
Principles of Robot Autonomy I
Markov localization and EKF-localization
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• Aim
• Markov localization, with an emphasis on EKF localization

• Readings
• Chapter 16 in PoRA lecture notes
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Mobile robot localization

• Problem: determine pose of a robot relative to a given map

m

• Localization can be interpreted as 
the problem of establishing 
correspondence between the map 
coordinate system and the robot’s 
local coordinate frame
• This process requires integration 

of data over time
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Local versus global localization

• Position tracking assumes that the initial pose is known -> local 
problem well-addressed via Gaussian filters
• In global localization, the initial pose is unknown -> global problem 

best addressed via non-parametric, multi-hypothesis filters
• In kidnapped robot localization, initial pose is unknown and during 

operation robot can be “kidnapped” and “teleported” to some other 
location -> global problem best addressed via non-parametric, multi-
hypothesis filters
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Static versus dynamic environments

• Static environments are environments where the only variable 
quantity is the pose of the robot
• Dynamic environments possess objects (e.g., people) other than the 

robot whose locations change over time -> addressed via either state 
augmentation or outlier rejection 
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Passive versus active localization

• In passive localization, localization module only observes the robot; 
i.e., robot’s motion is not aimed at facilitating localization
• In active localization, robot’s actions are aimed at minimizing the 

localization error
• Hybrid approaches are possible
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Single-robot versus multi-robot

• In single-robot localization, a single, individual robot is involved in the 
localization process
• In multi-robot localization, a team of robots is engaged with 

localization, possibly cooperatively

In this class we will focus on local, static (or quasi-static), passive, 
single-robot localization problems 
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Casting the localization problem within a 
Bayesian filtering framework
• State 𝑥! , control 𝑢! and measurements 𝑧! have the same meaning as 

in the general filtering context
• For a differential drive robot equipped with a laser range-finder 

(returning a set of range 𝑟" and bearing 𝜙" measurements)
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Casting the localization problem within a 
Bayesian filtering framework
• A map m is a list of objects in the environment along with their 

properties 

• Maps can be
• Location-based: index 𝑖 corresponds to a specific location (hence, they are 

volumetric)
• Feature-based: index 𝑖 is a feature index, and 𝑚! contains, next to the 

properties of a feature, the Cartesian location of that feature 
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Location-based maps

11/9/21

Vertical cell decomposition Fixed cell decomposition (occupancy grid)
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Feature-based maps
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Topological mapLine-based map

node

edge

AA 174A | Lecture 16



Casting the localization problem within a 
Bayesian filtering framework
• Motion model is probabilistic

• Key fact:
• Useful approximation (tight at high update rates) 
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Consistency of state 
𝑥! with map 𝑚

Uses approximation
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Casting the localization problem within a 
Bayesian filtering framework
• Measurement model is probabilistic

• Sensors usually generate more than one measurement when queried

• Typically, independence assumption is made 
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Markov localization

• Straightforward application 
of Bayes filter
• Requires a map m as input
• Addresses:
• Position tracking
• Global localization
• Kidnapped robot problem
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Markov localization: typical choices 
for initial belief
• Initial belief, 𝑏𝑒𝑙(𝑥#) reflects initial knowledge of robot pose
• For position tracking

• If initial pose is known,

• If partially known,

• For global localization 
• If initial pose is unknown,
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Markov localization: example
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Markov localization: example
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Markov localization: example
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Instantiation of Markov localization

• To make algorithm tractable, we need to add some structure to the 
representation of 𝑏𝑒𝑙(𝑥!); examples:

1. Gaussian representation   <- focus of the rest of this lecture 
2. Particle filter representation
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Extended Kalman filter (EKF) localization

• Key idea: represent belief 𝑏𝑒𝑙(𝑥!) by its first and second moment, i.e., 
𝜇! and Σ!
• We will develop the EKF localization algorithm under the assumptions 

that:
1. A feature-based map is available, consisting of point landmarks

2. There is a sensor that can measure the range 𝑟 and the bearing 𝜙 of the 
landmarks relative to the robot’s local coordinate frame

• Key concepts carry forward to other map / sensing models
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Location of the 
landmark in the global 
coordinate frame
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Range and bearing sensors

• Range & bearing sensors are common: features extracted from range 
scans and stereo vision come with range 𝑟 and bearing 𝜙 information 
• At time t, a set of features is measured (assumed independent) 

• Assuming that the i-th measurement at time t corresponds to the j-th
landmark in the map, the measurement model is

11/9/21

Gaussian noise
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The issue of data association

• Data association problem: uncertainty may exists regarding the 
identity of a landmark
• Formally, we define a correspondence variable between measurement 
𝑧!" and landmark 𝑚$ in the map as (assume 𝑁 landmarks) 

• I           if i-th measurement at time t corresponds to j-th landmark

• if a measurement does not correspond to any landmark 

• Two versions of the localization problem
1. Correspondence variables are known
2. Correspondence variables are not known (usual case)
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EKF localization with known correspondences

• Algorithm is derived from EKF filter
• Assume motion model (in our case, differential drive robot)

• Assume range and bearing measurement model
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EKF localization with known correspondences
• Main difference with EKF filter: 

multiple measurements are 
processed at the same time
• We exploit conditional 

independence assumption

• Such assumption allows us to 
incrementally add the 
information, as if there was zero 
motion in between 
measurements
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Innovation 
covariance

AA 174A | Lecture 16



EKF localization with unknown correspondences

• Key idea: determine the identity of a landmark during localization via 
maximum likelihood estimation, whereby one first determines the 
most likely value of 𝑐!, and then takes this value for granted
• Formally, the maximum likelihood estimator determines the 

correspondence that maximizes the data likelihood

• Challenge: there are exponentially many terms in the maximization 
above!
• Solution: perform maximization separately for each 𝑧!"
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Estimating the correspondence variables

• Step #1: find

• Derivation (sketch) 
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Estimating the correspondence variables

• Performing the algebraic calculations

• Step #2: estimate correspondence as 
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EKF localization with unknown correspondences
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Correspondence 
estimation

• Same as before, plus the 
inclusion of a maximum 
likelihood estimator for the 
correspondence variables
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Next time
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