Principles of Robot Autonomy I

Camera models and camera calibration

Agenda

- Agenda
- Perspective projections
- Camera calibration
- Basic concepts in 3D reconstruction
- Readings:
- Chapter 8 in PoRA lecture notes

Perspective projection

- Goal: find how world points map in the camera image
- Assumption: pinhole camera model (all results also hold under thin lens model, assuming camera is focused at ∞)

Roadmap:

1. Map P_{c} into p (image plane)
2. Map p into (u, v) (pixel coordinates)
3. Transform P_{w} into P_{c}

Step 1

- Task: Map $P_{c}=\left(X_{C}, Y_{C}, Z_{C}\right)$ into $p=(x, y)$ (image plane)
- From before

$$
\left\{\begin{array}{l}
x=f \frac{X_{C}}{Z_{C}} \\
y=f \frac{Y_{C}}{Z_{C}}
\end{array}\right.
$$

Step 2.a

- Actual origin of the camera coordinate system is usually at a corner (e.g., top left, bottom left)

$$
\tilde{x}=f \frac{X_{C}}{Z_{C}}+\tilde{x}_{0}, \quad \tilde{y}=f \frac{Y_{C}}{Z_{C}}+\tilde{y}_{0}
$$

Step 2.b

- Task: convert from image coordinates (\tilde{x}, \tilde{y}) to pixel coordinates (u,v)
- Let k_{x} and k_{y} be the number of pixels per unit distance in image coordinates in the x and y directions, respectively

$$
\begin{aligned}
& \begin{array}{l}
u=k_{x} \tilde{x}=\overbrace{k_{x} f \frac{X_{C}}{Z_{C}}}^{\overbrace{k_{x}}^{\alpha}} \overbrace{z_{0}}^{u_{0}} \\
v=k_{y} \tilde{y}=\underbrace{k_{y} f}_{\beta} \frac{Y_{C}}{Z_{C}}+\underbrace{k_{y} \tilde{y}_{0}}_{v_{0}}
\end{array} \Rightarrow \begin{array}{l}
u=\alpha \frac{X_{C}}{Z_{C}}+u_{0} \\
v=\beta \frac{Y_{C}}{Z_{C}}+v_{0}
\end{array} \\
& \text { Nonlinear transformation }
\end{aligned}
$$

Homogeneous coordinates

- Goal: represent the transformation as a linear mapping
- Key idea: introduce homogeneous coordinates

```
Inhomogenous -> homogeneous
```

$$
\binom{x}{y} \Rightarrow \lambda\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right) \quad\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \Rightarrow \lambda\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right) \quad\left(\begin{array}{c}
x \\
y \\
w
\end{array}\right) \Rightarrow\binom{x / w}{y / w} \quad\left(\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right) \Rightarrow\left(\begin{array}{c}
x / w \\
y / w \\
z / w
\end{array}\right)
$$

Perspective projection in homogeneous coordinates

- Projection can be equivalently written in homogeneous coordinates

Camera matrix/
Matrix of intrinsic parameters

- In homogeneous coordinates, the mapping is linear:

Point p in homogeneous $\quad p^{h}=\left[\begin{array}{ll}K & 0_{3 \times 1}\end{array}\right] P_{C}^{h}$ Point P_{c} in homogeneous pixel coordinates camera coordinates

Skewness

- In some (rare) cases

$$
K=\left[\begin{array}{ccc}
\alpha & \gamma^{2} & u_{0} \\
0 & \beta & v_{0} \\
0 & 0 & 1
\end{array}\right]^{\prime} \text { parameter }
$$

- When is $\gamma \neq 0$?
- x - and y-axis of the camera are not perpendicular (unlikely)
- For example, as a result of taking an image of an image
- Five parameters in total!

Step 3

- In previous lecture, we have derived a mapping between a point P in the 3D camera reference frame to a point p in the 2D image plane
- Last step is to include in our mapping an additional transformation to account for the difference between the world frame and the 3D camera reference frame

Rigid transformations

$$
\begin{aligned}
& P_{C}=t+q \\
& q=R P_{W}
\end{aligned}
$$

where R is the rotation matrix relating camera and world frames

$$
\begin{aligned}
& R=\left[\begin{array}{lll}
i_{W} \cdot i & j_{W} \cdot i & k_{W} \cdot i \\
i_{W} \cdot j & j_{W} \cdot j & k_{W} \cdot j \\
i_{W} \cdot k & j_{W} \cdot k & k_{W} \cdot k
\end{array}\right] \\
& \Rightarrow P_{C}=t+R P_{W}
\end{aligned}
$$

Rigid transformations in homogeneous coordinates

$$
\begin{aligned}
& \qquad\binom{P_{C}}{1}=\left[\begin{array}{cc}
R & t \\
0_{1 \times 3} & 1
\end{array}\right]\binom{P_{W}}{1} \\
& \begin{array}{l}
\text { Point } P_{c} \text { in homogeneous } \\
\text { coordinates }
\end{array} \\
& \begin{array}{l}
\text { Point } P_{w} \text { in homogeneous } \\
\text { coordinates }
\end{array}
\end{aligned}
$$

Perspective projection equation

- Collecting all results

$$
p^{h}=\left[\begin{array}{ll}
K & 0_{3 \times 1}
\end{array}\right] P_{C}^{h}=K\left[\begin{array}{ll}
I_{3 \times 3} & 0_{3 \times 1}
\end{array}\right]\left[\begin{array}{cc}
R & t \\
0_{1 \times 3} & 1
\end{array}\right] P_{W}^{h}
$$

- Hence

$$
\text { Projection matrix } M
$$

$$
\left.p^{h}=\underset{K}{K[R,} t\right] P_{W}^{h}
$$

Intrinsic parameters
Extrinsic parameters

- Degrees of freedom: 4 for K (or 5 if we also include skewness), 3 for R, and 3 for t. Total is 10 (or 11 if we include skewness)

Camera calibration: direct linear transformation method

- Goal: find the intrinsic and extrinsic parameters of the camera

Strategy: given known correspondences $p_{i} \leftrightarrow P_{W, i}$, compute unknown parameters K, R, t by applying perspective projection
$P_{W, 1}, P_{W, 2}, \ldots, P_{W, n}$ with known positions in world frame $p_{1}, p_{2}, \ldots, p_{n}$ with known positions in image frame

Step 1

- First consider combined parameters

$$
p_{i}^{h}=M P_{W, i}^{h}, i=1, \ldots, n, \quad \text { where } \quad M=K\left[\begin{array}{ll}
R & t
\end{array}\right]=\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]
$$

- This gives rise to $2 n$ component-wise equations, for $i=1, \ldots, n$

$$
\begin{aligned}
u_{i} & =\frac{m_{1} \cdot P_{W, i}^{h}}{m_{3} \cdot P_{W, i}^{h}} \\
v_{i} & =\frac{m_{2} \cdot P_{W, i}^{h}}{m_{3} \cdot P_{W, i}^{h}}
\end{aligned}
$$

or

$$
\begin{aligned}
& u_{i}\left(m_{3} \cdot P_{W, i}^{h}\right)-m_{1} \cdot P_{W, i}^{h}=0 \\
& v_{i}\left(m_{3} \cdot P_{W, i}^{h}\right)-m_{2} \cdot P_{W, i}^{h}=0
\end{aligned}
$$

Calibration problem

- Stacking all equations together

$$
\tilde{P} m_{\substack{12 \times 1 \text { vector of } \\
\text { unknown coefficients }}} \quad \text { where } m=0,\left[\begin{array}{c}
m_{1}^{T} \\
m_{2}^{T} \\
m_{3}^{T}
\end{array}\right]
$$

- \tilde{P} contains in block form the known coefficients stemming from the given correspondences
- To estimate 11 coefficients, we need at least 6 correspondences

Solution

- To find non-zero solution

$$
\begin{aligned}
\min _{m \in R^{12}} & \|\tilde{P} m\|^{2} \\
\text { subject to } & \|m\|^{2}=1
\end{aligned}
$$

- Solution: select eigenvector of $\tilde{P}^{T} \tilde{P}$ with the smallest eigenvalue
- Readily computed via SVD (singular value decomposition)

Step 2

- Next, we need to extract the camera parameters, i.e., we want to factorize M as

$$
M=\left[\begin{array}{ll}
K R & K t
\end{array}\right]
$$

- This can be done efficiently (indeed, explicitly) by using RQ factorization, whereby the submatrix $\mathrm{M}_{1: 3,1: 3}$ is decomposed into the product of an upper triangular matrix K and a rotation matrix R
- These concepts will be investigated further in Problem 1 in HW3

Measuring depth

Once the camera is calibrated, can we measure the location of a point P in 3D given its known observation p ?

- No: one can only say that P is located somewhere along the line joining p and O !

Issues with recovering structure

Recovering structure

- Structure: 3D scene to be reconstructed by having access to 2D images
- Common methods

1. Through recognition of landmarks (e.g., orthogonal walls)
2. Depth from focus: determines distance to one point by taking multiple images with better and better focus
3. Stereo vision: processes two distinct images taken at the same time and assumes that the relative pose between the two cameras is known
4. Structure from motion: processes two images taken with the same or different cameras at different times and from different unknown positions

Stereopsis, or why we have two eyes

Binocular reconstruction

- Given: calibrated stereo rig and two image matching points p and p^{\prime}
- Find corresponding scene point by intersecting the two rays $\overline{O p}$ and $\overline{O^{\prime} p^{\prime}}$ (process known as triangulation)

Approximate triangulation

- Due to noise, triangulation problem is often solved as finding the point Q with images q and q^{\prime} that minimizes

$$
\underbrace{d^{2}(p, q)+d^{2}\left(p^{\prime}, q^{\prime}\right)}_{\text {Re-projection error }}
$$

Next time: image processing, feature detection \& description

