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* Definitions
* Modeling (kinematic and dynamic models)
» Special case: LTI systems and linearization
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* Chapter 1in PoRA lecture notes



State space models

* We can control a robot through the inputs to the system (e.g., motor torques,
rotor thrusts, etc.)

* The state of arobot is a collection of variables (e.g., position, velocity) that
change over time in response to the inputs

» Astate space model

x = f(x,u)

is a mathematical description of how the state x evolves over time (i.e., x or
dx/..) in response to the inputs u



Example: double-integrator

e Suppose we can control the force pushing on a cart

* Newton’s second law tells us that F
Pl £

« Letx = (s,v) withv = s,and u = ¥/;n. Then we can write

<=()-[5 ()

—

fxu)



Kinematic models

* Kinematic models are mathematical models that describe the motion of a
system without consideration of forces

* Kinematic models typically result from geometric constraints on the motion of a
system, before considering any forces

* For example, the “unicycle” with generalized coordinates g = (x,y, 8) should
not slip sideways, i.e.,
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G(q) This relation induces a kinematic model, as we will see shortly




Holonomic and nonholonomic constraints

* More broadly, constraints on degrees of freedom come in various forms:
h(q) =0 9(q,4) =0 G(q)g =0

holonomic nonholonomic semi—holonomic / Pfaffian

Pfaffian constraints are a special, yet common case of nonholonomic

constraints
Kinematic model of the
constrained system

* If G(gq) has k rows (constraints) and d columns (DOFs), then /
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i= ) wh@=[b:@ bae) -~ ba(@u =Bl
]:

where {bj (q)};:f Is a basis for admissible velocities, i.e., the null space of G(q).



Back to unicycle example

* The “unicycle” with DOFs g = (x, y, 8) should not slip sideways, i.e.,
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* Physically, u; = vis the forward velocity of the wheel,and u, = w is its
rotational steering velocity



Unicycle and differential drive models
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We can al.ternate between ’Fhese klnem.atlc v=—(wp+w) w=—
models via the one-to-one input mappings: L




Simple car model

Ynva
T v cos b - .
: : states: (x, vy,
y| =1 vsinf _ t((jc;b))
: v Inputs: (v,
9 7 tan ¢
Xy
T
V] < Vmax, @] < Gmax < 5 — Simple car model
7T
(NS {_vmaxavmax}a ‘qb’ S quax < 5 " Reeds-Shepp car
V = Unmax, |@| < Pmax < g ———  Dubins car

References:

* J.-P. Laumond. Robot motion planning and control. 1998.
« S.LaValle. Planning algorithms. 2006.




From kinematic to dynamic models

» Akinematic state space model should be interpreted only as a subsystem of a
more general dynamical model

* Improvements to the previous kinematic models can be made by placing
integrators in front of action variables

* For example, for the unicycle model, one can set the speed as the integration of
an action a representing acceleration, that is

xr=wvcosf, y=wsinf, O0=w, v=a

states: (x,y,0,v) inputs: (w, a)



Linear time-invariant models

In general, x = f(x,u) is nonlinear, which can make it difficult to analyze

Linear time-invariant (LTl) models take the form
x = Ax + Bu
with constant matrices A and B

 Forx = ax with x(0) = x,, the solution is x(t) = xge%t. If @ < 0, the system is
stable, i.e., x(t) converges to zero over time

For x = Ax with x(0) = x,, the solution is x(t) = xget, where e4t is the matrix
exponential

* Analogously to the scalar case, if Real(1) < 0 for each eigenvalue 4 of 4, then
the system is stable



Example: PD control for a double-integrator

* Letx = (s,v) withv = $,and u = /. Then
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* Choose u = —k,s — kqv. Then S
, 0 1
X [_Kp _Kd] X

with eigenvalues 1 = —=4 + %\/Kdz — 4K,. Itk > 0and kg > 0, then

Real(1) < 0 for each eigenvalue, so the cart converges to a stand-stillats = 0

* Thisis nice, can we use linear control tools if the system is non-linear?



Linearization

* Linearization approximates a f(x) 4
nonlinear function f near x by a

line, i.e., linear function

* The “slope” of the line is the
derivative of f at x. The change in

f(x) near x is the slope multiplied
by the distance from x

* The quality of the approximation

can vary with the linearization
point X and distance from x

offset slope delta
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Linearization of non-linear state-space models

 Forthe nonlinear system x = f(x,u), the linearization around (x, i) is

x = f(x,u) +%(9€,ﬂ) (x —x) +%(9€,ﬂ) (u—1u)

A B
Since x and u can be vectors, we generalize derivatives to Jacobian matrices

o If (i, u) is an equilibrium,i.e., f (x,u) = 0, we can consider an LTIl approximation
of the system near (i, u), with state Ax = x — x and input Au = u — u:

Ax = AAx + BAu

* When (x,u) is near (X, ), we can use tools from linear systems analysis and
control on nonlinear systems -- more on this later with LQR control!



Example: Inverted pendulum

* The dynamics are described by m#26 = mg¥sin 6 + u.
In state space form with x = (6, 6), they are

. mg
¢ =flx,u) = 7
x=flxu _<‘%sin6’+m1£2u>

* Since (x,u) = 0is an equilibrium, the linearization here is
() =13, Heell )
- %H+u - g/{ 0 1/m£2

* Thisis close to a double-integrator! We could try ﬁu = — (% + Kp) 6 — x40 to

stabilize the pendulum near the upright equilibrium




Example: Inverted pendulum

« Wetry——u = — (% + Kp) 6 — K40 to stabilize the

me2
pendulum near the upright equilibrium:

Kn=1,Kqg=1
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* We will later discuss how we actually simulate this

system on a computer




Next time

x =sin(t)?x, x(0) = 1, At=0.5
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