oRunge-Kutta (RK4):    𝒪 ∆𝑡5  / 𝒪 ∆𝑡4
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Example: ODE integration “by hand”
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Example: ODE integration “by hand”

• Free, open-source plotting 
functionality is provided by Matplotlib

• Check out the documentation!
https://matplotlib.org
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Example: Unicycle robot simulation

• Set the control input to guide the robot towards a target point 𝑥𝑑 , 𝑦𝑑 , and 
simulate the “closed-loop” system
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Example: Unicycle robot simulation

• ODE integration is done by odeint from scipy.integrate, which uses the RK45 
scheme (i.e., Runge-Kutta with an adaptive step size)
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Example: Unicycle robot simulation
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Auto-differentiation in Python via JAX

• Previously, we discussed linearizing nonlinear systems so we could apply tools 
from linear system analysis and control

• This requires derivatives, specifically Jacobians. Auto-differentiation (AD, 
autodiff) libraries (e.g., JAX) can automatically compute derivative functions

• E.g., for 𝑓 𝑥 = 1

2
𝑥 2

2 = 1

2
σ𝑖 𝑥𝑖

2, we can use

jax.grad to return the function ∇𝑓 𝑥 = 𝑥
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• You can derive the Jacobians of

around ത𝑞, ത𝑢  to show

𝜕𝑓

𝜕𝑞
=

0 0 − ҧ𝑣 sin ҧ𝜃
0 0 ҧ𝑣 cos ҧ𝜃
0 0 0

,   
𝜕𝑓

𝜕𝑢
=

cos ҧ𝜃 0
sin ҧ𝜃 0

0 1

or use JAX to compute them automatically 
(useful for more complicated systems later)

Example: Jacobians of unicycle dynamics
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Next time
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