Principles of Robot Autonomy I

State space dynamics - definitions and modeling

Agenda

- State space dynamics

- Definitions
- Modeling (kinematic and dynamic models)
- Special case: LTI systems and linearization
- Readings
- B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. Robotics: Modelling, Planning, and Control. Springer, 2008 (chapter 11)
- Chapter 1 in PoRA lecture notes

State space models

- We can control a robot through the inputs to the system (e.g., motor torques, rotor thrusts, etc.)
- The state of a robot is a collection of variables (e.g., position, velocity) that change over time in response to the inputs
- A state space model

$$
\dot{x}=f(x, u)
$$

is a mathematical description of how the state x evolves over time (i.e., \dot{x} or $d x / d t$) in response to the inputs u

Example: double-integrator

- Suppose we can control the force pushing on a cart
- Newton's second law tells us that

$$
F=m \ddot{s}
$$

- Let $x=(s, v)$ with $v=\dot{s}$, and $u=F / m$. Then we can write

$$
\dot{x}=\binom{v}{u}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u}_{f(x, u)}
$$

Kinematic models

- Kinematic models are mathematical models that describe the motion of a system without consideration of forces
- Kinematic models typically result from geometric constraints on the motion of a system, before considering any forces
- For example, the "unicycle" with generalized coordinates $q=(x, y, \theta)$ should not slip sideways, i.e.,

$$
\binom{\dot{x}}{\dot{y}} \cdot\binom{\sin \theta}{-\cos \theta}=0
$$

Holonomic and nonholonomic constraints

- More broadly, constraints on degrees of freedom come in various forms:
$\underbrace{h(q)=0}_{\text {holonomic }} \quad \underbrace{g(q, \dot{q})=0}_{\text {nonholonomic }} \quad \underbrace{G(q) \dot{q}=0}_{\text {semi-holonomic / Pfaffian }}$

Pfaffian constraints are a special, yet common case of nonholonomic constraints

- If $G(q)$ has k rows (constraints) and d columns (DOFs), then

$$
\dot{q}=\sum_{j=1}^{d-k} u_{j} b_{j}(q)=\left[\begin{array}{llll}
b_{1}(q) & b_{2}(q) & \cdots & b_{d-k}(q)
\end{array}\right] u=B(q) u
$$

where $\left\{b_{j}(q)\right\}_{j=1}^{d-k}$ is a basis for admissible velocities, i.e., the null space of $G(q)$.

Back to unicycle example

- The "unicycle" with DOFs $q=(x, y, \theta)$ should not slip sideways, i.e.,

$$
\left.\begin{array}{c}
\binom{\dot{x}}{\dot{y}} \cdot\binom{\sin \theta}{-\cos \theta}=0 \\
{\left[\begin{array}{ll}
\sin \theta-\cos \theta & 0
\end{array}\right]} \\
\underbrace{}_{q}
\end{array}\right)
$$

- Physically, $u_{1}=v$ is the forward velocity of the wheel, and $u_{2}=\omega$ is its rotational steering velocity

Unicycle and differential drive models

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right) v+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \omega
$$

$$
\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{c}
\frac{r}{2}\left(\omega_{l}+\omega_{r}\right) \cos \theta \\
\frac{r}{2}\left(\omega_{l}+\omega_{r}\right) \sin \theta \\
\frac{r}{L}\left(\omega_{r}-\omega_{l}\right)
\end{array}\right)
$$

We can alternate between these kinematic models via the one-to-one input mappings:

$$
v=\frac{r}{2}\left(\omega_{r}+\omega_{l}\right) \quad \omega=\frac{r}{L}\left(\omega_{r}-\omega_{l}\right)
$$

Simple car model

$$
\begin{aligned}
& \left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{\theta}
\end{array}\right)=\left(\begin{array}{c}
v \cos \theta \\
v \sin \theta \\
\frac{v}{L} \tan \phi
\end{array}\right) \\
& |v| \leq v_{\max },|\phi| \leq \phi_{\max }<\frac{\pi}{2} \\
& v \in\left\{-v_{\max }, v_{\max }\right\},|\phi| \leq \phi_{\max }<\frac{\pi}{2} \\
& v=v_{\max },|\phi| \leq \phi_{\max }<\frac{\pi}{2}
\end{aligned}
$$

states: (x, y, θ) inputs: (v, ϕ)
\longrightarrow Simple car model
\longrightarrow Reeds-Shepp car
\longrightarrow Dubins car

References:

- J.-P. Laumond. Robot motion planning and control. 1998.
- S. LaValle. Planning algorithms. 2006.

From kinematic to dynamic models

- A kinematic state space model should be interpreted only as a subsystem of a more general dynamical model
- Improvements to the previous kinematic models can be made by placing integrators in front of action variables
- For example, for the unicycle model, one can set the speed as the integration of an action a representing acceleration, that is

$$
\begin{gathered}
\dot{x}=v \cos \theta, \quad \dot{y}=v \sin \theta, \quad \dot{\theta}=\omega, \quad \dot{v}=a \\
\text { states: }(x, y, \theta, v) \quad \text { inputs: }(\omega, a)
\end{gathered}
$$

Linear time-invariant models

- In general, $\dot{x}=f(x, u)$ is nonlinear, which can make it difficult to analyze
- Linear time-invariant (LTI) models take the form

$$
\dot{x}=A x+B u
$$

with constant matrices A and B

- For $\dot{x}=\alpha x$ with $x(0)=x_{0}$, the solution is $x(t)=x_{0} e^{\alpha t}$. If $\alpha<0$, the system is stable, i.e., $x(t)$ converges to zero over time
- For $\dot{x}=A x$ with $x(0)=x_{0}$, the solution is $x(t)=x_{0} e^{A t}$, where $e^{A t}$ is the matrix exponential
- Analogously to the scalar case, if $\operatorname{Real}(\lambda)<0$ for each eigenvalue λ of A, then the system is stable

Example: PD control for a double-integrator

- Let $x=(s, v)$ with $v=\dot{s}$, and $u=F / m$. Then

$$
\dot{x}=\binom{v}{u}=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{A} x+\underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right] u}_{B}
$$

- Choose $u=-\kappa_{p} s-\kappa_{d} v$. Then

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-\kappa_{p} & -\kappa_{d}
\end{array}\right] x
$$

with eigenvalues $\lambda=-\frac{\kappa_{d}}{2} \pm \frac{1}{2} \sqrt{\kappa_{d}{ }^{2}-4 \kappa_{p}}$. If $\kappa_{p}>0$ and $\kappa_{d}>0$, then
$\operatorname{Real}(\lambda)<0$ for each eigenvalue, so the cart converges to a stand-still at $s=0$

- This is nice, can we use linear control tools if the system is non-linear?

Linearization

- Linearization approximates a $f(x) \uparrow$ nonlinear function f near \bar{x} by a line, i.e., linear function
- The "slope" of the line is the derivative of f at \bar{x}. The change in $f(\bar{x})$ near \bar{x} is the slope multiplied by the distance from \bar{x}
- The quality of the approximation can vary with the linearization
 point \bar{x} and distance from \bar{x}

Linearization of non-linear state-space models

- For the nonlinear system $\dot{x}=f(x, u)$, the linearization around (\bar{x}, \bar{u}) is

$$
\dot{x} \approx f(\bar{x}, \bar{u})+\underbrace{\frac{\partial f}{\partial x}(\bar{x}, \bar{u})}_{A}(x-\bar{x})+\underbrace{\frac{\partial f}{\partial u}(\bar{x}, \bar{u})}_{B}(u-\bar{u})
$$

Since x and u can be vectors, we generalize derivatives to Jacobian matrices

- If (\bar{x}, \bar{u}) is an equilibrium, i.e., $f(\bar{x}, \bar{u})=0$, we can consider an LTI approximation of the system near (\bar{x}, \bar{u}), with state $\Delta x=x-\bar{x}$ and input $\Delta u=u-\bar{u}$:

$$
\dot{\Delta x}=A \Delta x+B \Delta u
$$

- When (x, u) is near (\bar{x}, \bar{u}), we can use tools from linear systems analysis and control on nonlinear systems -- more on this later with LQR control!

Example: Inverted pendulum

- The dynamics are described by $m \ell^{2} \ddot{\theta}=m g \ell \sin \theta+u$. In state space form with $x=(\theta, \dot{\theta})$, they are

$$
\dot{x}=f(x, u)=\binom{\dot{\theta}}{\frac{g}{\ell} \sin \theta+\frac{1}{m \ell^{2}} u}
$$

- Since $(x, u)=0$ is an equilibrium, the linearization here is

$$
\dot{x} \approx\binom{\dot{\theta}}{\frac{g}{\ell} \theta+u}=\left[\begin{array}{cc}
0 & 1 \\
g / \ell & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
1 / m \ell^{2}
\end{array}\right] u
$$

- This is close to a double-integrator! We could try $\frac{1}{m \ell^{2}} u=-\left(\frac{g}{\ell}+\kappa_{p}\right) \theta-\kappa_{d} \dot{\theta}$ to stabilize the pendulum near the upright equilibrium

Example: Inverted pendulum

- We try $\frac{1}{m \ell^{2}} u=-\left(\frac{g}{\ell}+\kappa_{p}\right) \theta-\kappa_{d} \dot{\theta}$ to stabilize the pendulum near the upright equilibrium:

- We will later discuss how we actually simulate this system on a computer

Next time

