
Principles of Robot Autonomy I
 Trajectory tracking



Agenda

• Trajectory tracking
• Based on differential flatness techniques
• Based on LQR techniques

• Readings
• Chapter 3 in PoRA lecture notes
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Trajectory tracking

• Back to two-step design strategy

• Reference trajectory and control history (i.e., 𝐱! 𝑡  and 𝐮! 𝑡 ) are 
computed via open-loop techniques (e.g., differential flatness)
• For reference tracking (Problem 3 in pset 1)
• Geometric (e.g., pursuit) strategies 
• Linearization (either approximate or exact) + linear structure 
• Non-linear control
• Optimization-based techniques (e.g., MPC)
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Differential flatness (recap)

• A nonlinear system 𝐱̇ = 𝐟(𝐱, 𝐮) is differentially flat if there exists a 
set of outputs 𝐳 = α(𝐱, 𝐮, . . . , 𝐮(#))	such that

• One can then use any interpolation scheme (e.g., piecewise 
polynomial (spline)) to plan the trajectory of 𝐳 in such a way as to 
satisfy the appropriate boundary conditions
• The evolution of the state variables 𝐱, together with the associated 

control inputs 𝐮, can then be computed algebraically from 𝐳
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Trajectory tracking for differentially flat systems

• Example: dynamically extended unicycle model

• The system is differentially flat with flat outputs (𝑥, 𝑦), in particular
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Trajectory tracking for differentially flat systems

• Then one can use the following virtual control law for trajectory 
tracking:

    where 𝑘#% , 𝑘!% , 𝑘#& , 𝑘!& > 0	are control gains

• Such a law guarantees exponential convergence to zero of the 
Cartesian tracking error 
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w1 = ẍd + kpx(xd � x) + kdx(ẋd � ẋ)

w2 = ÿd + kpy(yd � y) + kdy(ẏd � ẏ)
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Trajectory tracking for differentially flat systems
• More broadly, suppose system is differentially flat: the full state and 

control trajectories can be computed from flat outputs	(𝐳, 𝐳̇, . . . , 𝐳 ' )
• Define: 𝐳('()) = 𝐰
• One can then design a tracking controller by using linear control 

techniques; in particular, for a given reference flat output 𝐳! , define 
the component-wise error 

𝑒*: = 𝑧* − 𝑧*,! , which implies 𝑒*
('()) = 𝑤* −𝑤*,!

• For guaranteed convergence to zero of tracking error, one can set

𝑤* = 𝑤*,! − ∑,-.
' 𝑘*,,𝑒*

(,), 

with the gains {𝑘*,,} chosen so as to enforce stability
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LQR-based methods

• The previous approach only works for differentially flat systems 

• How can we control more general classes of systems?
• Nonlinear control techniques
• Linear-quadratic regulation (LQR) methods
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LQR-based methods
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Linear-quadratic regulator (LQR)

• How can we regulate (i.e., drive to the origin) the linear system 𝐱̇ 𝑡 =
𝐴𝐱 𝑡 + 𝐵𝐮(𝑡) with minimum control effort?
• We define the optimal control problem

• The optimal solution is of the form 𝐮! = 𝐾!𝐱!  where 𝐾! = −𝑅"#𝐵$𝑃!   and 
the matrix 𝑃!  solves the continuous time Riccati diff. equation:

𝑃̇! = −𝐴$𝑃! − 𝑃!𝐴 + 𝑃!𝐵𝑅"#𝐵$𝑃! − 𝑄	with 𝑃% = 𝐹
• Note: this results holds even in the more general case 𝐱̇ 𝑡 = 𝐴(𝑡)𝐱 𝑡 +
𝐵(𝑡)𝐮(𝑡) (just plug 𝐴 𝑡  and 𝐵 𝑡  in the Riccati equation)
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Tracking LQR – linear case
• Consider the linear system 𝐱̇ 𝑡 = 𝐴𝐱 𝑡 + 𝐵𝐮(𝑡)	and assume we 

would like to track a reference trajectory 𝐱! 𝑡 , 𝐮! 𝑡 /
•  Define error variables 𝛿𝐱 𝑡 ≔ (𝐱 𝑡 − 𝐱! 𝑡 )	and 𝛿𝐮 𝑡 ≔ (𝐮 𝑡
− 𝐮! 𝑡 ), which leads to the dynamical system

𝛿𝐱̇ 𝑡 = 𝐴𝛿𝐱 𝑡 + 𝐵𝛿𝐮(𝑡)
• Define optimal control problem

• Optimal solution is 𝛿𝐮/ = 𝐾/  𝛿𝐱/  (same 𝐾/  as before), which leads 
to control 𝐮 𝑡 = 𝐮! 𝑡 + 𝛿𝐮 𝑡
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Tracking LQR – nonlinear case

• Consider the non-linear system 𝐱̇ 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡 )	and assume we 
would like to track a reference trajectory 𝐱! 𝑡 , 𝐮! 𝑡

/
• Key idea: make the system “linear” by linearizing around 
𝐱! 𝑡 , 𝐮! 𝑡

/
:

𝐱̇ 𝑡 ≈ 𝐟 𝐱! 𝑡 , 𝐮! 𝑡 + "𝐟
"𝐱

𝐱! 𝑡 , 𝐮! 𝑡 𝐱 𝑡 − 𝐱! 𝑡 + "𝐟
"𝐮

𝐱! 𝑡 , 𝐮! 𝑡 𝐮 𝑡 − 𝐮! 𝑡

̇	 = 𝐱! 𝑡 + 	𝐴(𝑡) 𝐱 𝑡 − 𝐱! 𝑡  +𝐵(𝑡) 𝐮 𝑡 − 𝐮! 𝑡

• As before, we get a linear system in the error variables: 
𝛿𝐱̇ 𝑡 = 𝐴(𝑡)𝛿𝐱 𝑡 + 𝐵(𝑡)𝛿𝐮(𝑡)

• Optimal solution is 𝛿𝐮/ = 𝐾/  𝛿𝐱/  which leads to control 𝐮 𝑡 = 
𝐮! 𝑡 + 𝛿𝐮 𝑡   (where 𝐾/  is again obtained from the Riccati eq.)
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Transferring results to discrete case

• Same ideas apply for discrete-time systems, i.e., 𝐱0() = 𝐟 𝐱0 , 𝐮0
• Key difference:  control is 𝐮0 = 𝐮0! + 𝛿𝐮0, with 𝛿𝐮0 = 𝐾0  𝛿𝐱0, where 
𝐾0 = − 𝑅 + 𝐵01𝑃0()𝐵0 2)𝐵01𝑃0()𝐴0  and 𝑃0  is iteratively obtained 
from the discrete-time Riccati equation:
𝑃0= 𝐴01 𝑃023𝐴0 − 𝐴01 𝑃023𝐵0 𝑅 + 𝐵01𝑃023𝐵0 43𝐵01𝑃023𝐴0 + 𝑄 with 𝑃5 = 𝐹

• Similarly as before:
• 𝐴0= 6𝐟

6𝐱
𝐱07, 𝐮07  and 𝐵0= 6𝐟

6𝐮
𝐱07, 𝐮07  

• 𝑅, 𝑄, 𝐹	have the same interpretation as before, namely tracking penalty, 
control effort penalty, and final tracking error penalty

10/12/23 AA 174A | Lecture 6 14



Next time
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