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Agenda

* Aim
e General SLAM problem
* EKF SLAM

e Readings
* Chapter 17 in PoRA lecture notes
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Simultaneous Localization and Mapping

The SLAM problem:
given measurements
Z1.¢ and controls uq.¢,
find the path (or pose)
of the robot and
acquire a map of the
environment
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e
Forms of SLAM

* Online SLAM problem: estimate the posterior over the momentary
pose along with the map

p($f3m|zlitﬂu1:t) or p(xtamact Zl:taulzt)

* Full SLAM problem: estimate posterior over the entire path along
with the map

p(ml:tam‘ Zl:taul:t) or p(ml:tjmact Zl:taulzt)
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Graphical models of SLAM

Online SLAM Full SLAM
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R EEEEEEEEE—————S——m—m—m———
EKF SLAM

e Historically the earliest SLAM algorithm

* Key idea: apply EKF to online SLAM using maximum likelihood data
association

* Assumptions:

1. Gaussian assumption for motion and perception noise, and Gaussian
approximation for belief (essential)

2. Feature-based maps (essential)

* Two versions of the problem
1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF SLAM with known correspondences

e Similar to EKF localization algorithm with known correspondences

* Key difference: in addition to estimate the robot pose x;, the EKF
SLAM algorithm also estimates the coordinates of all landmarks

 Define combined state vector

e PR 6 I
Yt .= = ('ra Y, U, T gy Ty, T2 25 N2y - .- NN x, ﬂrlN,y)

T \
3 + 2N vector

* Goal: calculate the online posterior

p(yt ’ R1:ts ul:t)
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Motion and sensing model

* (Following discussion is for illustration purposes; setup can be
generalized to other motion and sensing models)

* Assume motion model with state x; = (x,y, 0)

Yt — g(utvyt—l) - €, € N(OaRt)a Gy = Jg(ut,,ut—l)

where we assume that the landmarks are static, that is

1. g(us, ye—1) is a 3+2N vector, whose last 2N components are the same as
those in y;_4

2. R; has zero entries, except for the top left 3 x 3 block
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Motion and sensing model

* Assume range and bearing measurement model

i _ ( a — 22 (g — 9] . (o2 0
T (atanQ(mj,y — Y, Mjz —x) — 0 e e 0 Jgﬁ

L. "
—

:zh(yt:j)

* Usual linear approximation for sensing model (with j = c,'f)

8h (ﬁt 3 j)
DYy

h(ye,§) =~ h(f@y, 3) + Hi (ye — 1), where Hy :=
* Since h depends only on x; and m;, H! can be factored as

i pi |
H; = hi F, ;
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Motion and sensing model

* First term, a 2 x 5 matrix, is the Jacobian of h(y;,j) at ji; w.r.t. x; and m;:

Oh(ft, J) Bio—lijo  BuyHiy g FPis—Bes Byl
hi - Mty J s VALY /4t  Va,; g
(5 8($t3 ﬂlj) Hj.,y_ﬂt..y "J’f-,I_Hj,I _1 Ht-.y_#j.,y ijm—gt,l,

where @ ; 1= (ﬁjjm - ﬁt,m)g + (ﬁj,y o ﬁt,’y)Z

* Second term, a 5 x (3+2N) matrix, maps ht into H}:
(1 0.0 0--0 0 0 0---0)

010 0---0 0 0 O0---0
oo O o1 0---0 0 0 0---0
vl 0O o0 0 0---0 1 0 0---0

0o 00 0---0 0 1 0---0

N—— N——

\ 2j—2 2N—2j}
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Initialization

* Initial belief expressed as

to = (0,0,0...0)%

Initialization rO 0 0 0 0 \
aribles 0 0 0 O 0
O 0 O] O 0

- 20=10 0 0 o 0
(3+2N) x (3+2N) : : : . :
000 0 ... o0
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Initialization

* When a landmark is observed for the first time, the landmark
T
estimate (ﬁj,x, /Ij,y) is initialized with the expected position, that is

(E’Lm> - (ﬁhm) 4 (TE C?S(G—% T Et,a))
Hjy Ft y ri sin(¢p + Fiy p)
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EKF SLAM algorithm Data: (fs_1, Se1), us, 2, ¢

Result: (u, %4)
ﬁt — g(uthu’t—l);

. . . . . S 2 "
e Similar to EKF localization; main 2y =Gl Gy + Ry
. T 1 AT
differences: forjafﬁi?t = lyipl)” de
= i
* Augmented state vector if landmark j§ never seen before then
. . . . - - r! cos(o: + i
* Augmented dynamics (with trivial (%}) - (%’) & (']f ii:((((j*ﬂ’_l"”)))
. 53 . g ! S
dynamics for the landmarks) gt ’
* Initialization of unseen landmarks g ( \/(ﬁj,x iy o) + (s — T y)? );
 Augmented measurement Jacobian atan2(; , — He By — Bt,z) — P

Hf] = hzl‘ Fz j;

St = H % [H{]" + Qy;
Ki =% [H]" [Sf] 7Y
Et = + Ki(2 __2%)3
it = (I - KZHZ) 2it;
end

jby = T, and. By = Yy
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Example

12/5/2024

(b)

(€)

(d)
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EKF SLAM with unknown correspondences

* Key idea: use an incremental maximum likelihood estimator to
determine correspondences

* Similar to EKF localization with unknown correspondences, but now
we also need to create hypotheses for new landmarks

e Caveat: maximum likelihood data association often makes the
algorithm brittle, as it is not possible to revise past data associations
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Data: (,u“t—la Zt—l)a Uty Zt, i\‘rf—l

EKF SLAM with unknown - Ressit: g

Ny = Ny_q; Hypothesis
By = g(ug, phe—1); for new
CO rrespondences S, = G5 1G4 Ry: andmark
foreach z; = (rj, ¢;)" do | g
* In the measurement update (ﬁml,x) _ (ﬁt,x> N (r; cos(¢;+ﬁt,e)>.

] — . L 7 3T L
oop, we first create the bt SIn(GE + Feo)
hypothesis of a new g ( ST =T + iy — Ty )? )
andmark atan2(f; , — By g e — Baye) — Ptso

* A new landmark is created Sk = HFE,[HYT + Qs
: ‘e A my: =g —2E)F [SF]T (2 — 2F);
if the Mahalanobis distance LI +_ Mahalanobis
to all existing landmarks N = o distance
exceeds the value a j{t) = argmin,, mi;+—— Hypothesis test

Ny = max{N, j(i)};
Ki =%, [H V17 8]
(’i)).

fhy = [y +K§(z§'.—.2§ 3
Y= - KH™T,;

end

Mt = ﬁt and Et = it;
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-
Making EKF SLAM robust

* A key issue is represented by the fact that fake landmarks might be
created; furthermore, EKF can diverge if nonlinearities are large

e Several techniques exist to mitigate such issues
1. Outlier rejection schemes, for example via provisional landmark lists

2. Strategies to enhance the distinctiveness of landmarks
e Spatial arrangement
* Signatures
* Enforcing geometric constraints

* Dilemma of EKF SLAM: accurate localization typically requires dense
maps, but EKF requires sparse maps due to quadratic update
complexity
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Summary: Gaussian filtering

e Key ideas:
* Represent a belief with a Gaussian distribution
e Assume all uncertainty sources are Gaussian

* Pros:
* Runs online
* Well understood
* Works well when uncertainty is low

e Cons:

* Unimodal estimate
e States must be well approximated by a Gaussian
* Works poorly when uncertainty is high
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Final considerations

* A quite recent overview of SLAM (with strong focus on graph SLAM): c.

Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, |. Reid, and J. J. Leonard. "Past, present, and
future of simultaneous localization and mapping: Toward the robust-perception age." IEEE Transactions on
Robotics 32, no. 6 (2016): 1309-1332.

* Popular software packages
e https://www.openslam.org/: comprehensive list of open-source SLAM software
 https://github.com/pamela-project/slambench: popular benchmark framework
* Commercial SDKs: ARCore/ARKit from Google/Apple, Oculus Insight
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Thanks for a great quarter!
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