
AA 174A: Principles of Robot Autonomy I
Problem Set 1

Due Friday, October 11 (11:59pm PT)

Several different software tools will be utilized throughout the course. To complete this assignment, make
sure you have the following tools installed on your computer:

1. Git: a version control system for software development, an essential tool for software collaboration.

2. Python version 3.5+

3. Jupyter Notebook: A web application for interactive code development and prototyping.

• An easy way to install this: use VSCode and get the Jupyter notebook extension.

Starter code for this homework has been made available online through GitHub. To get started, download
the code by running git clone https://github.com/StanfordASL/AA174a-HW1.git in a terminal window.

You will submit your homework to Gradescope. Your submission will consist of a single pdf with your
answers for written questions and relevant plots from code.

Your submission must be typeset in LATEX.

The goal of this homework is to familiarize you with some Python fundamentals that will be used throughout
the quarter, as well as techniques for controlling nonholonomic wheeled robots.

Note that this homework represents the start of an incremental journey to build our robot autonomy stack.
There is a mix of code that is to be implemented in Python and Jupyter Notebooks, and some ROS2
integrated code that will need to run with Gazebo.

Nonholonomic Wheeled Robot

Throughout this homework, we will consider a robot that operates with the simplest nonholonomic wheeled
robot model, the unicycle, shown below in Figure 1.

The kinematic model we will use reflects the rolling without side-slip constraint, and is given below in Eq. (1).

ẋ(t) = v(t) cos(θ(t)),
ẏ(t) = v(t) sin(θ(t)),
θ̇(t) = ω(t).

(1)

In this model, the robot state is x = [x, y, θ]T , where [x, y]T is the Cartesian location of the robot center and
θ is its heading with respect to the x-axis. The robot control inputs are u = [v, ω]T , where v is the velocity
along the main axis of the robot and ω is the angular velocity, subject to the control constraints:

|v(t)| ≤ 0.75 m/s, and |ω(t)| ≤ 1.0 rad/s.
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Figure 1: Unicycle robot model

Problem 1: Numpy and Class Inheritance

In this problem, we will demonstrate the use of class inheritance in Python classes and using Numpy for
vectorized operations. The notebook associated with this homework problem is P1_dynamics.ipynb.

We will be using the Dynamics base class for two different dynamics models. The base class contains
two unimplemented functions: feed_forward and rollout. The feed_forward function will propagate the
dynamics a single time step with disturbances, and the rollout function will apply the feed_forward function
multiple times to retrieve a trajectory of states over multiple time steps. Because the feed-forward dynamics
are subject to disturbances, the same control sequence will result in different trajectories. We will observe
this by executing multiple rollouts of the dynamics using the same control sequence from the same initial
state.

The first model we consider is the kinematics model in Eq. (1). In the second, we will use a double integrator
dynamics model. The equations for the double integrator model are as follows in Eq. (2):

ẋ(t) = vx(t),
ẏ(t) = vy(t),
v̇x(t) = ax(t),
v̇y(t) = ay(t).

(2)

In this model, the robot state is x = [x, y, vx, vy]T and the robot control inputs are u = [ax, ay]T .

(i) Fill in the TurtleBotDynamics class, in function feed_forward using discrete-time Euler integration,
with the kinematic equations described in Eq. (1). Then in the same class, fill in function rollout with
two for-loops, calling the feed_forward function. Run the cells that rollout the Turtlebot dynamics
and plot the control and state trajectories (this code has been written for you). Include the resulting
plots in your write-up submission.

(ii) Notice that in the previous problem, we used a for-loop to rollout several trajectories of the
Turtlebot dynamics. In this problem, we will use the same base dynamics class for a DoubleIntegratorDynamics
class, and use vectorization to reduce the number of for-loops needed to perform multiple rollouts. To
do this, we will vectorize the feed-forward dynamics equations applied in the function feed_forward.
Write down the discrete time vectorized equations for a single dynamics step for multiple
rollouts in your writeup and fill in the function feed_forward in the DoubleIntegratorDynamics class.
In your writeup, use notation Xt to denote the stacked state vectors from each rollout at timestep t,
Ā as the constructed matrix in the notebook code A_stack, and B̄ as the constructed matrix in the
notebook code B_stack.
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(iii) Fill in the code in function rollout in the DoubleIntegratorDynamics class using the feed_forward
function you just wrote. Note that you should only need one for-loop! Include the resulting plots in
your writeup.

Controlling Nonholonomic Wheeled Robots

In Problem 2, we start by exploring how we might generate dynamically feasible trajectories and their
associated open-loop control sequences.

Problem 2: Trajectory Generation via Differential Flatness

Consider the dynamically extended form of the robot kinematic model:

ẋ(t) = v(t) cos(θ(t)),
ẏ(t) = v(t) sin(θ(t)),
v̇(t) = a(t),
θ̇(t) = ω(t),

(3)

where the two inputs are now (a(t), ω(t)).

Differentiating the velocities (ẋ(t), ẏ(t)) once more yields[
ẍ(t)
ÿ(t)

]
=

[
cos(θ) −v(t) sin(θ)
sin(θ) v(t) cos(θ)

]
︸ ︷︷ ︸

:=J

[
a
ω

]
:=

[
u1
u2

]
. (4)

Note that det(J) = v. Thus for v > 0, the matrix J is invertible.

Roughly speaking, we say a system is differentially flat if we can find a set of outputs (flat outputs), equal
in number to the number of inputs, such that all states and inputs can be determined from the flat outputs
without integration [1].

For the unicycle robot, the flat outputs are given by (x, y). Thus, if we design a trajectory (x(t), y(t)), we
can determine all the states and inputs that correspond to it. Specifically, we can get (ẍ(t), ÿ(t)) and invert
equation (4) above to obtain the corresponding control input histories a(t) and ω(t). In this case, we will
call (ẍ(t), ÿ(t)) the virtual control inputs, (u1, u2).

In this problem, we will design the trajectory (x(t), y(t)) using a polynomial basis expansion of the form

x(t) =
n∑

i=1
xiψi(t), y(t) =

n∑
i=1

yiψi(t),

where ψi for i = 1, . . . , n are the basis functions, and xi, yi are the coefficients to be designed. (Note that
basis expansion is just one possible way to design trajectories.)

(i) Take the basis functions ψ1(t) = 1, ψ2(t) = t, ψ3(t) = t2, and ψ4(t) = t3. Write a set of linear
equations in the coefficients xi, yi for i = 1, . . . , 4 to express the following initial and final conditions:

x(0) = 0, y(0) = 0, v(0) = 0.5, θ(0) = −π/2,
x(tf ) = 5, y(tf ) = 5, v(tf ) = 0.5, θ(tf ) = −π/2.

Solve for the coefficients xi, yi, i = 1, . . . , 4 when tf = 25.
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(ii) When finding a(t) and ω(t), why can we not set v(tf ) = 0?

(iii) Implement the following functions in P2_differential_flatness.py to compute the state-trajectory
(x(t), y(t), θ(t)), and control history (v(t), ω(t)):

• compute_traj_coeffs to compute the coefficients xi, yi, for i = 1, . . . , 4.
• compute_traj to use the coefficients to compute the state trajectory [x, y, θ, ẋ, ẏ, ẍ, ÿ] from t = 0

to t = tf .
• compute_controls to compute the actual robot controls (v, ω) from the state trajectory.

Run the script in the terminal by typing

$ python3 P2_differential_flatness.py

to see your trajectory optimization in action. Please include differential_flatness.png in your write
up.

(iv) Now, let’s see what happens when we execute these actions on a system with disturbances. To do
so, open the visualization Jupyter notebook by running the following command:

$ jupyter notebook sim_trajectory.ipynb

This notebook will use the code you wrote for the this problem to plan trajectories for the initial and
final states specified in the notebook. Run the cells up until the closed loop simulation to validate your
work up to this point. You should see that the planned trajectory indeed reaches the goal, while in
the presence of noise, executing actions open-loop causes the trajectory to deviate. Experiment with
different initial and final states to see how the system behaves! Each time you run the plotting code
it will save the plot to plots/sim_traj_openloop.pdf. Include a plot with the initial conditions given
in part (i) in your write up.

Closed-Loop Control

Clearly, in order to deal with unmodeled effects and noise, we need to use feedback control. Now you
will experiment with a smooth dynamic trajectory tracking controller for the unicycle model1, thereby
imbuing your robot with some robustness.
We will now address closed-loop control for trajectory tracking using the differential flatness approach.
Consider the trajectory designed in parts (i)-(iv) (we will refer to the center coordinates of this desired
trajectory as (xd, yd)). We will implement the following virtual control law for trajectory tracking:

u1 = ẍd + kpx(xd − x) + kdx(ẋd − ẋ)
u2 = ÿd + kpy(yd − y) + kdy(ẏd − ẏ)

(5)

where kpx, kpy, kdx, kdy > 0 are the control gains.

(v) Write down a system of equations for computing the true control inputs (v, ω) in terms of the
virtual controls (u1, u2) = (ẍ, ÿ) and the vehicle state. HINT: it includes an ODE (you are allowed to
have v̇ in your answer).

1Note that many of the control laws discussed in this problem set can also be extended to related nonoholonomic robot
models, e.g., a rear/front wheel drive robot with forward steering and a trailer/car combination. Interested students are referred
to [2].
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(vi) Complete the compute_control function in the TrajectoryTracker class which is defined in the
file P2_trajectory_tracking.py. Specifically, program in the virtual control law Eq. (5) to compute
u1 and u2, and integrate your answer from part (v) to convert (u1, u2) into the actual control inputs
(v, ω).
Hint: At each timestep you may consider the current velocity to be that commanded in the previous
timestep. The controller class is designed to save this as the member variable self.v_prev

Warning: You must be careful when computing the actual control inputs due to the potential singu-
larity in velocity discussed in Problem 1 — although we took care to ensure that the nominal trajectory
did not have v ≈ 0 it is possible that noise might cause this to singularity to occur. If the actual velocity
drops below the threshold V_PREV_THRES, you should “reset” it to V_PREV_THRES.
Validate your work. Open the trajectory tracking visualization notebook:

$ jupyter notebook sim_trajectory.ipynb

Run the closed loop simulation section and see if using the controller, the robot can now track the
planned trajectory even in the presence of noise. Feel free to experiment with different initial and final
states, as well as different amounts of noise or different controller gains.
Each run will save a plot in plots/sim_traj_closedloop.png. Run the script with the initial and final
positions as given in part (i) and a nonzero noise amount, and include the resulting plot in your write
up.

These techniques will be core components of the trajectory generation and control modules of our autonomy
stack. However, you may notice that so far our trajectory generation neglects key constraints such as the
presence of obstacles. Thus, in later problems, we will integrate these components with motion planning
algorithms to find and track feasible trajectories while avoiding obstacles.

Problem 3: Heading Controller (Section Prep)

Objective: Develop a ROS2 node for heading control using a proportional controller. This controller aims
to minimize the error between the current heading of the TurtleBot3 robot and a desired goal heading. You’ll
be using ROS2 (Robot Operating System) with the rclpy library, utilizing the given messages and utility
functions.

Background:

• rclpy: Python library to write ROS2 nodes.

• TurtleBotState: A message type that contains state information of the TurtleBot3, including its
heading (theta).

• TurtleBotControl: A message type that contains control commands for the TurtleBot3, including
angular velocity (omega).

• wrap_angle: A utility function that wraps angles between −π and π.

Instructions:

1. Workspace Setup:

• Open your Ubuntu installation on your Virtual Machine. From the home directory, create direc-
tory ~/autonomy_ws/src:
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$ mkdir -p ~/autonomy_ws/src

• From the HW1 folder in the homework repository, move the autonomy_repo folder in to autonomy_ws/src.
• Navigate to the ~/autonomy_ws directory, build the workspace, and source:

$ cd ~/autonomy_ws
$ colcon build
$ source install/local_setup.bash

• Navigate to ~/autonomy_ws/src/autonomy_repo/scripts/heading_controller.py. This is the
file you will be editing in the next steps, and should be completely blank when you start.

2. Initial Imports:

• Set the shebang at the top of your Python file: #!/usr/bin/env python3.
• Import necessary libraries: numpy and rclpy.
• From the asl_tb3_lib.control package, import the BaseHeadingController module.
• From the asl_tb3_lib.math_utils package, import wrap_angle.
• From the asl_tb3_msgs.msg package, import TurtleBotControl and TurtleBotState messages.

3. Define the HeadingController Class:

• Create a class HeadingController that inherits from BaseHeadingController.
• In the __init__ method

– Call the parent’s __init__ method.
– Define a class variable for the proportional control gain kp and set it to 2.0.

4. Proportional Control:

• Inside your HeadingController class, you should override the compute_control_with_goal()
method from the BaseHeadingController class. This method is left unimplemented in the base
class and serves as a placeholder for you to define your heading control logic.

– The method takes in the current state and the desired state of the TurtleBot, both of which
are of type TurtleBotState.

– It should return a control message of type TurtleBotControl.
– Use type annotations in your method signature to enforce these types.

• Inside this method calculate the heading error (∈ [−π, π]) as the wrapped difference between the
goal’s theta and the state’s theta.

• Use the proportional control formula, ω = kp · err, to compute the angular velocity required for
the TurtleBot to correct its heading error.

• Create a new TurtleBotControl message, set its omega attribute to the computed angular velocity,
and return it.

5. Node Execution:

• In the main block (if __name__ == "__main__":) initialize the ROS2 system using rclpy.init().
• Create an instance of the HeadingController class.
• Spin the node using rclpy.spin() to keep it running and listening for messages.
• Ensure to shut down the ROS2 system with rclpy.shutdown() after spinning.
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6. Running with your Simulator:

# Open three terminals, and run the following in each of them.
$ cd ~/autonomy_ws
$ source install/local_setup.bash

# In Terminal 1 run
$ ros2 launch asl_tb3_sim root.launch.py
# This will start your Turtlebot simulator
# on the VM no GUI should appear.

# In Terminal 2 run
$ ros2 launch autonomy_repo heading_control.launch.py
# This will start up the heading controller that you
# just created, and open RVIZ. DO NOT SET A GOAL POSE.
# Allow thirty seconds for the code in Terminal 2 to fully start up.

# In Terminal 3 run.
$ ros2 run autonomy_repo p3_plot.py
# This will command a fixed goal position to test your controller,
# and produce a plot that you can submit for grading.
# You should see your Turtlebot moving in RVIZ.
# This function will take at least ten seconds to produce a plot.

# After you've successfully produced a plot,
# try setting a new goal post in RVIZ by selecting the
# "Goal Pose" button on the top toolbar and then
# clicking and dragging in the environment to set
# a goal heading.

7. Please include the resulting plot p3_output.png in your write-up.
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