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• Agenda
• Parametric filtering: Kalman Filter and Extended Kalman Filter

• Readings:
• Chapter 14 in PoRA lecture notes



Belief distribution: recap 

• Belief distribution: reflects internal knowledge about the state 

• A belief distribution assigns a probability to each possible 
hypothesis with regard to the true state 

• Formally, belief distributions are posterior probabilities over state 
variables conditioned on the available data 

• Similarly, the prediction distribution is defined as 

• Calculating 𝑏𝑒𝑙 𝑥𝑡  from 𝑏𝑒𝑙 (𝑥𝑡) is called correction or 
measurement update
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Bayes filter algorithm: recap

• Bayes’ filter algorithm: most general algorithm for calculating beliefs

• Key assumption: state is complete
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• Recursive algorithm
• Step 1 (prediction):              

compute 𝑏𝑒𝑙 (𝑥𝑡) 

• Step 2 (measurement update): 
compute 𝑏𝑒𝑙 𝑥𝑡

• Algorithm initialized with 𝑏𝑒𝑙 𝑥0  
(e.g., uniform or points mass) 

Update rule



Instantiating the Bayes’ filter

• Tractable implementations of Bayes’ filter exploit structure and / or 
approximations; two main classes
• Parametric filters: e.g., KF, EKF, UKF, etc. 

• Non parametric filters: e.g., histogram filter, particle filter, etc.
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Gaussian distributions
• Key idea: belief represented as multivariate normal distribution

µ
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Univariate

Multivariate
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Key properties of Gaussian random variables

• If                              ,  then 

• The sum of two independent Gaussian RVs

is Gaussian, specifically

• The product of Gaussian pdf is also Gaussian
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Kalman filter (KF)

• Assumption #1: linear dynamics

• Independent process noise 𝜖𝑡  is                    

• Assumption #1 implies that the probabilistic generative model is 
Gaussian
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Kalman filter (KF)

• Assumption #2: linear measurement model

• Independent measurement noise 𝛿𝑡  is 

• Assumption #2 implies that the measurement probability is 
Gaussian
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Kalman filter (KF)

• Assumption #3: the initial belief is Gaussian

• Key fact: These three assumptions ensure that the posterior 𝑏𝑒𝑙(𝑥𝑡) 
is Gaussian for all t, i.e., 

• Note:
• KF implements belief computation for continuous states

• Gaussians are unimodal -> commitment to single-hypothesis filtering 
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Kalman filter: algorithm
𝑏𝑒𝑙(𝑥𝑡−1)

𝑏𝑒𝑙(𝑥𝑡)

Prediction:

𝑏𝑒𝑙(𝑥𝑡)

Correction:
𝑏𝑒𝑙(𝑥𝑡)

Project state ahead

Project covariance ahead

Compute Kalman gain

Update estimate with new measurement

Update covariance

Prediction

Correction
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Kalman filter: derivation (sketch)

• Prediction

• Recalling that 

with
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Kalman filter: derivation (sketch)

• Correction

• After some algebraic manipulations

• Other derivations are possible; see, e.g., R. E. Kalman, A new approach to linear 
filtering and prediction problems. Journal of Basic Engineering, 82(1), 35-45, 1960.

with
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Revisiting linearity assumption

• KF crucially exploits the 
property that a linear 
transformation of a Gaussian 
RV results in a Gaussian RV 

• However, linearity assumptions 
are severely restrictive for 
robotics applications
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Extended Kalman filter (EKF)

• Goal: relax the linearity assumption

• The dynamics are now given by

• And the measurement model is now given by

• Key idea: shift focus from computing exact posterior to efficiently 
compute a Gaussian approximation 
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Goal of EKF
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EKF: key idea

• Key idea: linearize g and h around the most likely state and 
transform beliefs according to such linear approximations 

• For the dynamics equation 

• Accordingly 

Jacobian of g
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EKF: key idea

• For the measurement model

• Accordingly,
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EKF: algorithm

• Main differences:
1. Linear predictions are replaced 

by their nonlinear generalizations

2. EKF uses Jacobians instead of 
linear system matrices

3. Mathematical derivation of EKF 
parallels that of KF
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EKF: examples
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EKF: examples
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EKF: examples
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Next time
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