Principles of Robot Autonomy I

Deep learning for computer vision

Guest Lecture by Dr. Boris Ivanovic

Today's itinerary

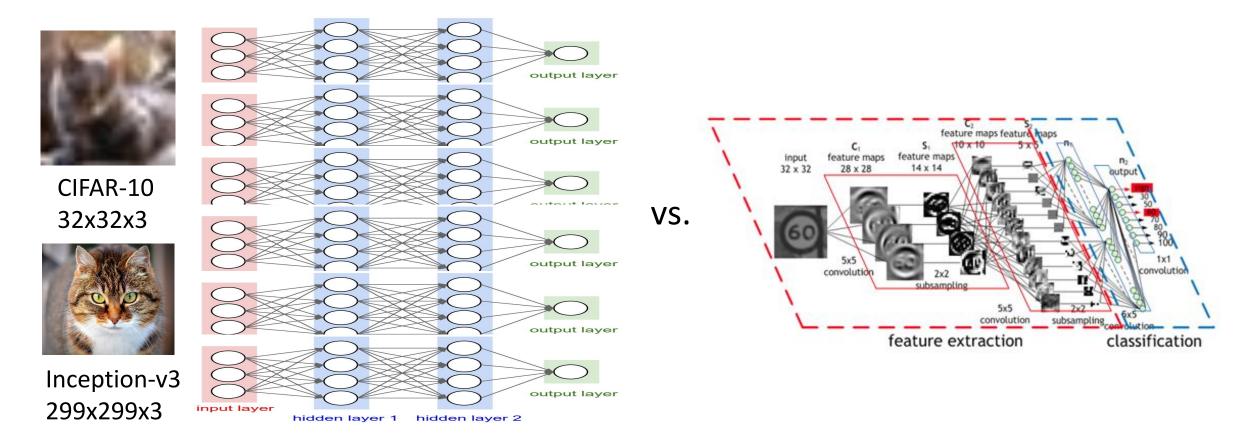
Stats/ML review

Neural network basics

Convolutional neural networks

Robotic applications

Efficient feature extraction



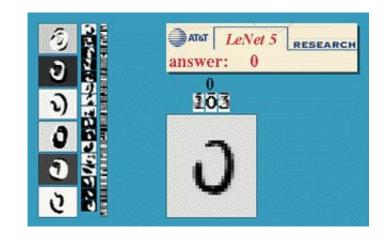
If we know the input is image data, we can assume some spatial locality

☐ weight sharing

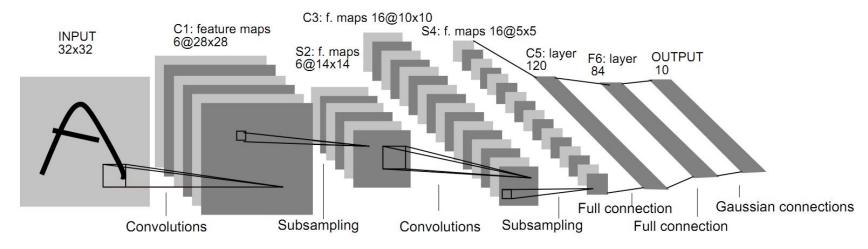
Convolutional neural networks (CNN)

Traditionally consist of 4 types of layers:

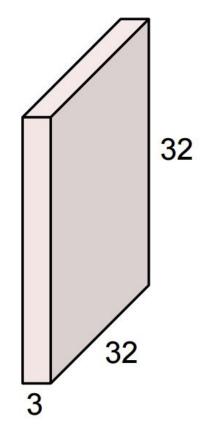
- Convolutional layers (CONV)
- Nonlinearity layers (RELU)
- Pooling layers (POOL)
- Fully-connected layers (FC)



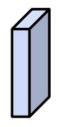
LeNet (1998)



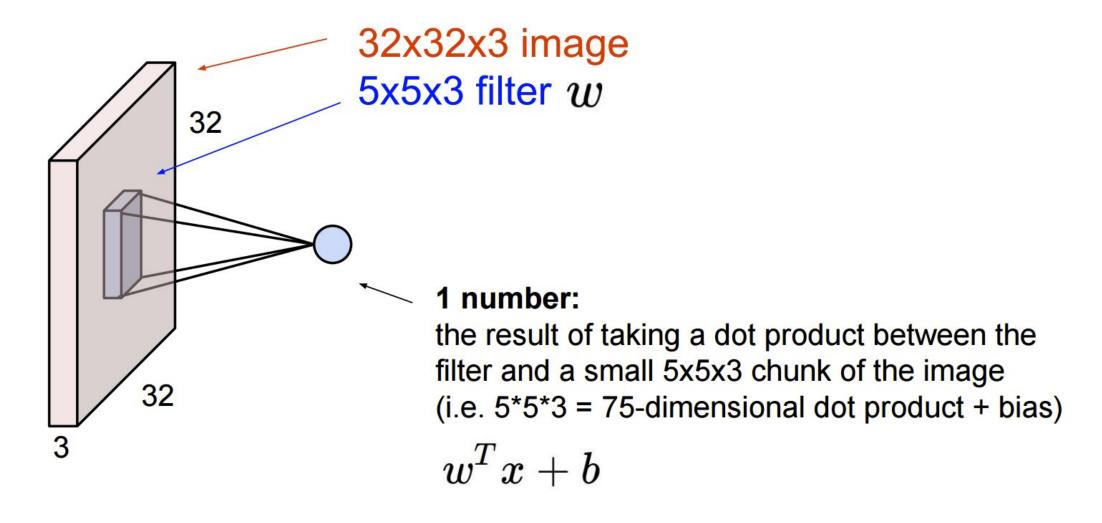
32x32x3 image

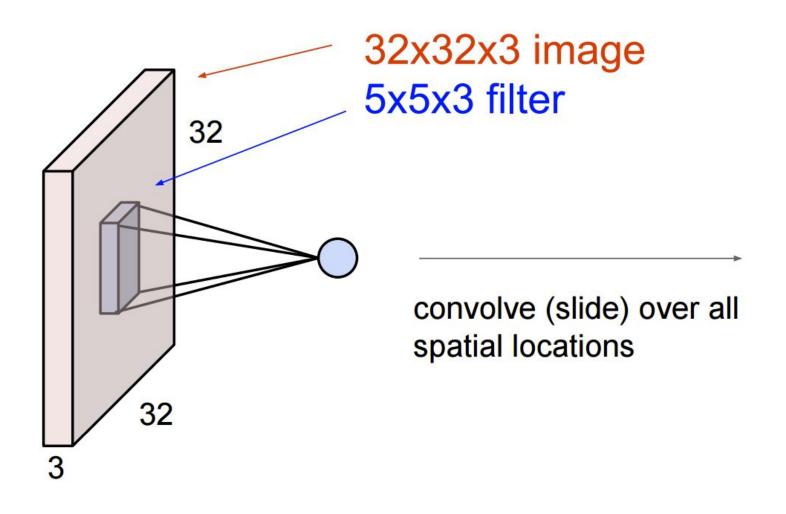


5x5x3 filter

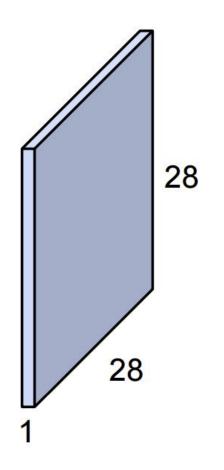


Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

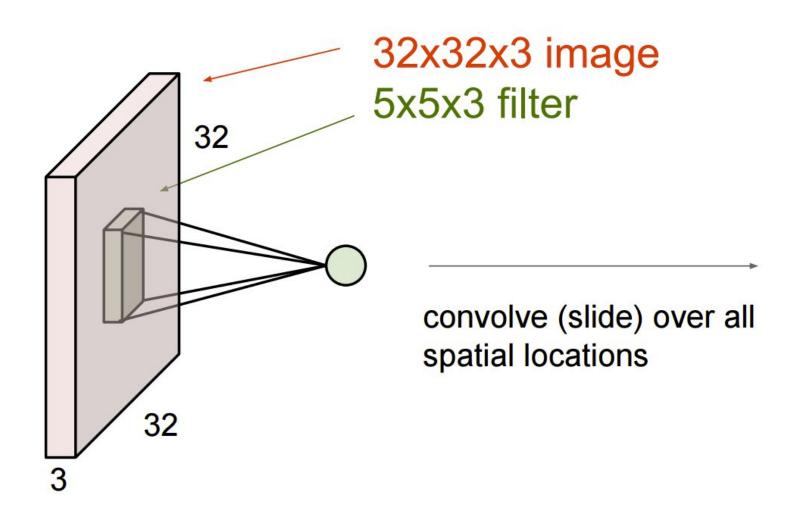




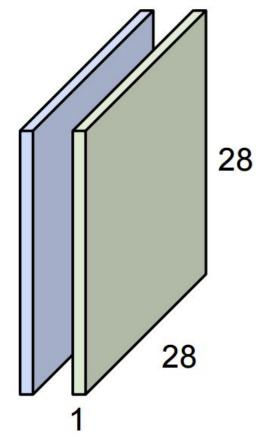
activation map



11/11/24 AA 174A | Lecture 13

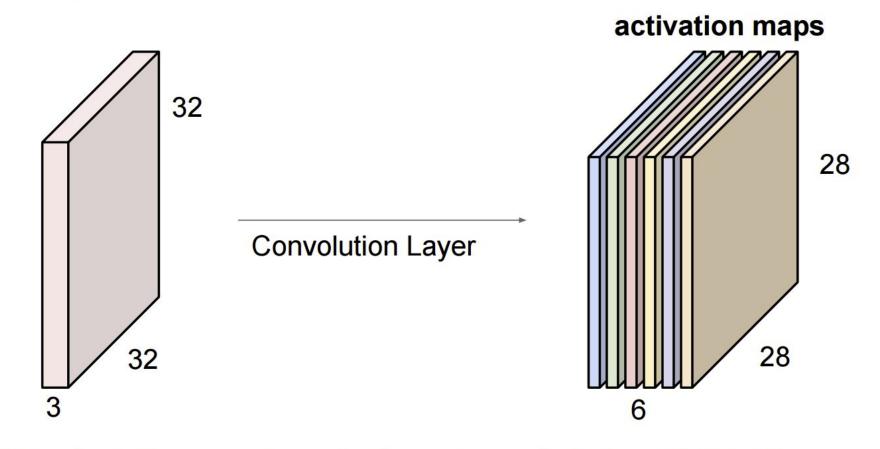


activation maps



11/11/24

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



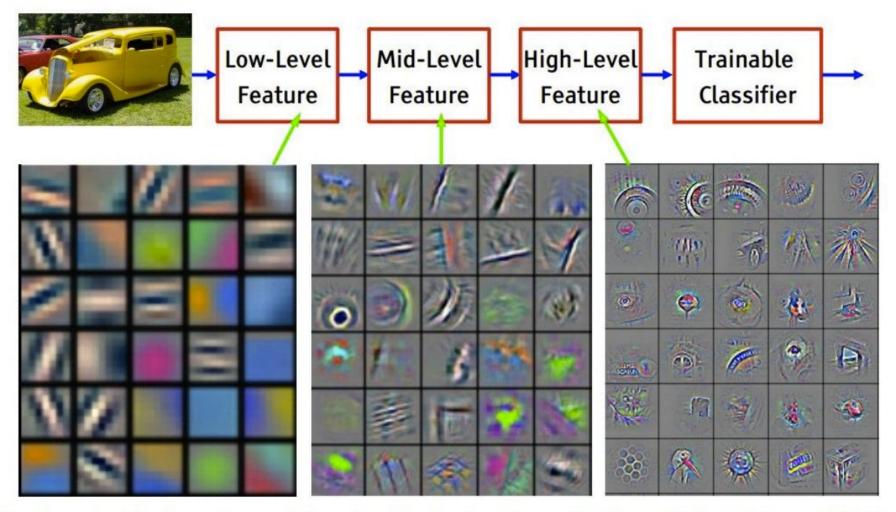
We stack these up to get a "new image" of size 28x28x6!

11/11/24

Convolution Layer Visualization

http://cs231n.github.io/convolutional-networks/

Feature hierarchy



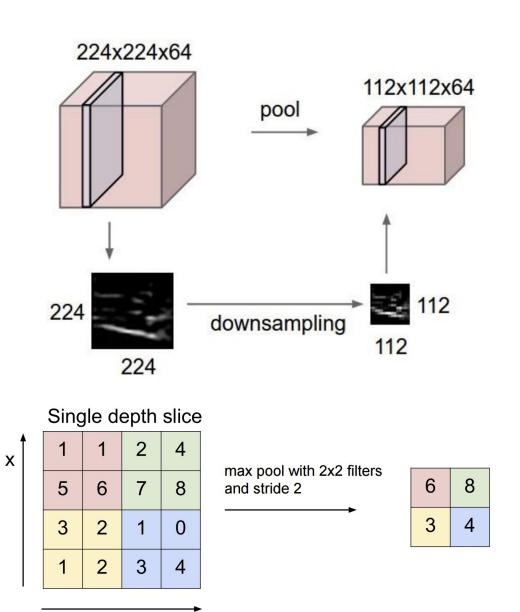
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Pooling layer

As we move higher up the feature "food chain" we can save ourselves some computational effort by lowering the resolution

Types of pooling:

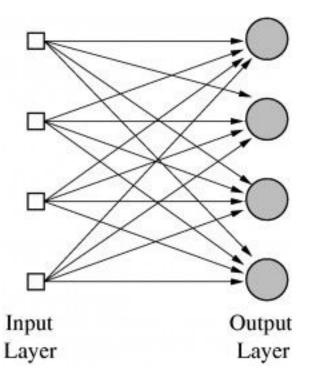
- MAX pooling
- MEAN pooling



Fully connected layer

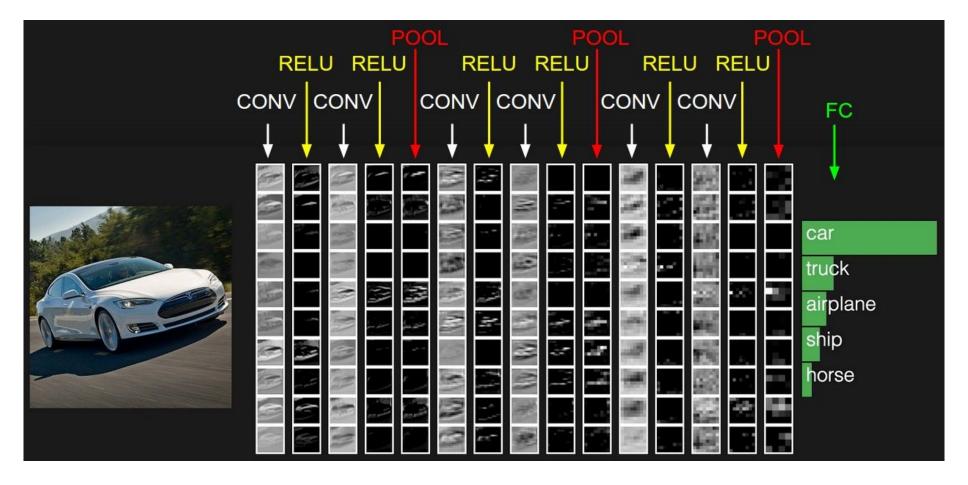
We've seen this one before!

Image "summary vector" with all of the redundant pixel info boiled out



Linear classifier (softmax)

Putting it all together – CNN



http://cs231n.stanford.edu/

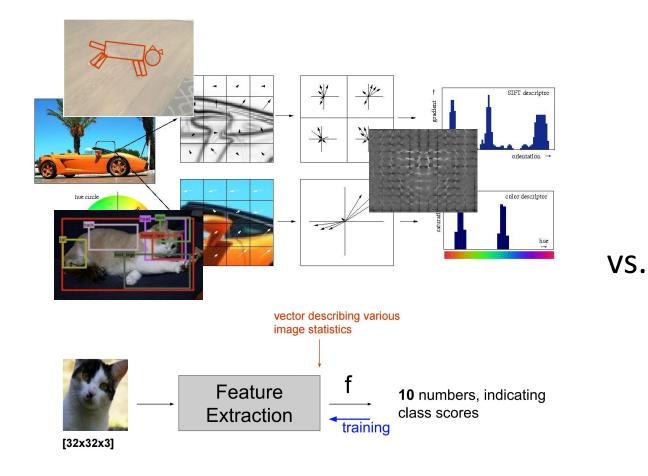
Live Demo - Inner Workings of a CNN

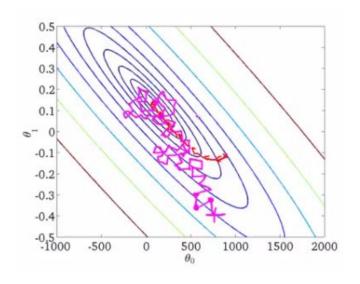
https://adamharley.com/nn_vis/cnn/3d.html

There's also a 2D version:

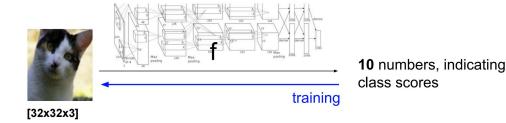
https://adamharley.com/nn_vis/cnn/2d.html

Classification showdown





$$\nabla (f \circ g)(x) = ((Dg)(x))^T (\nabla f)(g(x))$$



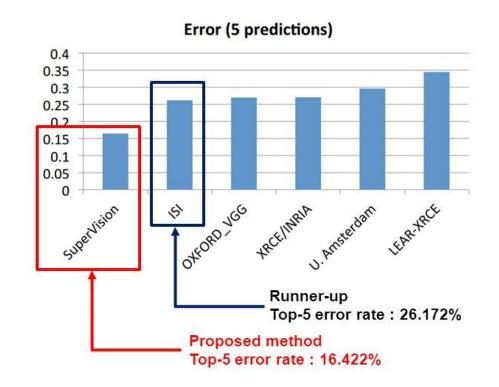
Who wins?

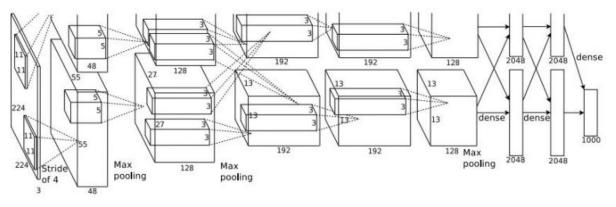
11/11/24 AA 174A | Lecture 13

End-to-end learning wins!

Results

ILSVRC-2012 results

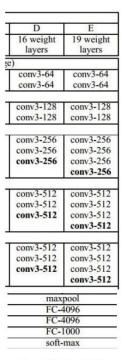




AlexNet (2012)

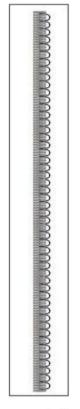
Disclaimer: hand-crafted features may still be the right choice for your niche application

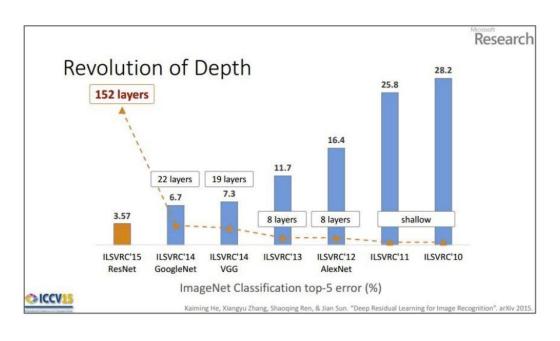
Modern architectures (deeper and deeper)



VGG (2014)

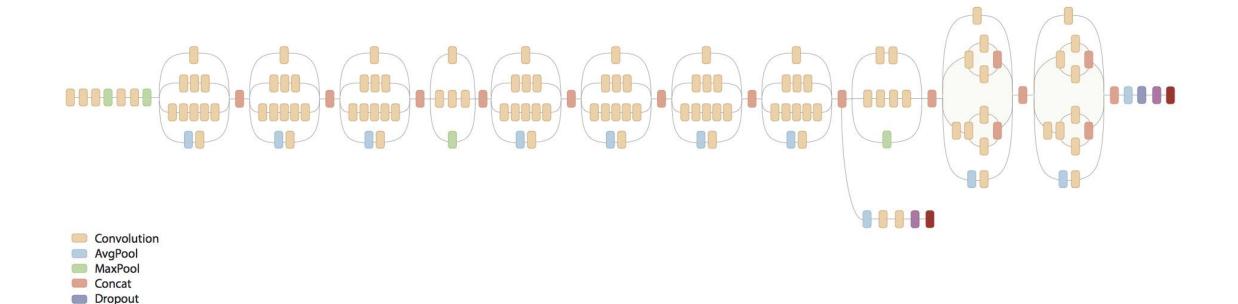
GoogLeNet (2014)





ResNet (2015)

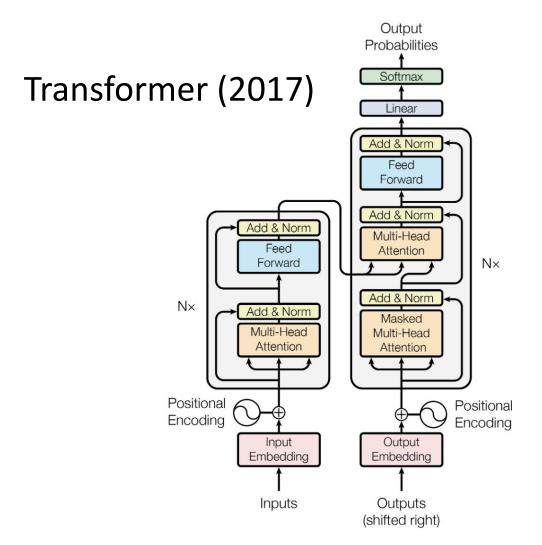
Modern architectures (deeper and deeper)



Inception-v3 (2016)

Fully connectedSoftmax

Even more modern architectures



Vision Transformer (2020)

Transformers | Davide Coccomini | 2021

Today's itinerary

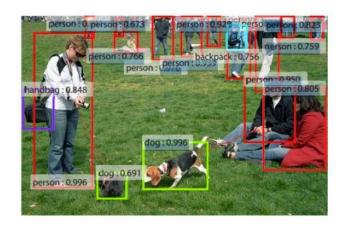
•Stats/ML review

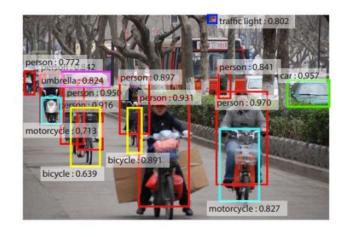
Neural network basics

Convolutional neural networks

Robotic applications

Object localization and detection

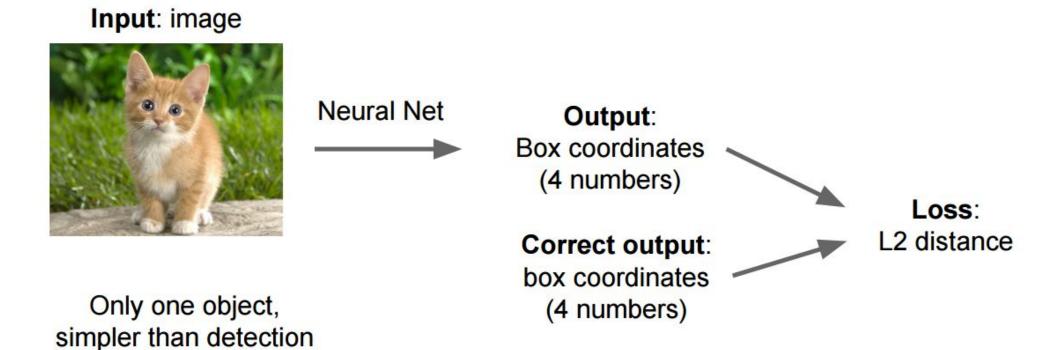




Results from Faster R-CNN, Ren et al 2015

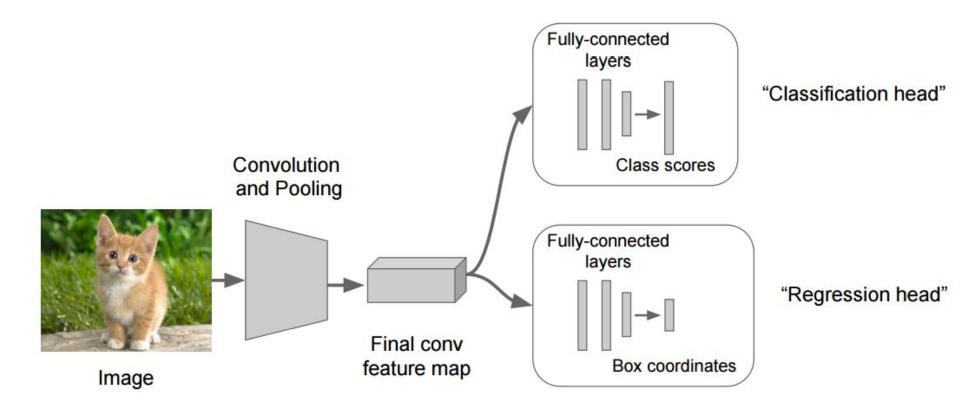
Object localization

Instead of outputting only a class (with associated loss function), also regress on 4 numbers defining the edges of a bounding box

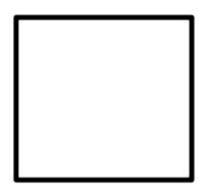


Localization and detection

Instead of outputting only a class (with associated loss function), also regress on 4 numbers defining the edges of a bounding box



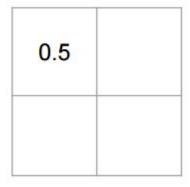
Sliding window: using a classifier as the basis for a detector



Network input: 3 x 221 x 221

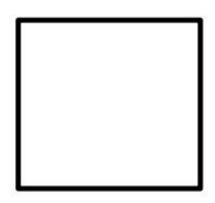


Larger image: 3 x 257 x 257

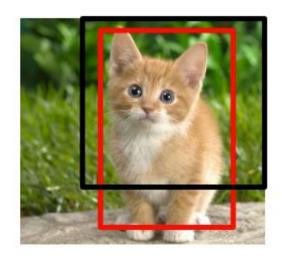


Classification scores: P(cat)

Sliding window: using a classifier as the basis for a detector



Network input: 3 x 221 x 221

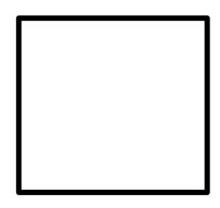


Larger image: 3 x 257 x 257

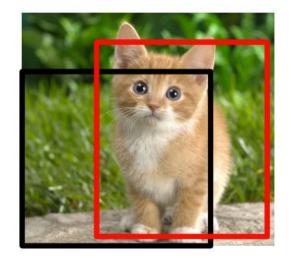
0.5	0.75		

Classification scores: P(cat)

Sliding window: using a classifier as the basis for a detector



Network input: 3 x 221 x 221

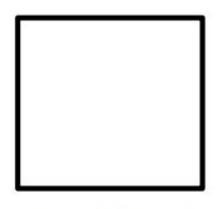


Larger image: 3 x 257 x 257

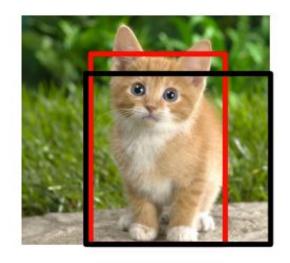
0.5	0.75
0.6	

Classification scores: P(cat)

Sliding window: using a classifier as the basis for a detector



Network input: 3 x 221 x 221

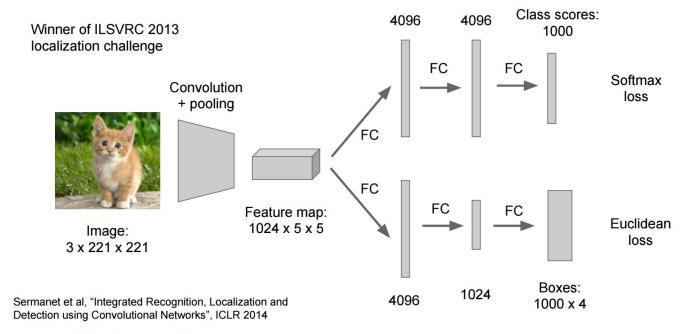


Larger image: 3 x 257 x 257

0.5	0.75
0.6	0.8

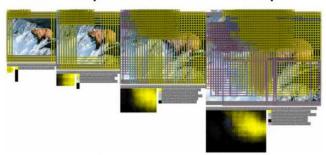
Classification scores: P(cat)

Object detection – sliding window



Overfeat (Sermanet et al. 2014)

Window positions + score maps



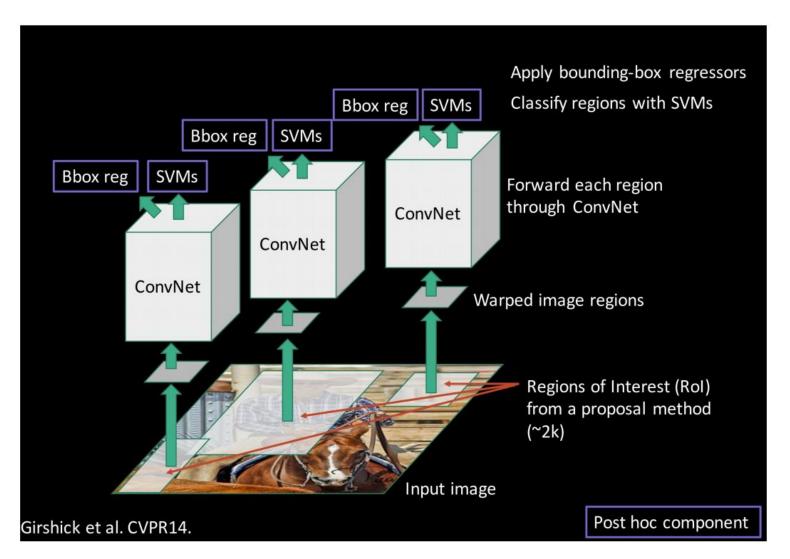
Box regression outputs

Final Predictions

Object detection – more efficient approaches

"Proposal" method to identify "blobby" regions of interest (could be another NN)

Two-headed classifer/bounding box regressor



Object detection – more efficient approaches

YOLO: You Only Look Once Detection as Regression

Divide image into S x S grid

Within each grid cell predict:

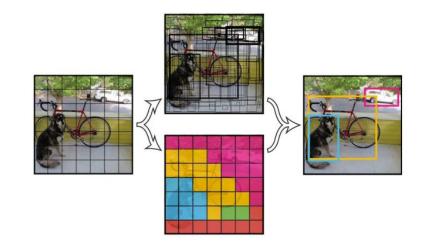
B Boxes: 4 coordinates + confidence

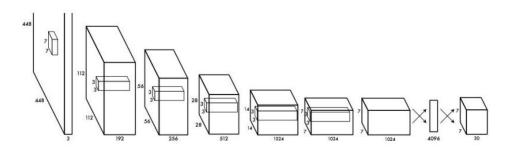
Class scores: C numbers

Regression from image to $7 \times 7 \times (5 * B + C)$ tensor

Direct prediction using a CNN

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", arXiv 2015





Robotics – need for speed!

Model Checkpoint	Million MACs	Million Parameters	Top-1 Accuracy	Top-5 Accuracy
MobileNet_v1_1.0_224	569	4.24	70.7	89.5
MobileNet_v1_1.0_192	418	4.24	69.3	88.9
MobileNet_v1_1.0_160	291	4.24	67.2	87.5
MobileNet_v1_1.0_128	186	4.24	64.1	85.3
MobileNet_v1_0.75_224	317	2.59	68.4	88.2
MobileNet_v1_0.75_192	233	2.59	67.4	87.3
MobileNet_v1_0.75_160	162	2.59	65.2	86.1
MobileNet_v1_0.75_128	104	2.59	61.8	83.6
MobileNet_v1_0.50_224	150	1.34	64.0	85.4
MobileNet_v1_0.50_192	110	1.34	62.1	84.0
MobileNet_v1_0.50_160	77	1.34	59.9	82.5
MobileNet_v1_0.50_128	49	1.34	56.2	79.6
MobileNet_v1_0.25_224	41	0.47	50.6	75.0
MobileNet_v1_0.25_192	34	0.47	49.0	73.6
MobileNet_v1_0.25_160	21	0.47	46.0	70.7
MobileNet_v1_0.25_128	14	0.47	41.3	66.2

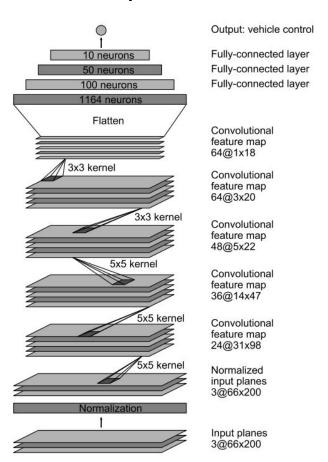
Inception-ResNet-v2

Model	Train	Test	mAP	FLOPS	FPS
Old YOLO	VOC 2007+2012	2007	63.4	40.19 Bn	45
SSD300	VOC 2007+2012	2007	74.3		46
SSD500	VOC 2007+2012	2007	76.8		19
YOLOv2	VOC 2007+2012	2007	76.8	34.90 Bn	67
YOLOv2 544x544	VOC 2007+2012	2007	78.6	59.68 Bn	40
Tiny YOLO	VOC 2007+2012	2007	57.1	6.97 Bn	207

Tiny YOLO (2017)

End-to-end: from pixels to motor commands

DAVE-2 (NVIDIA 2016)



Somewhat less scary:

https://www.youtube.com/watch?v=HJ58dbd5g8g

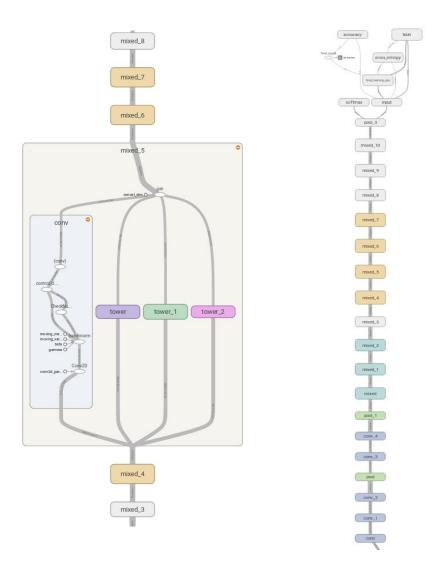
11/11/24 AA 174A | Lecture 13

End-to-end: from sensors+language to action

SayCan (Google 2022)

Tools of the trade

- Software packages for automatic differentiation/gradient computation
 - Caffe (old)
 - Torch (old)
 - Theano (old)
 - TensorFlow (Google, Heavyweight #1)
 - PyTorch (Facebook, Heavyweight #2)
 - MXNet/Chainer/... (Others, better at some things for specific applications)
- Specify an abstract computation graph (inputs and outputs of NN equations); software does the rest!



TensorFlow: a *lot* of chain rule in this picture

Lots of stuff left out

- Generative vs. discriminative models
- Train/validation/test sets
- Learning rate and other hyperparameter tuning
- Recurrent neural networks for sequential data (e.g., videos)
- Reinforcement learning and ML outside of purely visual recognition-focused tasks

Consider STATS216, CS229, CS231n, CS224n, CS331b to learn more!

Next time

