
Principles of Robot Autonomy I
Motion planning I: graph search algorithms 



Agenda
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• Agenda
• Introduction to motion planning
• Search-based algorithms for motion planning
• Configuration spaces and combinatorial motion planning

• Readings:
• Chapter 5 in PoRA lecture notes
• D. Bertsekas. Dynamic Programming and Optimal Control, Vol I. Section 2.3
• S. LaValle. Planning Algorithms. Sections 6.1



Motion planning
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Problem definition: Compute sequence of actions that drives a robot from 
an initial condition to a terminal condition while avoiding obstacles, 
respecting motion constraints, and possibly optimizing a cost function
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Examples from:
https://ompl.kavrakilab.org/gallery.html



More examples of motion planning
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• Steering autonomous vehicles
• Controlling humanoid robot
• Surgery planning
• Protein folding
• …



Some history
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• Formally defined in the 1970s
• Development of exact, combinatorial solutions in the 1980s
• Development of sampling-based methods in the 1990s 
• Deployment on real-time systems in the 2000s
• Current research: inclusion of differential and logical constraints, 

planning under uncertainty, parallel implementation, and more 



Simplest setup
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• Assume 2D workspace: 
•                   is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: given initial placement of robot, compute how to gradually move it into a 

desired goal placement so that it never touches the obstacle region 
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Popular approaches
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• Potential fields [Rimon, Koditschek, '92]: create forces on the robot that pull it 
toward the goal and push it away from obstacles

• Grid-based planning [Stentz, '94]: discretizes problem into grid and runs a 
graph-search algorithm (Dijkstra, A*, …)

• Combinatorial planning [LaValle, '06]: constructs structures in the configuration 
(C-) space that completely capture all information needed for planning

• Sampling-based planning [Kavraki et al, '96; LaValle, Kuffner, '06, etc.]: uses 
collision detection algorithms to probe and incrementally search the C-space 
for a solution, rather than completely characterizing all of the 𝐶!"## structure



Grid-based approaches

• Discretize the continuous world into a grid
• Each grid cell is either free or forbidden
• Robot moves between adjacent free cells
• Goal: find sequence of free cells from start to goal

• Mathematically, this corresponds to pathfinding 
in a discrete graph 𝐺 = 𝑉, 𝐸
• Each vertex 𝑣 ∈ 𝑉 represents a free cell
• Edges 𝑣, 𝑢 ∈ 𝐸 connect adjacent grid cells
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Graph search algorithms
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• Having determined decomposition, how to find “best” path?
• Label-Correcting Algorithms: 𝐶(𝑞): cost-of-arrival from 𝑞$	to	𝑞

FRONTIER/ALIVE/PRIORITY QUEUE

Node 𝑞
Nodes 𝑞% ∈ 𝑆𝑢𝑐𝑐(𝑞)

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER ?

Yes ⇒ 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%

𝑞% ≠ 𝑞&?



Label correcting algorithm

11/2/23 AA 174 | Lecture 7

Step 1. Remove a node 𝑞 from frontier queue and for each child 𝑞% of 𝑞, execute 
step 2

Step 2. If 𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ min 𝐶 𝑞% , UPPER , set 𝐶 𝑞% ≔ 𝐶 𝑞 + 𝐶 𝑞, 𝑞%  
and set 𝑞 to be the parent of 𝑞%. In addition, if	𝑞%≠ 𝑞&, place 𝑞% in the frontier 
queue if it is not already there, while if 𝑞%= 𝑞&, set UPPER to the new value 
𝐶 𝑞 + 𝐶 𝑞, 𝑞&  

Step 3. If the frontier queue is empty, terminate, else go to step 1

Initialization: set the labels of all nodes to ∞, except for the label of the origin 
node, which is set to 0



GetNext() ?
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Depth-First-Search (DFS): Maintain 𝑄	as a stack – Last in/first out
• Lower memory requirement (only need to store part of graph)

Breadth-First-Search (BFS, Bellman-Ford): Maintain 𝑄	as a list – First 
in/first first out
• Update cost for all edges up to current depth before proceeding to 

greater depth
• Can deal with negative edge (transition) costs

Best-First (BF, Dijkstra): Greedily select next q: 𝑞 = 	argmin'∈)𝐶(𝑞)
• Node will enter the frontier queue at most once 
• Requires costs to be non-negative



Correctness and improvements
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If a feasible path exists from 𝑞$ to 𝑞&, then algorithm terminates in finite time with 
𝐶 𝑞&  equal to the optimal cost of traversal, 𝐶∗ 𝑞& .

Theorem

* https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm



A*: Improving Dijkstra
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• Dijkstra orders by optimal “cost-to-arrival”
• Faster results if order by “cost-to-arrival”+ (approximate) “cost-to-go”
• That is, strengthen test

𝐶 𝑞 + 𝐶 𝑞, 𝑞% ≤ UPPER
to

𝐶 𝑞 + 𝐶 𝑞, 𝑞% + ℎ(𝑞%) ≤ UPPER
where ℎ 𝑞 	is a heuristic for optimal cost-to-go (specifically, a positive 
underestimate)
• In this way, fewer nodes will be placed in the frontier queue
• This modification still guarantees that the algorithm will terminate with a 

shortest path
• Many variations are possible… see (Problem 2 in pset 2)



Grid-based approaches: summary 

• Pros: 
• Simple and easy to use
• Fast (for some problems)

• Cons:
• Resolution dependent

• Not guaranteed to find solution if grid resolution is not small enough
• Limited to simple robots 

• Grid size is exponential in the number of DOFs
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Back to continuous motion planning
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• Assume 2D workspace: 
•                  is the obstacle region with polygonal boundary
• Robot is a rigid polygon
• Problem: Given initial placement of robot, compute how to gradually move it into 

a desired goal placement so that it never touches the obstacle region 

AA 174 | Lecture 7



Back to continuous motion planning

Key point: motion planning problem described in the real-world, but it really lives 
in another space -- the configuration (C-) space!
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Configuration space
• C- space: captures all degrees of freedom (all rigid body transformations)
• More in detail, let                    be a polygonal robot (e.g., a triangle)
• The robot can rotate by angle 𝜃 or translate 
• Every combination 𝑞 = 𝑥+, 𝑦+, 𝜃 	yields a unique robot placement: configuration
• So C- space is a subset of 
• Note: 𝜃 ± 2𝜋 yields equivalent rotations ⇒ C- space is: 
• Concept of C- space extends naturally to higher dimensions (e.g., robot linkages)
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Configuration free space

• The subset ℱ ⊆ 𝒞 of all collision free configurations is the free 
space
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Bottom line: explicitly computing C free spaces in 
high-dimensional settings is hard!
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Planning in C-space

• Let 𝑅 𝑞 ⊂ 𝑊   denote set of points in the world occupied by robot 
when in configuration 𝑞	

• Robot in collision ⇔ 𝑅 𝑞 ∩ 𝑂 ≠ ∅ 
• Accordingly, free space is defined as: 𝐶!"## = 𝑞 ∈ 𝐶 𝑅 𝑞 ∩ 𝑂 = ∅  
• Path planning problem in C-space: compute a continuous path: 
𝜏: 0,1 → 𝐶!"##, with 𝜏 0 = 𝑞$  and 𝜏 1 = 𝑞%
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Combinatorial planning
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• Combinatorial approaches to motion planning find 
paths through continuous configuration space 
without resorting to approximations

• Key idea: compute a roadmap, which provides a 
discrete representation of continuous motion 
planning problem without losing any of the original 
connectivity information needed to solve it

• Such approaches are typically complete (i.e., 
guaranteed to find a solution), but are typically 
limited to small number of DOFs due to the 
challenge of exactly computing C free spaces

A roadmap is a graph in which each vertex is a 
configuration in 𝐶!"## and each edge is a path 
through 𝐶!"##	that connects a pair of vertices 



Next time: sampling-based planning
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