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Agenda

* Agenda
 Extracting information from sensor measurements

* Readings:

* Chapters 11 in PoRA lecture notes
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Last lecture: Recap

* Image processing, feature detection and description, such as:
 Correlation / convolution filtering operations (left figure)
 Feature descriptors for detecting salient keypoints (right figure)

Keypoints from e.g., SIFT
Canny edge detector
(filter + convolution)
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Information extraction

* Today's focus: extracting actionable information from images

1. Geometric primitives (e.g., lines and circles): useful, for example, for robot
localization and mapping

2. Scene understanding and object recognition: useful, for example, for
localization within a topological map and for high-level reasoning

Example (Geometric primitive): Example (Scene understanding):
Plane Fitting Object detection

11/1/23 AA 174A | Lecture 12 8



Geometric information extraction

» Geometric feature extraction: extract geometric primitives from
sensor data (e.g., range data)

* Examples: line, circles, corners, planes, etc.

» We focus on line extraction from range data (a quite common task);
other geometric feature extraction tasks are conceptually
analogous

* The two main problems of line extraction from range data

1. Which points belong to which line? = segmentation

2. Given an association of points to a line, how to estimate line parameters?
-> fitting
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Step #2: line fitting

e Goal: fit a line to a set of sensor measurements

* It is useful to work in polar coordinates: y
x =pcosf, y=psinb

* Equation of a line in polar coordinates

* Let P = (p, 8) be an arbitrary point on the line
* Since P, Py, O determine a right triangle

pcos(f —a)=r

* (r,a) are the parameters of the line
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Step #2: line fitting

* Since there is measurement error, the equation of the line is only
approximately satisfied

p; cos(f; — a) =r +d;
Error

* Assume n ranging measurement points
represented in polar coordinates

as (Pi» 9i)
e We want to find a line that best “fits” all
the measurement points
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Step #2: line fitting

 Consider, first, that all measurements are equally uncertain
* Find line parameters (r, ) that minimize squared error

S(r,a) = de — Z(pz cos(f; — a) — r)?

1=1

* Unweighted least squares
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Step #2: line fitting

* Consider, now, the case where each measurement has its own,
unique uncertainty

* For example, assume that the variance for each range measurement
Pi IS oF}

» Associate with each measurement a weight, e.g., w; = 1/}

* Then, one minimizes

S(r,a) = Zwi di = Zwi (p; cos(8; — ) — 1)?
=1 =1
* Weighted least squares
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Step #2: line fitting solution

* Assume that the n ranging measurements are independent
* Solution:

1 D w;p; sin 20; — ﬁ D Zj w;W;p; P4 cos B; sin b . -

o = —atan2
2 (ZZ w; p? cos 20; — ﬁzz D Wil pip; COS(QZ'—I—HJ')) 2

Zz’ W; P4 COS(QZ' — Oé)
D i Wi

T =
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Step #1: line segmentation

* Several algorithms are available
1. Split-and-merge
2. RANSAC
3. Hough-Transform

 We will focus on RANSAC
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R EEEEEEEEE—————S——m—m—m———
RANSAC

 RANSAC: Random Sample Consensus

* General method to estimate parameters of a model from a set of
observed data in the presence of outliers, where outliers should
have no influence on the estimates of the values

* Typical applications in robotics: line extraction from 2D range data,
plane extraction from 3D point clouds, feature matching for
structure from motion, etc.

* RANSAC is iterative and non-deterministic: the probability of finding
a set free of outliers increases as more iterations are used
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R EEEEEEEEE—————S——m—m—m———
RANSAC

Data: Set S consisting of all N points

Result: Set with maximum number of inliers
(and corresponding fitting line)

while i < k£ do

randomly select 2 points from S;

fit line [; through the 2 points; . ;

compute distance of all other points to line /; ; . ) *

construct inlier set, i.e., count number of ) e
points with distance to the line less than ~; . .

store line /; and associated set of inliers; )

t—1i+1 .

end .

Choose set with maximum number of inliers
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R EEEEEEEEE—————S——m—m—m———
RANSAC

Data: Set S consisting of all N points

Result: Set with maximum number of inliers *
(and corresponding fitting line) Ry
while i < k£ do ‘ ‘ %
randomly select 2 points from S; ‘ o 4 &
fit line /; through the 2 points; I N .
compute distance of all other points to line [; ; ] ’ O Z y )
construct inlier set, i.e., count number of e - P
points with distance to the line less than ~; . L ° <
store line /; and associated set of inliers; ‘
i—i+1 ‘ 7
end b/ ayd ‘ .
Choose set with maximum number of inliers )
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R EEEEEEEEE—————S——m—m—m———
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RANSAC iterations

* In principle, one would need to check all possible combinations of 2
points in dataset

 If |S| = N, number of combinationsis N(A;_l) - too many

* However, if we have a rough estimate of the percentage of inliers,
we do not need to check all combinations...
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RANSAC iterations: statistical characterization

* Let w be the percentage of inliers in the dataset, i.e.,

number of inliers

N

w =

* Let p be the desired probability of finding a set of points free of outliers
(typically, p = 0.99)

* Assumption: 2 points chosen for line estimation are selected
independently

* P(both points selected are inliers) = w

« P(atleast one of the selected points is an outlier) =1 —w

« P(RANSAC nevers selects two points that are both inliers) = (1 — w?)¥

2
2
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RANSAC iterations: statistical characterization

e Then minimum number of iterations k to find an outlier-free set
with probability at least p is:

£ .7 log(1—p)
l-p=(01-wd)f=k=
p=(1-w) log(1 — w?)

» Thus if we know w (at least approximately), after k iterations
RANSAC will find a set free of outliers with probability p

* Note:
* k depends only on w, noton N!
* More advanced versions of RANSAC estimate w adaptively
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Semantic information extraction

« Semantic information: higher-level scene information in sensor data
(e.g., images) like objects, their locations, and relationships

* Encompasses a broad class of perception algorithms:
* Object detection, semantic segmentation, object recognition, tracking

» Conceptually: seeks to ground raw sensor data into structured information
useful for downstream robot reasoning and action

Image-based semantic segmentation LiDAR-based semantic segmentation
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Object detection

« Example of semantic extraction: object detection
 Given a source image of an object, localize the object in the target image
* What if the object is rotated, translated, scaled, partially occluded?
 Solution: rely on stable feature detectors / descriptors for object detection

Today's detector Modern detectors
(feature-based, still relevant!) (learned-based, DNNs)
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-
Object detection

* The main problems in feature-based object detection are:
a. Feature matching: detect and match object features across images
b. Modelfitting: fit homography to predict object location in the target image

* Aside on homography

 Mapsplaneinoneimageto
plane in another image

* Relevant forstep "b." above

from Hartley & Zisserman

Projecting bounding box using homography
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Step #1: Detect keypoints

 Goal: Detect stable and salient keypoints of the object

* Will make use of feature detectors and descriptors
* Choicesinclude SIFT, SURF, FAST, BRISK, ORB, amongst others

* Many will work, some more efficiently or reliably depending on the setting
* Inthis example, we use SIFT

rce Image Source Image: Keypoints

S.B.C. o S.2C.

STAPLE M| STAPLE

REMOVER 52 REMOVER

Scale invariance of SIFT
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Step #1: Detect keypoints

 Goal: Detect stable and salient keypoints of the object

* Will make use of feature detectors and descriptors
* Choicesinclude SIFT, SURF, FAST, BRISK, ORB, amongst many others
* Many will work, some more efficiently and/or reliably in a desired setting
* Inthis example, we use SIFT

Source Image: Keypoints Target Image: Keypoints
i AT F

\o v 6 2
IR
3 Pty = o
O < 3]

Q: But, how do we associate
keypoints in the source image
to keypoints in the target image?
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Step #2: Match keypoints

» Goal: Attempt to match keypoints across images

« Matching criterion depends on choice of descriptor
 E.g., SIFT uses L2-norm, while ORB uses Hamming distance
« Threshold match scores to get an initial set of correspondences

Careful, manually set "good" match thresholds

| fster — féwrl] < dmaa

will often produce outliers!
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Step #3: Model fitting and outlier rejection

« Goal: Estimate homography between images and filter outliers

* Another application of RANSAC: fit the model (i.e., homography)
while simultaneously rejecting outlier matches

Given hypothesis homography (H), a keypoint match
Al Al T / T
', 0", 1]" o« p, = Hpp, = H[u, v, 1]

is considered an "inlier" if

\/(U' — ')+ (v = ¥')? < dransac

Matched Keypoints: RANSAC Filtered Correspondences

RANSAC in a nutshell:
1. Find best homography H with the most inliers
2. Reject outliers under best homography H
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Step #4: Detect the object

» Goal: Use homography (H) to localize object in target image

« Simply project object centroid and/or bounding box corners from
source image to target image

 Note: Homographies are expressive but do not maintain parallelism — we may not get a
bounding "box" in the target image! Other transformations (e.g., affine), are possible too

Source Image: Centroid / Bounding Box Target Image: Centroid / Bounding Box
} ™ ‘

%
STAPLE
REMOVER

]T

Pn = [’LL,U, 1
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Object tracking

* Once objects are detected, how can we track them over time?
* Re-running object detection from scratch at each frame can be slow!

* Instead, object tracking exploits existing knowledge of the object (e.g.,
detected position) to track its motion over a sequence of images

 The problem is equivalent to estimating pixel velocities (optical flow)

Sparse optical flow Dense optical flow
(tracking keypoints) (tracking all pixels)
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Object tracking

I(x,y, t) I(x + dx, y + dy, t + dt)
e Intuition: pixel motion is small across frames *.5) (x +dx, y + dy)
o o . . . . O—> O
Assumption: only need to search within a local region displacement = (dx. dy)
time =t time =t + dt
 We can express the optical flow problem as: source
]($’ Y, t) — ](ZE‘ + )T Y + 5y7 t + 5t) Optical flow equation*
o1 o0l o0l ol (9] (9[
(Taylor expansionstep) =2 [ X, 1, + —dx + oy + —Ot — Ve + — = (
(#.9,0) + 50w+ 5 00+ 5 0z T oy T o

* Solving the optical flow equation gives pixel velocities vz, vy

* Many sparse and dense optical flow techniques have been developed, for example, the
Lucas-Kanade method (sparse) and the Gunnar-Farneback method (dense)
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Object recognition

* Object recognition: capability of naming discrete objects in the
world

* Why is it hard? Many reasons, including:

1. Real worldis made of a jumble of objects, which all occlude one another
and appear in different poses

2. Thereis alot of variability intrinsic within each class (e.g., dogs)

* In this class, we will look at two methods:

1. Template matching (classic)
2. Neural network methods (treated as a black box, see next lecture)
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Template matching

* How can we find this guy?

Source: Sanja Fidler
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Template matching

e Slide and compare!

Source: Sanja Fidler
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Template matching

* In practice, remember correlation

I'(z,y) = Fo I_Z ZF@] (z+ i,y +7)

t=—N j=—M
l— Vector representation of filter

. . Vect tation of
- One can equivalently write: I'(x,y) = fT - t; reighborhood patch
? |

* To ensure that perfect matching yields one, we consider normalized
correlation, that is

-t
I£11{] 5
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Template matching

Result:

Source: Sanja Fidler
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Template matching

Result:

Source: Sanja Fidler
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Template matching

* Problem: what if the object in
the image is much larger or
much smaller than our
template?

* Solution: re-scale the image
multiple times, and do
correlation on every size!

* This leads to the idea of image
pyramids
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Image pyramids: scaling down

* Naive solution: keep only some rows and columns
* E.g.: keep every other column to reduce image by 1/2 in width direction

- -

il IHHHM. ..
\lm ” —% . m,l {1

Hn 1 i
““Wi u I "‘ *Hlmnmuuumul(llH“IWu ...... "M

|“””“'” "m” "“||llﬂllllmml||n a

mnmmn|||||n|||u|m|mumumm U H \H

| lfnunnllull!m" »«‘, "" I]W!lnuummw i ""‘" ‘

I ;1\ ‘,“ |“':Mm””;H:i:‘“'“”m""””“”'
{1 =

Source:
Sanja Fidler

11/1/23 AA 174A | Lecture 12 48



Image pyramids: scaling down

* Naive solution: keep only some rows and columns
* E.g.: keep every other column to reduce image by 1/2 in width direction

Source:
Sanja Fidler
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Image pyramids: scaling down

* Solution: blur the image via Gaussian, then subsample
* Intuition: remove high frequency content in the image
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Image pyramids: scaling down

* Solution: blur the image via Gaussian, then subsample
* Intuition: remove high frequency content in the image

Source:
Sanja Fidler
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Image pyramids: scaling down

* Solution: blur the image via Gaussian, then subsample
* Intuition: remove high frequency content in the image

Source:
Sanja Fidler
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Image pyramids

* A sequence of images created with Gaussian blurring and down-
sampling is called a Gaussian pyramid

* The other step is to perform up-sampling (nearest neighbor,
bilinear, bicubic, etc.)
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However, classical methods can be brittle!

* Sensitive to variations in rotation, etc.
* Loss of spatial information
* Lack of robustness (to partial occlusions, deformations, etc.)
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Using learned features

Solution: Use learned features!

* We can use convolutional neural networks (CNNs) to detect and
describe features

 Convolutional neural networks (CNNs): deep learning models for
processing structured grid data, such as images, by using layers of
convolutional operations to automatically learn hierarchical
features and patterns
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Uses in modern computer vision

* Using CNNs for computer vision tasks took
off ~2012 with the success of the AlexNet
architecture for image classification on the
ImageNet dataset

Classification:
Goldfish

* Today, learned features are used in many
applications: image classification, object
detection, image segmentation, object
tracking, image generation etc.

Semantic
segmentation

 Modern models also include GANs,
transformers, etc.
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Next time

Convolution

Pooling Convolution Pooling Fully Fully

Connected Connected

Output Predictions
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