
Principles of Robot Autonomy I
Image processing, feature detection, and feature description



From 3D world to 2D images

10/31/23 AA 174A | Lecture 11

• So far we have focused on mapping 3D objects onto 2D images and 
on leveraging such mapping for calibration / scene reconstruction

• Next step: how to represent images and infer visual content?



Agenda
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• Agenda
• Fundamental tools in image processing for filtering and detecting similarities

• Basic methods to detect and describe key features in images

• Readings:

• Chapters 10 and 11 in PoRA lecture notes



How to represent images?
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Image processing pipeline
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1. Signal treatment / filtering

2. Feature detection (e.g., DoG)

3. Feature description (e.g., SIFT)

4. Higher-level processing



Image filtering
• Filtering: process of accepting  / rejecting certain frequency 

components

• Starting point is to view images as functions 𝐼: 𝑎, 𝑏 × 𝑐, 𝑑 → [0, 𝐿], 
where 𝐼(𝑥, 𝑦) represents intensity at position (𝑥, 𝑦)

• A color image would give rise to a vector function with 3 components
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Represented as a matrix
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Spatial filters
• A spatial filter consists of

1. A neighborhood 𝑆𝑥𝑦 of pixels around the point (𝑥, 𝑦) under examination

2. A predefined operation F that is performed on the image pixels within 𝑆𝑥𝑦

10/31/23 AA 174A | Lecture 11



Linear spatial filters

• Filters can be linear or non-linear

• We will focus on linear spatial filters

• Filter F (of size (2𝑁 + 1) × (2𝑀 + 1)) is usually called a mask, kernel, 
or window

• Dealing with boundaries: e.g., pad, crop, extend, or wrap
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Filtered image Original imageFilter mask



Filter example #1: moving average

• The moving average filter returns the average of the pixels in the mask

• Achieves a smoothing effect (removes sharp features)

• E.g., for a normalized 3 × 3 mask
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Generated with a 5x5 mask



Filter example #2: Gaussian smoothing 

• Gaussian function

• To obtain the mask, sample the function about its center

• E.g., for a normalized 3 × 3 mask with 𝜎 = 0.85 
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Convolution
• Still a linear filter, defined as

• Same as correlation, but with negative signs for the filter indices

• Correlation and convolution are identical when the filter is symmetric 

• Convolution enjoys the associativity property

• Example: smooth image & take derivative = convolve derivative filter 
with Gaussian filter & convolve the resulting filter with the image 
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Differentiation

• Derivative of discrete function (centered difference)

• Derivative as a convolution operation; e.g., Sobel masks:
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Note: masks are mirrored 
In convolution

Along x direction Along y direction



Similarity measures

• Filtering can also be used to determine similarity across images (e.g., 
to detect correspondences)
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Sum of absolute differences

Sum of squared differences



Detectors

• Goal: detect local features, i.e., image patterns that differ from 
immediate neighborhood in terms of intensity, color, or texture

• We will focus on
• Edge detectors

• Corner detectors
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Use of detectors/descriptors: examples
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Estimating homographic transformations

Panorama stitching Object detection

Stereo reconstruction



Edge detectors 

• Edge: region in an image where there is a significant change in 
intensity values along one direction, and negligible change along the 
orthogonal direction
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In 1D In 2D

Magnitude of 1st order derivative is large,
2nd order derivative is equal to zero



Criteria for “good” edge detection

• Accuracy: minimize false positives and negatives

• Localization: edges must be detected as close as possible to the true 
edges

• Single response: detect one edge per real edge in the image
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Strategy to design an edge detector

• Two steps:
1. Smoothing: smooth the image to reduce noise prior to differentiation (step 2)

2. Differentiation: take derivatives along x and y directions to find locations with 
high gradients
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1D case: differentiation without smoothing
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1D case: differentiation with smoothing
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Edges occur at 
maxima or 
minima of 𝑠′(𝑥) 



A better implementation
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• Convolution theorem:



Edge detection in 2D 

1. Find the gradient of smoothed image in both directions

2. Compute the magnitude                                     and discard pixels 
below a certain threshold
1. Non-maximum suppression: identify local maxima of  
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Derivative of Gaussian filter
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Canny edge detector
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Suppression



Corner detectors

Key criteria for “good” corner detectors

1. Repeatability: same feature can be found in multiple images despite 
geometric and photometric transformations

2. Distinctiveness: information carried by the patch surrounding the 
feature should be as distinctive as possible
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Repeatability
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Without repeatability, matching is impossible



Distinctiveness
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Without distinctiveness, it is not possible to establish reliable 
correspondences; distinctiveness is key for having a useful descriptor 



Finding corners

• Corner: intersection of two or more edges

• Geometric intuition for corner detection: explore how intensity 
changes as we shift a window
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Flat: no changes in 
any direction

Edge: no change along
the edge direction

Corner: changes in 
all directions



Harris detector: example
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Properties of Harris detectors

• Widely used

• Detection is invariant to
• Rotation -> geometric invariance

• Linear intensity changes  -> photometric invariance

• Detection is not invariant to
• Scale changes

• Geometric affine changes 
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Corner

All points classified as edges!



Properties of Harris detectors

• Widely used

• Detection is invariant to
• Rotation -> geometric invariance

• Linear intensity changes  -> photometric invariance

• Detection is not invariant to
• Scale changes

• Geometric affine changes 
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Corner

All points classified as edges!
Scale-invariant detection, such as
1. Harris-Laplacian 
2. in SIFT (specifically, Difference of Gaussians (DoG))



Descriptors
• Goal: describe keypoints so that we can compare them across images or 

use them for object detection or matching
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• Desired properties:
• Invariance with respect to pose, scale, illumination, etc.

• Distinctiveness 



Simplest descriptor 

• Naïve descriptor: associate with a given keypoint an 𝑛 × 𝑚 window of 
pixel intensities centered at that keypoint 

• Window can be normalized to make it invariant to illumination 
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Main drawbacks
1. Sensitive to pose
2. Sensitive to scale
3. Poorly distinctive



Popular detectors / descriptors

• SIFT (Scale-Invariant Feature Transformation)
• Invariant to rotation and scale, but computationally demanding

• SIFT descriptor is a 128-dimensional vector!

• SURF

• FAST

• BRIEF

• ORB

• BRISK

• LIFT
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A different paradigm:
using CNNs to detect and describe features
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Next time
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