
Principles of Robot Autonomy I
Information extraction
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10/14/21 AA 174A | Lecture 10 2

• Agenda
• Extracting information from sensor measurements

• Readings:
• Chapters 11 in PoRA lecture notes
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Last lecture: Recap

• Image processing, feature detection and description, such as:
• Correlation / convolution filtering operations (left figure)
• Feature descriptors for detecting salient keypoints (right figure)
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Canny edge detector
(filter + convolution)

Keypoints from e.g., SIFT 



Information extraction

• Today's focus: extracting actionable information from images
1. Geometric primitives (e.g., lines and circles): useful, for example, for robot 

localization and mapping
2. Scene understanding and object recognition: useful, for example , for 

localization within a topological map and for high-level reasoning
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Example (Geometric primitive):
Plane Fitting

Example (Scene understanding):
Object detection



Geometric information extraction

• Geometric feature extraction: extract geometric primitives from 
sensor data (e.g., range data)
• Examples: line, circles, corners, planes, etc.
• We focus on line extraction from range data (a quite common task); 

other geometric feature extraction tasks are conceptually 
analogous
• The two main problems of line extraction from range data

1. Which points belong to which line? à segmentation
2. Given an association of points to a line, how to estimate line parameters?  

à fitting
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• It is useful to work in polar coordinates:

• Equation of a line in polar coordinates 
• Let 𝑃 = 𝜌, 𝜃  be an arbitrary point on the line
• Since 𝑃, 𝑃!, 𝑂 determine a right triangle

• 𝑟, 𝛼  are the parameters of the line

Step #2: line fitting 

• Goal: fit a line to a set of sensor measurements
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Step #2: line fitting 

• Since there is measurement error, the equation of the line is only 
approximately satisfied
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Error

• Assume n ranging measurement points 
represented in polar coordinates 
as 𝜌! , 𝜃!
• We want to find a line that best “fits” all 

the measurement points



Step #2: line fitting 

• Consider, first, that all measurements are equally uncertain
• Find line parameters 𝑟, 𝛼 	that minimize squared error 

• Unweighted least squares
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Step #2: line fitting 

• Consider, now, the case where each measurement has its own, 
unique uncertainty
• For example, assume that the variance for each range measurement 
𝜌!  is 𝜎!
• Associate with each measurement a weight, e.g., 𝑤! = 1/𝜎!"

• Then, one minimizes 

• Weighted least squares
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Step #2: line fitting solution
• Assume that the n ranging measurements are independent 
• Solution:
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Step #1: line segmentation

• Several algorithms are available
1. Split-and-merge
2. RANSAC
3. Hough-Transform

• We will focus on RANSAC
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RANSAC

• RANSAC: Random Sample Consensus
• General method to estimate parameters of a model from a set of 

observed data in the presence of outliers, where outliers should 
have no influence on the estimates of the values
• Typical applications in robotics: line extraction from 2D range data, 

plane extraction from 3D point clouds, feature matching for 
structure from motion, etc.
• RANSAC is iterative and non-deterministic: the probability of finding 

a set free of outliers increases as more iterations are used
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC
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RANSAC iterations

• In principle, one would need to check all possible combinations of 2 
points in dataset

• If 𝑆 = 𝑁, number of combinations is  # #$%
"

  à too many

• However, if we have a rough estimate of the percentage of inliers, 
we do not need to check all combinations…
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RANSAC iterations: statistical characterization

• Let 𝑤 be the percentage of inliers in the dataset, i.e.,

• Let 𝑝 be the desired probability of finding a set of points free of outliers 
(typically, 𝑝 = 0.99)

• Assumption: 2 points chosen for line estimation are selected 
independently

• 𝑃 both	points	selected	are	inliers = 𝑤"

• 𝑃 at	least	one	of	the	selected	points	is	an	outlier = 1 − 𝑤"

• 𝑃 RANSAC	nevers	selects	two	points	that	are	both	inliers = 1 − 𝑤" #
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RANSAC iterations: statistical characterization

• Then minimum number of iterations 2𝑘 to find an outlier-free set 
with probability at least 𝑝 is:

• Thus if we know 𝑤 (at least approximately), after 2𝑘 iterations 
RANSAC will find a set free of outliers with probability 𝑝

• Note:
• B𝑘 depends only on  𝑤, not on 𝑁!
• More advanced versions of RANSAC estimate 𝑤 adaptively 
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Semantic information extraction

• Semantic information: higher-level scene information in sensor data 
(e.g., images) like objects, their locations, and relationships

• Encompasses a broad class of perception algorithms:
• Object detection, semantic segmentation, object recognition, tracking
• Conceptually: seeks to ground raw sensor data into structured information 

useful for downstream robot reasoning and action
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Image-based semantic segmentation LiDAR-based semantic segmentation



Object detection

• Example of semantic extraction: object detection
• Given a source image of an object, localize the object in the target image
• What if the object is rotated, translated, scaled, partially occluded?
• Solution: rely on stable feature detectors / descriptors for object detection
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Today's detector
(feature-based, still relevant!)

Modern detectors
(learned-based, DNNs)



Object detection

• The main problems in feature-based object detection are:
a. Feature matching: detect and match object features across images
b. Model fitting: fit homography to predict object location in the target image
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• Aside on homography
• Maps plane in one image to 

plane in another image
• Relevant for step "b." above

Projecting bounding box using homography



Step #1: Detect keypoints

• Goal: Detect stable and salient keypoints of the object
• Will make use of feature detectors and descriptors

• Choices include SIFT, SURF, FAST, BRISK, ORB, amongst others
• Many will work, some more efficiently or reliably depending on the setting
• In this example, we use SIFT
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SIFT

Scale invariance of SIFT



Step #1: Detect keypoints

• Goal: Detect stable and salient keypoints of the object
• Will make use of feature detectors and descriptors

• Choices include SIFT, SURF, FAST, BRISK, ORB, amongst many others
• Many will work, some more efficiently and/or reliably in a desired setting
• In this example, we use SIFT
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Q: But, how do we associate 
keypoints in the source image 
to keypoints in the target image?



Step #2: Match keypoints

• Goal: Attempt to match keypoints across images
• Matching criterion depends on choice of descriptor

• E.g., SIFT uses L2-norm, while ORB uses Hamming distance
• Threshold match scores to get an initial set of correspondences
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Careful, manually set "good" match thresholds

will often produce outliers!



Step #3: Model fitting and outlier rejection

• Goal: Estimate homography between images and filter outliers
• Another application of RANSAC: fit the model (i.e., homography) 

while simultaneously rejecting outlier matches
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Given hypothesis homography (H), a keypoint match

is considered an "inlier" if

RANSAC in a nutshell:
1. Find best homography H with the most inliers
2. Reject outliers under best homography H



Step #4: Detect the object

• Goal: Use homography (H) to localize object in target image
• Simply project object centroid and/or bounding box corners from 

source image to target image
• Note: Homographies are expressive but do not maintain parallelism – we may not get a 

bounding "box" in the target image! Other transformations (e.g., affine), are possible too
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Object tracking

• Once objects are detected, how can we track them over time?
• Re-running object detection from scratch at each frame can be slow!
• Instead, object tracking exploits existing knowledge of the object (e.g., 

detected position) to track its motion over a sequence of images
• The problem is equivalent to estimating pixel velocities (optical flow)
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Sparse optical flow
(tracking keypoints)

Dense optical flow
(tracking all pixels)



Object tracking

• Intuition: pixel motion is small across frames
• Assumption: only need to search within a local region

• We can express the optical flow problem as:

• Solving the optical flow equation gives pixel velocities    ,
• Many sparse and dense optical flow techniques have been developed, for example, the 

Lucas-Kanade method (sparse) and the Gunnar-Farneback method (dense)
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(Taylor expansion step)

Optical flow equation*

source

https://nanonets.com/blog/optical-flow/


Object recognition
• Object recognition: capability of naming discrete objects in the 

world 
• Why is it hard? Many reasons, including:

1. Real world is made of a jumble of objects, which all occlude one another 
and appear in different poses

2. There is a lot of variability intrinsic within each class (e.g., dogs)

• In this class, we will look at two methods:
1. Template matching (classic)
2. Neural network methods (treated as a black box, see next lecture)
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Template matching

• How can we find this guy?
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Source: Sanja Fidler 



Template matching

• Slide and compare!
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Image I

Filter F

Source: Sanja Fidler 



Template matching

• In practice, remember correlation:

• One can equivalently write: 𝐼! 𝑥, 𝑦 = 𝐟" ⋅ 𝐭#$ 

• To ensure that perfect matching yields one, we consider normalized 
correlation, that is

𝐼! 𝑥, 𝑦 =
𝐟" ⋅ 𝐭#$
𝐟 𝐭#$
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Vector representation of filter

Vector representation of 
neighborhood patch 



Template matching

Result:
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Template matching

Result:
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Source: Sanja Fidler 



Template matching

• Problem: what if the object in 
the image is much larger or 
much smaller than our 
template?

• Solution: re-scale the image 
multiple times, and do 
correlation on every size!

• This leads to the idea of image 
pyramids
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Image pyramids: scaling down
• Naïve solution: keep only some rows and columns
• E.g.:  keep every other column to reduce image by 1/2 in width direction
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Source: 
Sanja Fidler 



Image pyramids: scaling down
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Source: 
Sanja Fidler 

• Naïve solution: keep only some rows and columns
• E.g.:  keep every other column to reduce image by 1/2 in width direction



Image pyramids: scaling down
• Solution: blur the image via Gaussian, then subsample
• Intuition: remove high frequency content in the image
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Source: 
Sanja Fidler 



Image pyramids: scaling down
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• Solution: blur the image via Gaussian, then subsample
• Intuition: remove high frequency content in the image

Source: 
Sanja Fidler 



Image pyramids: scaling down
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• Solution: blur the image via Gaussian, then subsample
• Intuition: remove high frequency content in the image

Source: 
Sanja Fidler 



Image pyramids 

• A sequence of images created with Gaussian blurring and down-
sampling is called a Gaussian pyramid

• The other step is to perform up-sampling (nearest neighbor, 
bilinear, bicubic, etc.)
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However, classical methods can be brittle!

• Sensitive to variations in rotation, etc.
• Loss of spatial information
• Lack of robustness (to partial occlusions, deformations, etc.)
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Using learned features

• We can use convolutional neural networks (CNNs) to detect and 
describe features

• Convolutional neural networks (CNNs): deep learning models for 
processing structured grid data, such as images, by using layers of 
convolutional operations to automatically learn hierarchical 
features and patterns
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Solution: Use learned features!



Uses in modern computer vision

• Using CNNs for computer vision tasks took 
off ~2012 with the success of the AlexNet 
architecture for image classification on the 
ImageNet dataset

• Today, learned features are used in many 
applications: image classification, object 
detection, image segmentation, object 
tracking, image generation etc.

• Modern models also include GANs, 
transformers, etc.
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Classification:
Goldfish

Semantic 
segmentation



Next time
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