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Agenda

* Aim
* Markov localization, with an emphasis on EKF localization

* Readings
* Chapter 16 in PoRA lecture notes

11/9/21 AA 174A | Lecture 16



Mobile robot localization

* Problem: determine pose of a robot relative to a given map

* Localization can be interpreted as
the problem of establishing
correspondence between the map
coordinate system and the robot’s
local coordinate frame

* This process requires integration
of data over time

11/9/21 AA 174A | Lecture 16




Local versus global localization

* Position tracking assumes that the initial pose is known -> local
problem well-addressed via Gaussian filters

* In global localization, the initial pose is unknown -> global problem
best addressed via non-parametric, multi-hypothesis filters

* In kidnapped robot localization, initial pose is unknown and during
operation robot can be “kidnapped” and “teleported” to some other
location -> global problem best addressed via non-parametric, multi-
hypothesis filters
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Static versus dynamic environments

e Static environments are environments where the only variable
guantity is the pose of the robot

* Dynamic environments possess objects (e.g., people) other than the
robot whose locations change over time -> addressed via either state
augmentation or outlier rejection
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Passive versus active localization

* In passive localization, localization module only observes the robot;
i.e., robot’s motion is not aimed at facilitating localization

* In active localization, robot’s actions are aimed at minimizing the
localization error

* Hybrid approaches are possible
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Single-robot versus multi-robot

* In single-robot localization, a single, individual robot is involved in the
localization process

* In multi-robot localization, a team of robots is engaged with
localization, possibly cooperatively

In this class we will focus on local, static (or quasi-static), passive,
single-robot localization problems
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-
Casting the localization problem within a
Bayesian filtering framework

* State x;, control u; and measurements z; have the same meaning as
in the general filtering context

* For a differential drive robot equipped with a laser range-finder
(returning a set of range r; and bearing ¢; measurements)

() W) {0
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-
Casting the localization problem within a
Bayesian filtering framework

* Amap mis a list of objects in the environment along with their
properties
m = {mi,ma,...,my}

* Maps can be

* Location-based: index i corresponds to a specific location (hence, they are
volumetric)

* Feature-based: index i is a feature index, and m; contains, next to the
properties of a feature, the Cartesian location of that feature
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Location-based maps

Vertical cell decomposition Fixed cell decomposition (occupancy grid)
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Feature-based maps

Line-based map Topological map

(a) (b)
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-
Casting the localization problem within a
Bayesian filtering framework

* Motion model is probabilistic

p(xt |’U»tai“7t—1)

Uyt
Tt—1 '

) Key faCt: p(xt | %t xt_l) ?é p(i?t | ey Te—1, m) Consistency of state
» Useful approximation (tight at high update rates) Xy with map m

p(xt | Uz, 371;_1) p(mt | m) Uses approximation

p(xt) p(m|$tauta$t—l) ﬁp({;rn’|f"\:t)
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-
Casting the localization problem within a
Bayesian filtering framework
 Measurement model is probabilistic

p(zt | Lt, Tn’)

e Sensors usually generate more than one measurement when queried

P =t o2

* Typically, independence assumption iIs made

p(ze | @, m) = H p(=F | s, m)
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Markov localization

* Straightforward application
of Bayes filter

Data: bel(x;_1),us, z¢,m

Result: bel(x;)

* Requires a map m as input foreach z; do

e Addresses: bel(xy) = [ p(xs | ug, xp—1,m)bel(xs_1) dri_q;

* Position tracking bel(xt) = np(z¢ | e, m) bel(x+);

* Global localization
* Kidnapped robot problem

end
Return bel(x;)
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Markov localization: typical choices
for initial belief

* Initial belief, bel(x) reflects initial knowledge of robot pose
* For position tracking

1 i@y = &
* If initial pose is known, bel(xg) = { SO

0 otherwise

* If partially known, bel(zo) ~ N (Zo, Xo)

* For global localization
* If initial pose is unknown, bel(xg) = 1/|X|
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Markov localization: example
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Markov localization: example

bel(s)
S
e
4
p(z]s)
IS U UES—
fhel(s)
S
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Markov localization: example
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Instantiation of Markov localization

* To make algorithm tractable, we need to add some structure to the
representation of bel(x;); examples:
1. Gaussian representation <- focus of the rest of this lecture
2. Particle filter representation
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Extended Kalman filter (EKF) localization

* Key idea: represent belief bel(x;) by its first and second moment, i.e.,
Uy and X,

* We will develop the EKF localization algorithm under the assumptions
that:

1. A feature-based map is available, consisting of point landmarks
Location of the

— . v St . . < landmark in the global
m = {mq,ma,...}, i = (s, i) jandmark in the

2. Thereis a sensor that can measure the range r and the bearing ¢ of the
landmarks relative to the robot’s local coordinate frame

* Key concepts carry forward to other map / sensing models
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Range and bearing sensors

* Range & bearing sensors are common: features extracted from range
scans and stereo vision come with range r and bearing ¢ information

* At time t, a set of features is measured (assumed independent)
Zb'= {Ztaztu' } = {(Ttaqﬁt) (Tfaqb?)ﬂ}

* Assuming that the i-th measurement at time t corresponds to the j-th
landmark in the map, the measurement model is

gk \/(m 2 — )2+ (mjy —y)?
(aﬁi) N (atanQEﬂzj:y — y,mj,;—y T) — 6’) +N(O, Q&

=h{zi.9.m) Gaussian noise
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The issue of data association

* Data association problem: uncertainty may exists regarding the
identity of a landmark

* Formally, we define a correspondence variable between measurement
z; and landmark m; in the map as (assume N landmarks)

cec{l,...,N+1}

. Ci = 7 < N if i-th measurement at time t corresponds to j-th landmark

. ci = N + 1 if a measurement does not correspond to any landmark

* Two versions of the localization problem
1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF localization with known correspondences

* Algorithm is derived from EKF filter

* Assume motion model (in our case, differential drive robot)
Ll = Q(Utaﬂ’?t—l) + €4, K o N‘(Oa Rt)j Gy = Jg(utaﬂt—l)

* Assume range and bearing measurement model

' . Oh(py, j,m)
1 . T . trJ
2t :h(xt7.]7m)_|—5t7 575 NN(OaQt)a Ht -
a$t
. ort or} or? . Mjx— Pt . My~ ey 0
Oh(fiy; J,) _ | 3ee By O | _ [ Vs Bt iy —Tig)® (Mo —Tie,a)? (g e y)?
8$t 8@5; (‘}Qbi a(;b; mj:y_ﬁt,y . mj:-’f_ﬁt,m 1
8Et,:c aﬁt,y aﬂt.ﬁ (mj-.:c_Et.,;c)g‘i_(mj,y_ﬂt,y)g (mj‘,m_ﬂt,m)z—'—(mj‘-.y_Et.ly)Q

o2 0
o= (1)
0 o
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EKF localization with known correspondences

Data: (,u’t—la Et—l): Uty 2ty Cty TN

* Main difference with EKF filter: Result: (1, )
multiple measurements are Ay = g(ut,ut_l)T;
processed at the same time Y = GiX1Ge + Ry

. L
foreach z; = (ry, ¢3)" do
J = ci;

,,:,i:( Vi = B )P+ (M~ i)’ )

a‘taﬂ2(m3:y o lt—l’t,y’ mj,$ o ﬂt,m) o Et,g

* We exploit conditional
independence assumption

p(Zt | L, Ct, ?‘TI,) - H p(Zi | Lt cia T‘TZ)
1

St = H; % [HI" + Qu;

e Such assumption allows us to K! =%, [HIT [S]]1; \ Innovation
incrementally add the Py = i+ Ki(z — 2)); covariance
information, as if there was zero Y= — K{Hy) Ey;
motion in between end B
measurements pe = [y and 2y = 2y

Return (g4, 2¢)
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EKF localization with unknown correspondences

* Key idea: determine the identity of a landmark during localization via
maximum likelihood estimation, whereby one first determines the
most likely value of ¢, and then takes this value for granted

* Formally, the maximum likelihood estimator determines the
correspondence that maximizes the data likelihood

Ct =— arginax P(Zt |C1:tj m, z21:¢t—1, Ul:t)
Ct

* Challenge: there are exponentially many terms in the maximization
above!

* Solution: perform maximization separately for each Z,f
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Estimating the correspondence variables

 Step #1: find

p(ﬁ; | Cl:¢, My 21:¢—1, ul:t)

e Derivation (sketch)
(2L | erie, M, 21041, Ulst) = /p(zflxt,cl;t,m, 2101, U1t ) P(T4 | CLig, M, 21001, U1t ) ATy

—/p(zﬂxt,ci,m) . bel(wy) dx

~ N (h(zt,c;,m), Q) - N ~ N (@i, Xi)
o= N(h(ﬁta Cia m) il th(xt o ﬁt)ﬂ Qt)
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Estimating the correspondence variables

* Performing the algebraic calculations

P(ZE | C1:¢, My 27t —1, ul:t) ~ N(h(ﬁtﬂ Cia m)a H; it [HE]T + Qt)

* Step #2: estimate correspondence as

~7 . i
C, = arg IIlEiX p(zt |cl:t: myz1.¢4—1, u’l:t)
C

/A arg max N'(zi, h(ﬁt, Ci, m), HtitH? + Qt)

i
Cy

11/9/21 AA 174A | Lecture 16



EKF localization with unknown correspondences

Data: (pe—1,2¢-1),ut, 2¢,m
Result: (¢, 3)

* Same as before, plus the 5 = gl )8
inclusion of a maximum Tt = GiTi1Gy' + Ry;
likelihood estimator for the foreach z; = (r{, ¢;)" do

foreach landmark k in the map do

2?5 - ( \/(mkib’ - ﬁt,:z:)2 - (mk)y o lljt,y)2 )
atanQ(mk,y - ﬁt,y? Mix — ﬁt,a:) - ﬁt,@

St = Hf X [Hf]T + Q;

end _

j(i) = argmax N (2}; 2¢, S7)

Ki =5, [H O [{9]

Hy = fy + Kz(z;f— "3?(1));

2= (- KiH")%y

end

correspondence variables

Correspondence
estimation

Mt = :Ut and Et = it,
Return (g, X¢)
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Next time
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