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Agenda

* Trajectory tracking

» Based on differential flatness techniques
* Based on LQR techniques

* Readings
* Chapter 3in PoRA lecture notes
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Trajectory tracking

* Back to two-step design strategy __— Tracking control law

u’(t) = ug(t) Hm(x(t), x(t) —xa(t))

 Reference trajectory and control history (i.e., x4 (t) and u,(t)) are
computed via open-loop techniques (e.g., differential flatness)

* For reference tracking (Problem 3 in pset 1)
* Geometric (e.g., pursuit) strategies

* Linearization (either approximate or exact) + linear structure
* Non-linear control

» Optimization-based techniques (e.g., MPC)
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The see-think-act cycle
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Differential flatness (recap)

* Anonlinear system x = f(x, u) is differentially flat if there exists a
set of outputs z = a(x, u, ..., u?) such that

xzﬁ(z,z,...,z(Q))

u=v(z,2,... ,Z(Q))

* One can then use any interpolation scheme (e.g., piecewise
polynomial (spline)) to plan the trajectory of z in such a way as to
satisfy the appropriate boundary conditions

* The evolution of the state variables x, together with the associated
control inputs u, can then be computed algebraically from z
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Trajectory tracking for differentially flat systems

* Example: dynamically extended unicycle model

z(t) = V cos(6(t))
y(t) = Vsin(6(t))
V(t) = a(t)
0(t) = w(t)

* The system is differentially flat with flat outputs (x, y), in particular

[a;«@)] - [COS(@) _vsm(e)] H 3;]

y(t)| |sin(@) Vcos(d) | |w
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Trajectory tracking for differentially flat systems

* Then one can use the following virtual control law for trajectory
tracking:

w1 = g + kpa;(ibd — ZE) -+ kd:z:(jfd — Zl?)

W2 = Yq + kpy(yd — y) -+ k’dy(?)d — y)

where k., kg, kyy, kg, > 0 are control gains

 Such a law guarantees exponential convergence to zero of the
Cartesian tracking error
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Trajectory tracking for differentially flat systems

* More broadly, suppose system is differentially flat: the full state and
control trajectories can be computed from flat outputs (z, %, . ..,z(@)

¢ Define: 24D = w

* One can then design a tracking controller by using linear control
techniques; in particular, for a given reference flat output z 4, define
the component-wise error

(q+1)

e;:= z; — Z; g, Whichimplies e; = W; — Wiq
 For guaranteed convergence to zero of tracking error, one can set
_ (J)
W; = W;q — kl]el )

with the gains {k; ;} chosen so as to enforce stability
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LQR-based methods

* The previous approach only works for differentially flat systems

* How can we control more general classes of systems?
* Nonlinear control techniques
* Linear-quadratic regulation (LQR) methods
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LQR-based methods

* The previous approach only works for differentially flat systems

* How can we control more general classes of systems?
* Nonlinear control techniques
* Linear-quadratic regulation (LQR) methods
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Linear-quadratic regulator (LQR)

* How can we regulate (i.e., drive to the origin) the linear system x(t) =
Ax(t) + Bu(t) with minimum control effort?

* We define the optimal control problem

min  x(T) Fx(T) + /0 (x(£YQx(t) + u(t) Ru(t))dt

u

st.  x(t) = Ax(t) + Bu(t)

* The optimal solution is of the form u; = K;x; where K; = —R~ 1B'P, and
the matrix P; solves the continuous tlme Rlccatl diff. equatlon
Pt—_APt_PtA-I'PtBR 1BPt QW'thPT—F
* Note: this results holds even in the more general case x(t) = A(t)x(t) +
B(t)u(t) (just plug A(t) and B(t) in the Riccati equation)
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Tracking LQR — linear case

 Consider the linear system x(t) = Ax(t) + Bu(t) and assume we
would like to track a reference trajectory (x,4(t), uy (t))t

 Define error variables 6x(t) = (x(t) —x4(t)) and du(t) := (u(t)
—u,4(t)), which leads to the dynamical system
ox(t) = A6x(t) + Bdu(t)

* Define optimal control problem

min 0x(T) F 6x(T) + / T(5x(t)’Q ox(t) + du(t)' Rou(t))dt
0

u

s.t.  0x(t) = Adx(t) + Bdu(t)

e Optimal solutionis du; = K; 6x; (same K, as before), which leads
to control u(t) =u,(t) + du(t)

10/12/23 AA 174A | Lecture 6 12



Tracking LQR — nonlinear case

 Consider the non-linear system x(t) = f(x(t), u(t)) and assume we
would like to track a reference trajectory (x4(t), uy (t))t

* Key idea: make the system “linear” by linearizing around
(Xd (t),uqy (t))ti

%(t) ~ £(xa(0), ug(8)) + 5= (x4 (1), ug (D) (X(1) = X4 (1)) + 2 (X (1), g () (u(t) — ua(®))
=xq() + A)(x(®) —x4(8)) +B(t) (u(t) —uy (1))
* As before, we get a linear system in the error variables:
0x(t) = A(t)o6x(t) + B(t)du(t)

* Optimal solution is 6u; = K; 6x; which leads to controlu(t) =
u,(t) + éu(t) (where K, is again obtained from the Riccati eq.)
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Transferring results to discrete case

* Same ideas apply for discrete-time systems, i.e., X511 = f(X;, uy)

» Key difference: controlisu, =uf + Su,, with Su, = K, 6x,,, where
K, = —(R + B, Py .1By) " 'B. P, .1 A, and P, is iteratively obtained
from the discrete-time Riccati equation:

Pi= Ay Pry1Ak — ApPry1Bi(R + BiPyy1Bi) ™' By Pri1 A + Q with Py = F
 Similarly as before:
« A= Z—i (x4, uf) and By= g—lfl (x§, uf)

* R, Q, F have the same interpretation as before, namely tracking penalty,
control effort penalty, and final tracking error penalty
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Next time
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