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Image processing, feature detection, and feature description
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From 3D world to 2D images

* So far we have focused on mapping 3D objects onto 2D images and
on leveraging such mapping for calibration / scene reconstruction

* Next step: how to represent images and infer visual content?
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Agenda

* Agenda

* Fundamental tools in image processing for filtering and detecting similarities
* Basic methods to detect and describe key features in images

* Readings:
* Chapters 10 and 11 in PoRA lecture notes
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How to represent images?
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Image processing pipeline
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Signal treatment / filtering

Feature detection (e.g., DoG)

Feature description (e.g., SIFT)

Higher-level processing



Image filtering

* Filtering: process of accepting / rejecting certain frequency
components

* Starting point is to view images as functions I: |a, b]X|c,d] — [0, L],
where [(x, y) represents intensity at position (x, y)

* A color image would give rise to a vector function with 3 components
j
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Spatial filters

* A spatial filter consists of
1. Aneighborhood S, of pixels around the point (x, y) under examination
2. A predefined operation F that is performed on the image pixels within Sy,
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Linear spatial filters

* Filters can be linear or non-linear
* We will focus on linear spatial filters

N M
I'(z,y)=Fol= ) Y F(i,j)I(x+i,y+]j)
I i=—N j=—M \

Filtered image Filter mask Original image

* Filter F (of size (2N + 1)X(2M + 1)) is usually called a mask, kernel,
or window

* Dealing with boundaries: e.g., pad, crop, extend, or wrap
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Filter example #1: moving average

* The moving average filter returns the average of the pixels in the mask
* Achieves a smoothing effect (removes sharp features)
e E.g., for a normalized 3X3 mask

1 1
1
. 1 1_

Generated with a 5x5 mask
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Filter example #2: Gaussian smoothing

e Gaussian function

2 2
Gy(z,y) = : eXp( = +y)

2mo? 202
* To obtain the mask, sample the function about its center
e E.g., for a normalized 3%X3 mask with o = 0.85

1 1 2 1
1 2 1
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Convolution

e Still a linear filter, defined as

I'(z, F*I—Z ZF’LJ (x—1,y—7)

—N j=—M
 Same as correlation, but Wlth negative signs for the filter indices

* Correlation and convolution are identical when the filter is symmetric
* Convolution enjoys the associativity property

Fx(GxI)=(FxG)xI

* Example: smooth image & take derivative = convolve derivative filter
with Gaussian filter & convolve the resulting filter with the image
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Differentiation

 Derivative of discrete function (centered difference)

ol
81 1
gy ~ @yt —Izy-1) F _01

* Derivative as a convolution operation; e.g., Sobel masks:

Along x direction Along y direction
1 0 -1 1 2 1
Sa: — {2 0 =2 Sy — 0 0 0 :\:‘Osgg\r:;?jlfisoire mirrored
1 0 -1 -1 -2 -1
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Similarity measures

* Filtering can also be used to determine similarity across images (e.g.,
to detect correspondences)

SAD = Z Z [1(z+i,y+7) — IQ(;B’ +4,9 +7)] Sum of absolute differences

t=—nj=—m

n m
SSD = Z: Z: [Il (:C + 1,y + ]) — IQ(IE’ + 1, ’y, + _])]2 Sum of squared differences

t=—nj=—m
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Detectors

* Goal: detect local features, i.e., image patterns that differ from
immediate neighborhood in terms of intensity, color, or texture

 We will focus on

* Edge detectors
e Corner detectors

10/31/23 AA 174A | Lecture 11



Use of detectors/descriptors: examples

Stereo reconstruction Estimating homographic transformations
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Edge detectors

* Edge: region in an image where there is a significant change in
intensity values along one direction, and negligible change along the
orthogonal direction

In 1D

Magnitude of 15t order derivative is large,
2" order derivative is equal to zero

\
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Criteria for “good” edge detection

e Accuracy: minimize false positives and negatives

* Localization: edges must be detected as close as possible to the true
edges

 Single response: detect one edge per real edge in the image
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Strategy to desigh an edge detector

* Two steps:
1. Smoothing: smooth the image to reduce noise prior to differentiation (step 2)

2. Differentiation: take derivatives along x and y directions to find locations with
high gradients
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1D case: differentiation without smoothing
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1D case: differentiation with smoothing

Sigma = 50

Signal

Edges occur at
maxima or
minima of s'(x)
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A better implementation

 Convolution theorem:

Signal
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Edge detection in 2D

1. Find the gradient of smoothed image in both directions

—— %*(GG*I) (%*Ga)*f Gooxl S,
: %*(G"*I) ((%*GG)*I

Goyx1 Sy

2. Compute the magnitude |V.S| = \/Sg + S% and discard pixels
below a certain threshold

1. Non-maximum suppression: identify local maxima of |VS|
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Derivative of Gaussian filter
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Canny edge detector

VS‘ |VS| > h Suppression
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Corner detectors

Key criteria for “good” corner detectors

1. Repeatability: same feature can be found in multiple images despite
geometric and photometric transformations

2. Distinctiveness: information carried by the patch surrounding the
feature should be as distinctive as possible
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Repeatability

Without repeatability, matching is impossible
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Distinctiveness

Without distinctiveness, it is not possible to establish reliable
correspondences; distinctiveness is key for having a useful descriptor
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Finding corners

* Corner: intersection of two or more edges

* Geometric intuition for corner detection: explore how intensity
changes as we shift a window

V)

L\
b

E i

Flat: no changes in Edge: no change along Corner: changes in
any direction the edge direction all directions
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Harris detector: example
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Properties of Harris detectors

* Widely used

* Detection is invariant to
* Rotation -> geometric invariance
* Linear intensity changes -> photometric invariance

* Detection is not invariant to /
* Scale changes f — /
* Geometric affine changes /
Corner
|

All points classified as edges!
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Properties of Harris detectors

* Widely used

* Detection is invariant to
* Rotation -> geometric invariance
* Linear intensity changes -> photometric invariance

* Detection is not invariant to /
* Scale changes / —) /
* Geometric affine changes
Corner
mm) Scale-invariant detection, such as /

. . All points classified as edges!
1. Harris-Laplacian

2. in SIFT (specifically, Difference of Gaussians (DoG))
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Descriptors

* Goal: describe keypoints so that we can compare them across images or
use them for object detection or matching

* Desired properties:
* Invariance with respect to pose, scale, illumination, etc.
* Distinctiveness
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Simplest descriptor

* Naive descriptor: associate with a given keypoint an nXm window of
pixel intensities centered at that keypoint

 Window can be normalized to make it invariant to illumination

Main drawbacks

1. Sensitive to pose
2. Sensitive to scale
3. Poorly distinctive
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Popular detectors / descriptors

 SIFT (Scale-Invariant Feature Transformation)
* Invariant to rotation and scale, but computationally demanding
 SIFT descriptoris a 128-dimensional vector!

* SURF
* FAST
* BRIEF
* ORB
* BRISK
* LIFT
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A different paradigm:
using CNNs to detect and describe features
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Next time
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