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Agenda

* Agenda
* Basic concepts about Bayesian filtering

* Readings:
* Chapter 13in PoRA lecture notes
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Map-based localization

* Key idea: robot explicitly attempts to localize by collecting sensor
data, then updating belief about its position with respect to a map

* Two main aspects:
* Map representation: how to represent the environment?

* Belief representation: how to model the belief regarding the position within
the map?
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Probabilistic map-based localization

p(x)

A

* Key idea: represent belief as a
probability distribution
1. Encodes sense of position

Wi

2. Maintains notion of robot’s p(x)

uncertainty

* Belief representation:
1. Single-hypothesis vs. multiple

".FH

hypothesis P(x)

2. Continuous vs. discretized

* Today we will overview basic Wm
concepts in Bayesian filtering
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Basic concepts in probability

» Key idea: quantities such as sensor measurements, states of a
robot, and its environment are modeled as random variables (RVs)

* Discrete RV: the space of all the values that a random variable X can
take on is discrete; characterized by probability mass function (pmf)

p(X =x) (orp(z)), > p(X=mz)=1

Random variable / \ Specific value T

* Continuous RV: the space of all the values that a random variable X
can take on is continuous; characterized by probability density

function (pdf)
b 00
Pla< X <b) = / p(x) dz, / ple)dr =1

a — 00
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.
Joint distribution, independence, and
conditioning
* Joint distribution of two random variables X and Yis denoted as

ple,y) =p(X =z and Y =y)
 If Xand Y are independent
p(z,y) = p(z)p(y)

* Suppose we know thatY = y (with p(y) > 0); conditioned on this
fact, the probability that the X’s value is x is given by
_ p(ﬂf, y) Note: if X and Y are independent

plx|y) =
£ V) p(y) p(@|y) = p(a)!

Conditional probability
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Law of total probability

* For discrete RVs:
p(z) = plz,y) = Zp y)p(y)

 For continuous RVs:
p(@) = [ o)y = [ palypw)dy

* Note: if p(y) = 0, define the product p(x | y)p(y) =0
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Bayes’ rule

 Key relation between p(x | y) and its “inverse,” p(y | x)
* For discrete RVs:

_plylz)p(z) _  ply|z)p(z)

p(y) Y. plylz)p()

_ ply|z)p(z) _ ( | ﬂs)p(ﬂ?)
p(y)  [ply|)p(a’)da’
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Bayes’ rule and probabilistic inference

* Assume x is a quantity we would like to infer from y
* Bayes rule allows us to do so through the inverse probability, which
specifies the probability of data y assuming that x was the cause

Posterior probability distribution Prior probability distribution

\ p(y|2)pla)

p(z|y) =
\D t [l p(‘y ‘ $I)p($f) dm’:\ Normalizer, does not

dependon x :=n~1!

* Notational simplification
p(z|y) =nply|z)p(z)
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More on Bayes’ rule and independence

 Extension of Bayes rule: conditioning Bayes rule on Z=z gives

p(y |z, 2)p(z|2)

p(y | 2)
 Extension of independence: conditional independence

p(z|y,2) =

p(z|z) =p(z|zy)

p(z,y|z) =p(z|2)p(y|2), equivalent to { p(y|2) =py|z )

* Note: in general

p(z,y|z) =p(z|2)ply|2) =5 p(z,y) = p(z)p(Y)

p(z,y) = p(z)p(y) =5 p(z,y|z) =p(z|2)p(y|2)
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Expectation of a RV

» Expectation for discrete RVs: E[X] =) zp(z)

* Expectation for continuous RVs: FE[X]| = /:I:p(:l:) dz
* Expectation is a linear operator: ElaX + b =a E[X|+ b

* Expectation of a vector of RVs is simply the vector of expectations

e Covariance

cov(X,Y) = E[(X — E[X))(Y — E[Y])T] = E[XYT] — E[X|E[Y]T
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Model for robot-environment interaction

* Two fundamental types of robot-environment interactions: the robot
can influence the state of its environment through control actions, and
gather information about the state through measurements

e State x;: collection at time t of all aspects of the robot and its
environment that can impact the future

* Robot pose (e.g., robot location and orientation)
* Robot velocity
* Locations and features of surrounding objects in the environment, etc.

e Useful notation:T¢q ity i = Tyy Tp4+1y Tt142y -+ 3y Ly

A state x; is called complete if no variables prior to x; can influence the
evolution of future states - Markov property
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Measurement and control data

* Measurement data z;: information about state of the environment at
time t; useful notation

ztl:tz .= zt1 y ztl—l—lﬂ zt1—{—2! ey th

* Control data u;: information about the change of state at time t; useful
notation

u’tl:tz .= u’tl 3 u’tl—{—lﬂ u’ﬁl—l—gﬂ R !utz
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State equation

* General probabilistic generative model

P(ﬂ?t | LO:t—1; <1:t—1; ul:t)

v Convention: first take control
action and then take measurement

« Key assumption: state is complete (i.e., the Markov property holds)

i (Tt | Tost—1, 21:t—1, U1:t) = P(Te | Te—1, Us)
State transition probability

* In other words, we assume conditional independence, with respect
to conditioning on x;_4
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Measurement equation and
overall stochastic model

* Assuming x; is complete

/P(Zt |930:ta Z1:t—15 ul:t) — P(Z’t | $t)

Measurement probability

* Overall dynamic Bayes Ti-1 Ty Tt+1
network model (also J ~
referred to as hidden
Markov model)
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Belief distribution

* Belief distribution: reflects internal knowledge about the state

* A belief distribution assigns a probability to each possible
hypothesis with regard to the true state

* Formally, belief distributions are posterior probabilities over state
variables conditioned on the available data
bel(xt) = p(ﬂft | Z1:ts ul:t)

 Similarly, the prediction distribution is defined as

bel(xt_):: P(Te | 2rg -y, i)
e Calculating bel(x;) from bel (x;) is called correction or
measurement update
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Bayes filter algorithm

* Bayes’ filter algorithm: most general algorithm for calculating beliefs
» Key assumption: state is complete

Update rule
* Recursive algorithm Data: bel(z;_1), us, 2 -
* Step 1 (prediction): Result: bel(x;)
compute bel (x;) foreach z; do
e Step 2 (measurement update): E(%) — fp(il?t | ug, 1) bel(xy_1) dxy_q;

compute bel(x;) bel(z:) = 1 (2t | 1) bel (z:);

* Algorithm initialized with bel(x,)  end
(e.g., uniform or points mass) Return bel(xy)
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Derivation: measurement update

bel(z:) = p(xe | 21:¢, U1:t)

_ p(Zt Lty 21:t—1, Ul:t)p(mt | Z1:t—1; ul:t)

Bayes rule
p(Zt | < K ul:t)
L. - -
1= e
— 77}’3’(2% | Et) E(xt | Z1:t—1 ul:tl Markov property
e
=bel(x¢)
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Derivation: correction update

M(xt) = p(-rt | Z1:t—1; ul:t)

/p(% | i1, Z1:0—1, U1:e) P(Te—1 | 21:6—1, V1) iy l(:f)?olability

P\ Tt | Lt—1, Ut)p(ﬁft—l | Z1:t—1; Ul:t) drs_q Markov

For general output feedback

[ »
/p(ﬂi?t | Lt—1, ut)p(.ﬁ?t_l | 21:t—1; uli?ﬁ—l) dxi— policies, u; does not provide
[ o

additional information on x;_4

P T+ | Tt—1; Ut) bﬁl(ii?t—ﬂ dri_q
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Discrete Bayes’ filter

* Discrete Bayes’ filter algorithm: applies to problems with finite state

spaces
] Data: {pk7t—1}: Uty 2t
* Belief bel(x;) Result: {pg ;}
represented as pmf foreach k do
{Pk,t} m,t — Zz P(Xt — Tk |‘Urt: Xt_1 = u”Jz')pi,t—l;
Pt = NP(2t | Xt = k) P 4
end

Return {px+}
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Next time
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