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Agenda

 Agenda
» Basic concepts about Bayesian filtering

 Readings:
e Chapter 13in PoRA lecture notes
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Map-based localization

» Key idea: robot explicitly attempts to localize by collecting sensor
data, then updating belief about its position with respect to a map

e TwO main aspects:
e Map representation: how to represent the environment?

 Belief representation: how to model the belief regarding the position within
the map?
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Probabilistic map-based localization

p
e Key idea: represent belief as a

probability distribution
1. Encodes sense of position
2. Maintains notion of robot’s P

uncertainty
* Belief representation:

1. Single-hypothesis vs. multiple
hypothesis P

2. Continuous vs. discretized

e Today we will overview basic
concepts in Bayesian filtering
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Basic concepts in probability

* Key idea: quantities such as sensor measurements, states of a
robot, and its environment are modeled as random variables (RVs)

 Discrete RV: the space of all the values that a random variable X can
take on is discrete; characterized by probability mass function (pmf)

p(X =z) (orp(x), Y p(X=2z)=1

Random variable / \ Specific value T

e Continuous RV: the space of all the values that a random variable X
can take on is continuous; characterized by probability density

function (pdf)
b o0
Pla< X <b) = / p(x) dz, / plx)dr =1

a — 00
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-
Joint distribution, independence, and

conditioning
 Joint distribution of two random variables X and Y is denoted as
plz,y) :=p(X =xand Y =y)
 If Xand Y are independent
p(z,y) = p(z)p(y)

e Suppose we know thatY = y (with p(y) > 0); conditioned on this
fact, the probability that the X’s valueis x is given by

p(m ‘ y) e p(m’ y) Note: if X and Y are independent
/ p(y) p(a? | y) — p(a:)'

Conditional probability
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Law of total probability

e For discrete RVs:

p(z) =) plz,y) =) plz|y)p(y)
e For continuous RVs:

p(z) = / p(z, y)dy = / p(z | y)p(y)dy

* Note: if p(y) = 0, define the productp(x | y)p(y) =0
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Bayes’ rule

» Key relation between p(x | y) and its “inverse,” p(y | x)
e For discrete RVs:

P\Y | L )P\ZL P\Y | L )P\L
o(z|y) = ylz)p(z)  ply|z)p(z)

p(y) > plylz)p(a’)

 For continuous RVs:

ply|lz)p(z)  ply|z)p(z)
p(yv)  [py|z)p(z')da’

p(z|y) =
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Bayes’ rule and probabilistic inference

e Assume x is a quantity we would like to infer from y

* Bayes rule allows us to do so through the inverse probability, which
specifies the probability of data y assuming that x was the cause

Posterior probability distribution AP}ior probability distribution
\p(w) _ ply|z)p(z)
N [l p(‘y ‘ Ef)p($f) dﬂ'}f\ Normalizer, does nolt

Data depend onx =1~

* Notational simplification
p(z|y) =np(y|z)p(z)
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More on Bayes' rule and independence

 Extension of Bayes rule: conditioning Bayes rule on Z=z gives

p(y |z, 2)p(z|2)

p(y|2)
» Extension of independence: conditional independence

p(z|y,z) =

p(z|z) =p(x|zy)

p(z,y|z) =p(z|z)p(y|z),  equivalent to { p(y|z) = ply| 2, )

* Note: in general

p(z,y|z) =p(z|2)p(y|2) =5 p(z,y) = p(z)D(Y)

p(z,y) = p(z)p(y) == p(z,y|2) =p(z|2)p(y|2)
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Expectation of a RV

* Expectationis a linear operator: FlaX + bl =a FE|X|+b
* Expectation of a vector of RVs is simply the vector of expectations

e Covariance

cov(X,Y) = E[(X — E[X))(Y — E[Y))T] = E[XYT] — E[X]E[Y]T
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Model for robot-environment interaction

* Two fundamental types of robot-environment interactions: the robot
can influence the state of its environment through control actions, and
gather information about the state through measurements

e State x;: collection at time t of all aspects of the robot and its
environment that can impact the future
e Robot pose (e.g., robot location and orientation)
e Robot velocity
 Locations and features of surrounding objects in the environment, etc.

o Useful notation:T¢,:ty = Ty, T 41, Tt 42y« - Tty

A state x; is called complete if no variables prior to x; can influence the
evolution of future states = Markov property
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Measurement and control data

e Measurement data z;: information about state of the environment at
time t; useful notation

ztl:tz .= Ztl 7 zt1—|—11 zt1—}—21 e ztz

e Control data u;: information about the change of state at time t; useful
notation

utl:tz .= utlﬂutl—i—lﬂ u’il—l—Qﬂ R !utz
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State equation

* General probabilistic generative model

P(ﬂ’?t | L0:t—1y Z1:t—1; ’Hl:t)

. Convention: first take control
action and then take measurement

» Key assumption: state is complete (i.e., the Markov property holds)

- P(ﬂ?t | L0:t—1y 21:t—1; ’Url:t) — P(ﬂ?t | L1, ’Urt)
State transition probability

 In other words, we assume conditional independence, with respect
to conditioning on x;_4
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Measurement equation and
overall stochastic model

e Assuming x; is complete

/P(Zt | LO:ty 21:t—131 ’tﬂ1:t) — P(Zt | %)

Measurement probability

* Overall dynamic Bayes Ti1 {2 ) > Ti41
network model (also
referred to as hidden
Markov model) @

@ 16

11/16/2023 AA 174A | Lecture 14



Belief distribution

 Belief distribution: reflects internal knowledge about the state

» A belief distribution assigns a probability to each possible
hypothesis with regard to the true state

e Formally, belief distributions are posterior probabilities over state
variables conditioned on the available data

bel(ﬂjt) = p(i?t | Z1:ts ul:t)
 Similarly, the prediction distribution is defined as

bel(q}t) == p(:}:t | Z1:t—1, ’Ul:t)
e Calculating bel(x,) from bel (x;) is called correction or
measurement update
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Bayes filter algorithm

e Bayes’ filter algorithm: most general algorithm for calculating beliefs
e Key assumption: state is complete

Update rule
e Recursive algorithm Data: bel(z;_1),us, 2 /
* Step 1 (prediction): Result: bel(x;)
compute bel (x;) foreach z; do
e Step 2 (measurement update): Q(mt) — fp(mt | g, To1) bel(z4—1) dTy_1;
compute bel(x;) bel(x) = 1 p(z; | 1) bel (1);

 Algorithm initialized with bel(x;)  end
(e.g., uniform or points mass) Return bel(z;)
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Derivation: measurement update

bel(xt) = p(t | 1.4, U1:t)

p(zt Lty Z1:t—1, Ul:t)p(ft | Zl:t—1; ul:t)

— Bayes rule
p(Zt | ol 1 ul:t)
L - - -f
ey
— frl’p(zt | It) E(It | Z1:t—1; ulitl Markov property
BV
=bel(xz:)
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Derivation: correction update

E(It) — P(It | Z1:t—15 ul:t)

— /p(xt | Ti—15 L14—1; Ul:t)p(ft—l | <1:it—1 ulit)dmt_l Ei)lability

= /p(-ft | T, u) P(Ti—1 | 21:0—1, Ur:t) dTy_q Markov

o d For general output feedback
— p(xt | Lt—1, ut)p(xt—l | Z1:t—1, U*lit—l) LTt—1 policies, u, does not provide
additional information on x;_4

— /p(:};t | i1, ug) bel(xe—1) day—q
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Discrete Bayes’ filter

e Discrete Bayes' filter algorithm: applies to problems with finite state

spaces
. Data: {pk,t—l}a Ut, 2t
o Bel|ef bel(xt) Result: {pk,t}
represented dsS pmf foreach k do
{pk,t} Pt = Zz p(Xs = x| ug, Xp1 = $i)pi,t—1§
Pt = NPzt | Xt = k) Dyt
end

Return {pg+}
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Next time
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