
Principles of Robot Autonomy I
 Trajectory tracking

Agenda

• Trajectory tracking
• Based on differential flatness techniques
• Based on LQR techniques

• Readings
• Chapter 3 in PoRA lecture notes

10/12/23 AA 174A | Lecture 6 2

Trajectory tracking

• Back to two-step design strategy

• Reference trajectory and control history (i.e., 𝐱! 𝑡 and 𝐮! 𝑡) are
computed via open-loop techniques (e.g., differential flatness)
• For reference tracking (Problem 3 in pset 1)
• Geometric (e.g., pursuit) strategies
• Linearization (either approximate or exact) + linear structure
• Non-linear control
• Optimization-based techniques (e.g., MPC)

10/12/23 AA 174A | Lecture 6

Tracking control law

3

The see-think-act cycle
Localiza(on
Map	Building

Decision	making
Mo(on	planning

Informa(on
extrac(on

Sensing

raw	data

environmental	model
local	map

posi(on
global	map

Trajectory	
execu(on

Actua(on

actuator	
commands

trajectory

Real	world
environment

Knowledge Mission	goals

See-think-act

AA 174A | Lecture 6 410/12/23

Closed-loop
control/tracking

Differential flatness (recap)

• A nonlinear system 𝐱̇ = 𝐟(𝐱, 𝐮) is differentially flat if there exists a
set of outputs 𝐳 = α(𝐱, 𝐮, . . . , 𝐮(#))	such that

• One can then use any interpolation scheme (e.g., piecewise
polynomial (spline)) to plan the trajectory of 𝐳 in such a way as to
satisfy the appropriate boundary conditions
• The evolution of the state variables 𝐱, together with the associated

control inputs 𝐮, can then be computed algebraically from 𝐳
10/12/23 AA 174A | Lecture 6 5

Trajectory tracking for differentially flat systems

• Example: dynamically extended unicycle model

• The system is differentially flat with flat outputs (𝑥, 𝑦), in particular

10/12/23 AA 174A | Lecture 6

ẋ(t) = V cos(✓(t))

ẏ(t) = V sin(✓(t))

V̇ (t) = a(t)

✓̇(t) = !(t)


ẍ(t)
ÿ(t)

�
=


cos(✓) �V sin(✓)
sin(✓) V cos(✓)

�

| {z }
:=J


a
!

�
:=


w1

w2

�

6

Trajectory tracking for differentially flat systems

• Then one can use the following virtual control law for trajectory
tracking:

 where 𝑘#% , 𝑘!% , 𝑘#& , 𝑘!& > 0	are control gains

• Such a law guarantees exponential convergence to zero of the
Cartesian tracking error

10/12/23 AA 174A | Lecture 6

w1 = ẍd + kpx(xd � x) + kdx(ẋd � ẋ)

w2 = ÿd + kpy(yd � y) + kdy(ẏd � ẏ)

7

Trajectory tracking for differentially flat systems
• More broadly, suppose system is differentially flat: the full state and

control trajectories can be computed from flat outputs	(𝐳, 𝐳̇, . . . , 𝐳 ')
• Define: 𝐳('()) = 𝐰
• One can then design a tracking controller by using linear control

techniques; in particular, for a given reference flat output 𝐳! , define
the component-wise error

𝑒*: = 𝑧* − 𝑧*,! , which implies 𝑒*
('()) = 𝑤* −𝑤*,!

• For guaranteed convergence to zero of tracking error, one can set

𝑤* = 𝑤*,! − ∑,-.
' 𝑘*,,𝑒*

(,),

with the gains {𝑘*,,} chosen so as to enforce stability
10/12/23 AA 174A | Lecture 6 8

LQR-based methods

• The previous approach only works for differentially flat systems

• How can we control more general classes of systems?
• Nonlinear control techniques
• Linear-quadratic regulation (LQR) methods

10/12/23 AA 174A | Lecture 6 9

LQR-based methods

• The previous approach only works for differentially flat systems

• How can we control more general classes of systems?
• Nonlinear control techniques
• Linear-quadratic regulation (LQR) methods

10/12/23 AA 174A | Lecture 6 10

Linear-quadratic regulator (LQR)

• How can we regulate (i.e., drive to the origin) the linear system 𝐱̇ 𝑡 =
𝐴𝐱 𝑡 + 𝐵𝐮(𝑡) with minimum control effort?
• We define the optimal control problem

• The optimal solution is of the form 𝐮! = 𝐾!𝐱! where 𝐾! = −𝑅"#𝐵$𝑃! and
the matrix 𝑃! solves the continuous time Riccati diff. equation:

𝑃̇! = −𝐴$𝑃! − 𝑃!𝐴 + 𝑃!𝐵𝑅"#𝐵$𝑃! − 𝑄	with 𝑃% = 𝐹
• Note: this results holds even in the more general case 𝐱̇ 𝑡 = 𝐴(𝑡)𝐱 𝑡 +
𝐵(𝑡)𝐮(𝑡) (just plug 𝐴 𝑡 and 𝐵 𝑡 in the Riccati equation)

10/12/23 AA 174A | Lecture 6 11

Tracking LQR – linear case
• Consider the linear system 𝐱̇ 𝑡 = 𝐴𝐱 𝑡 + 𝐵𝐮(𝑡)	and assume we

would like to track a reference trajectory 𝐱! 𝑡 , 𝐮! 𝑡 /
• Define error variables 𝛿𝐱 𝑡 ≔ (𝐱 𝑡 − 𝐱! 𝑡)	and 𝛿𝐮 𝑡 ≔ (𝐮 𝑡
− 𝐮! 𝑡), which leads to the dynamical system

𝛿𝐱̇ 𝑡 = 𝐴𝛿𝐱 𝑡 + 𝐵𝛿𝐮(𝑡)
• Define optimal control problem

• Optimal solution is 𝛿𝐮/ = 𝐾/ 𝛿𝐱/ (same 𝐾/ as before), which leads
to control 𝐮 𝑡 = 𝐮! 𝑡 + 𝛿𝐮 𝑡

10/12/23 AA 174A | Lecture 6 12

Tracking LQR – nonlinear case

• Consider the non-linear system 𝐱̇ 𝑡 = 𝐟(𝐱 𝑡 , 𝐮 𝑡)	and assume we
would like to track a reference trajectory 𝐱! 𝑡 , 𝐮! 𝑡

/
• Key idea: make the system “linear” by linearizing around
𝐱! 𝑡 , 𝐮! 𝑡

/
:

𝐱̇ 𝑡 ≈ 𝐟 𝐱! 𝑡 , 𝐮! 𝑡 + "𝐟
"𝐱

𝐱! 𝑡 , 𝐮! 𝑡 𝐱 𝑡 − 𝐱! 𝑡 + "𝐟
"𝐮

𝐱! 𝑡 , 𝐮! 𝑡 𝐮 𝑡 − 𝐮! 𝑡

̇	 = 𝐱! 𝑡 + 	𝐴(𝑡) 𝐱 𝑡 − 𝐱! 𝑡 +𝐵(𝑡) 𝐮 𝑡 − 𝐮! 𝑡

• As before, we get a linear system in the error variables:
𝛿𝐱̇ 𝑡 = 𝐴(𝑡)𝛿𝐱 𝑡 + 𝐵(𝑡)𝛿𝐮(𝑡)

• Optimal solution is 𝛿𝐮/ = 𝐾/ 𝛿𝐱/ which leads to control 𝐮 𝑡 =
𝐮! 𝑡 + 𝛿𝐮 𝑡 (where 𝐾/ is again obtained from the Riccati eq.)

10/12/23 AA 174A | Lecture 6 13

Transferring results to discrete case

• Same ideas apply for discrete-time systems, i.e., 𝐱0() = 𝐟 𝐱0 , 𝐮0
• Key difference: control is 𝐮0 = 𝐮0! + 𝛿𝐮0, with 𝛿𝐮0 = 𝐾0 𝛿𝐱0, where
𝐾0 = − 𝑅 + 𝐵01𝑃0()𝐵0 2)𝐵01𝑃0()𝐴0 and 𝑃0 is iteratively obtained
from the discrete-time Riccati equation:
𝑃0= 𝐴01 𝑃023𝐴0 − 𝐴01 𝑃023𝐵0 𝑅 + 𝐵01𝑃023𝐵0 43𝐵01𝑃023𝐴0 + 𝑄 with 𝑃5 = 𝐹

• Similarly as before:
• 𝐴0= 6𝐟

6𝐱
𝐱07, 𝐮07 and 𝐵0= 6𝐟

6𝐮
𝐱07, 𝐮07

• 𝑅, 𝑄, 𝐹	have the same interpretation as before, namely tracking penalty,
control effort penalty, and final tracking error penalty

10/12/23 AA 174A | Lecture 6 14

Next time

10/12/23 AA 174A | Lecture 6 15

