
Principles of Robot Autonomy I
Motion planning I: graph search algorithms

Agenda

11/2/23 AA 174 | Lecture 7

• Agenda
• Introduction to motion planning
• Search-based algorithms for motion planning
• Configuration spaces and combinatorial motion planning

• Readings:
• Chapter 5 in PoRA lecture notes
• D. Bertsekas. Dynamic Programming and Optimal Control, Vol I. Section 2.3
• S. LaValle. Planning Algorithms. Sections 6.1

Motion planning

11/2/23 AA 174 | Lecture 7

Problem definition: Compute sequence of actions that drives a robot from
an initial condition to a terminal condition while avoiding obstacles,
respecting motion constraints, and possibly optimizing a cost function

The see-think-act cycle
Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

AA 174 | Lecture 711/2/23

11/2/23 AA 174 | Lecture 7

11/2/23 AA 174 | Lecture 7

Examples from:
https://ompl.kavrakilab.org/gallery.html

More examples of motion planning

11/2/23 AA 174 | Lecture 7

• Steering autonomous vehicles
• Controlling humanoid robot
• Surgery planning
• Protein folding
• …

Some history

11/2/23 AA 174 | Lecture 7

• Formally defined in the 1970s
• Development of exact, combinatorial solutions in the 1980s
• Development of sampling-based methods in the 1990s
• Deployment on real-time systems in the 2000s
• Current research: inclusion of differential and logical constraints,

planning under uncertainty, parallel implementation, and more

Simplest setup

11/2/23

• Assume 2D workspace:
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: given initial placement of robot, compute how to gradually move it into a

desired goal placement so that it never touches the obstacle region

AA 174 | Lecture 7

Popular approaches

11/2/23 AA 174 | Lecture 7

• Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it
toward the goal and push it away from obstacles

• Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a
graph-search algorithm (Dijkstra, A*, …)

• Combinatorial planning [LaValle, '06]: constructs structures in the configuration
(C-) space that completely capture all information needed for planning

• Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses
collision detection algorithms to probe and incrementally search the C-space
for a solution, rather than completely characterizing all of the 𝐶!"## structure

Grid-based approaches

• Discretize the continuous world into a grid
• Each grid cell is either free or forbidden
• Robot moves between adjacent free cells
• Goal: find sequence of free cells from start to goal

• Mathematically, this corresponds to pathfinding
in a discrete graph 𝐺 = 𝑉, 𝐸
• Each vertex 𝑣 ∈ 𝑉 represents a free cell
• Edges 𝑣, 𝑢 ∈ 𝐸 connect adjacent grid cells

11/2/23 AA 174 | Lecture 7

Graph search algorithms

11/2/23 AA 174 | Lecture 7

• Having determined decomposition, how to find “best” path?
• Label-Correcting Algorithms: 𝐶(𝑞): cost-of-arrival from 𝑞$	to	𝑞

FRONTIER/ALIVE/PRIORITY QUEUE

Node 𝑞
Nodes 𝑞% ∈ 𝑆𝑢𝑐𝑐(𝑞)

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER ?

Yes ⇒ 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%

𝑞% ≠ 𝑞&?

Label correcting algorithm

11/2/23 AA 174 | Lecture 7

Step 1. Remove a node 𝑞 from frontier queue and for each child 𝑞% of 𝑞, execute
step 2

Step 2. If 𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER , set 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%
and set 𝑞 to be the parent of 𝑞%. In addition, if	𝑞%≠ 𝑞&, place 𝑞% in the frontier
queue if it is not already there, while if 𝑞%= 𝑞&, set UPPER to the new value
𝐶 𝑞 + 𝐶 𝑞, 𝑞&

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞, except for the label of the origin
node, which is set to 0

GetNext() ?

11/2/23 AA 174 | Lecture 7

Depth-First-Search (DFS): Maintain 𝑄	as a stack – Last in/first out
• Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain 𝑄	as a list – First
in/first first out
• Update cost for all edges up to current depth before proceeding to

greater depth
• Can deal with negative edge (transition) costs

Best-First (BF, Dijkstra): Greedily select next q: 𝑞 = 	argmin'∈)𝐶(𝑞)
• Node will enter the frontier queue at most once
• Requires costs to be non-negative

Correctness and improvements

11/2/23 AA 174 | Lecture 7

If a feasible path exists from 𝑞$ to 𝑞&, then algorithm terminates in finite time with
𝐶 𝑞& equal to the optimal cost of traversal, 𝐶∗ 𝑞& .

Theorem

* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A*: Improving Dijkstra

11/2/23 AA 174 | Lecture 7

• Dijkstra orders by optimal “cost-to-arrival”
• Faster results if order by “cost-to-arrival”+ (approximate) “cost-to-go”
• That is, strengthen test

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ UPPER
to

𝐶 𝑞 + 𝐶 𝑞, 𝑞% + ℎ(𝑞%) ≤ UPPER
where ℎ 𝑞 	is a heuristic for optimal cost-to-go (specifically, a positive
underestimate)
• In this way, fewer nodes will be placed in the frontier queue
• This modification still guarantees that the algorithm will terminate with a

shortest path
• Many variations are possible… see (Problem 2 in pset 2)

Grid-based approaches: summary

• Pros:
• Simple and easy to use
• Fast (for some problems)

• Cons:
• Resolution dependent

• Not guaranteed to find solution if grid resolution is not small enough
• Limited to simple robots

• Grid size is exponential in the number of DOFs

11/2/23 AA 174 | Lecture 7

Back to continuous motion planning

11/2/23

• Assume 2D workspace:
• is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: Given initial placement of robot, compute how to gradually move it into

a desired goal placement so that it never touches the obstacle region

AA 174 | Lecture 7

Back to continuous motion planning

Key point: motion planning problem described in the real-world, but it really lives
in another space -- the configuration (C-) space!

11/2/23 AA 174 | Lecture 7

Configuration space
• C- space: captures all degrees of freedom (all rigid body transformations)
• More in detail, let be a polygonal robot (e.g., a triangle)
• The robot can rotate by angle 𝜃 or translate
• Every combination 𝑞 = 𝑥+, 𝑦+, 𝜃 	yields a unique robot placement: configuration
• So C- space is a subset of
• Note: 𝜃 ± 2𝜋 yields equivalent rotations ⇒ C- space is:
• Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)

11/2/23 AA 174 | Lecture 7

Configuration free space

• The subset ℱ ⊆ 𝒞 of all collision free configurations is the free
space

11/2/23 AA 174 | Lecture 7

obstacle

forbidden space

free space

11/2/23 AA 174 | Lecture 7

Bottom line: explicitly computing C free spaces in
high-dimensional settings is hard!

11/2/23 AA 174 | Lecture 7

Planning in C-space

• Let 𝑅 𝑞 ⊂ 𝑊 denote set of points in the world occupied by robot
when in configuration 𝑞	

• Robot in collision ⇔ 𝑅 𝑞 ∩ 𝑂 ≠ ∅
• Accordingly, free space is defined as: 𝐶!"## = 𝑞 ∈ 𝐶 𝑅 𝑞 ∩ 𝑂 = ∅
• Path planning problem in C-space: compute a continuous path:
𝜏: 0,1 → 𝐶!"##, with 𝜏 0 = 𝑞$ and 𝜏 1 = 𝑞%

11/2/23 AA 174 | Lecture 7

Combinatorial planning

11/2/23 AA 174 | Lecture 7

• Combinatorial approaches to motion planning find
paths through continuous configuration space
without resorting to approximations

• Key idea: compute a roadmap, which provides a
discrete representation of continuous motion
planning problem without losing any of the original
connectivity information needed to solve it

• Such approaches are typically complete (i.e.,
guaranteed to find a solution), but are typically
limited to small number of DOFs due to the
challenge of exactly computing C free spaces

A roadmap is a graph in which each vertex is a
configuration in 𝐶!"## and each edge is a path
through 𝐶!"##	that connects a pair of vertices

Next time: sampling-based planning

11/2/23 AA 174 | Lecture 7

