Principles of Robot Autonomy I
Problem Set 2
Due Friday, October 20 (11:59pm)

Starter code for this homework has been made available online through GitHub. To get started, download
the code by running git clone https://github.com/StanfordASL/AA174a-HW2.git in a terminal window.
You will submit your homework to Gradescope. Your submission will consist of a single pdf with your answers

for written questions (denoted by the 4 symbol), which in this assignment will include a pdf printout of
your Jupyter notebook with all figures included.

Introduction

The goal of this problem set is to familiarize you with algorithms for path planning in constrained environ-
ments (e.g. in the presence of obstacles) and techniques to integrate planning with trajectory generation
and control.

Problem 1: Tracking LQR

This problem needs to be completed in a colab notebook, linked here. You will need to login through
your Stanford email to access the notebook. Please email the CA team or post a question on Ed if
you have trouble accessing it. Go to File — ”Save a copy in Drive” to create your own editable copy of the
notebook.

You will need to follow along Parts 1 through 3 in the notebook and write code in Part 4. Once you are
done with the colab notebook, return to this overleaf to complete the following written questions:

(i) EJ Include a screenshot of the final state of your quadrotor from the visualization output at the end
of Problem 4.

(ii) 4 Why does there exist some ”steady state error” at the end of the trajectory?

(iii) # 1f we found ourselves running up against control limits (i.e., activating the np.clip in the cell above;
this shouldn’t be the case with the numbers given in this problem as written), what could we change
in (a) the tracking LQR formulation, or (b) the computation of the nominal trajectory, to make this
less likely to happen?

(iv) # Even with closed-loop control, we see that the red ”safety bubble” surrounding the quad intersects
the obstacle over a short time interval. What could we do to avoid this?

Problem 2: A* Motion Planning & Path Smoothing

To begin, we will implement an A* algorithm for motion planning, as outlined in pseudocode in Algorithm
1. In particular, we will apply this algorithm to 2D geometric planning problems (state x = (z,y)).

1

https://drive.google.com/file/d/1ivBrVVb-DxSRxtJ5bWa64gjGuxzkDDXB/view?usp=sharing

Stanford University Principles of Robot Autonomy I - Fall 2022

Algorithm 1 A* Motion Planning

Require: xj,;t, Xgoal

1: OINIT (Xinit) > Open set initialized with Xjnis
2: C.INIT(() > Closed set is initially empty
3: SET_COST_-TO_ARRIVE_SCORE (Xipit, 0)
4: SET_EST_COST_THROUGH (Xipit, DISTANCE (Xinit, Xgoa)
5: while O.SIZE > 0 do
6: Xeurrent ¢ LOWEST_EST_COST_THROUGH(O)
7 if Xcurrent = Xgoal then
8: return RECONSTRUCT_PATH
9: end if
10: O.REMOVE (Xcurrent)
11: C.ADD(Xcurrent)
12: for xpcign in NEIGHBORS(Xcurrent) do
13: if Xpeigh in C then
14: continue
15: end if
16: tentative_cost_to_arrive = GET_COST_TO_ARRIVE(Xcyrrent) + DISTANCE (Xcurrent » Xneigh)
17: if Xpcigh not in O then
18: O.ADD(XnCigh)
19: else if tentative_cost_to_arrive > GET_COST_TO_ARRIVE(Xyeigh) then
20: continue
21: end if
22. SET_CAME_FROM (Xpeigh, Xcurrent)
23: SET_COST_TO_ARRIVE(Xpeigh, tentative_cost_to_arrive)
24: SET_EST_COST_THROUGH (Xneigh, tentative_cost_to_arrive + DISTANCE (Xneigh, Xgoal))
25: end for

26: end while
27: return Failure

In this implementation, we will represent the free space by a graph, which is traversed by sampling and
collision-checking states from a deterministic grid. This implementation can be categorized as informed,
deterministic sampling-based planning (informed due to the A* heuristic).

Note: Execute in your VM environment using the system python, as we’ll leverage functions from asl_tb3_1ib.
Ensure Jupyter is installed (if not, run sudo apt install jupyter).

(i) [Implement the remaining functions in astar.py within the Astar class. These functions represent
many of the key functional blocks at play in motion planning algorithms:
e is_free which checks whether a state is collision-free and valid.
e distance which computes the travel distance between two points.
e get_neighbors which finds the free neighbor states of a given state.
e solve which runs the A* motion planning algorithm.
Be sure to read the documentation for every function for a more detailed description. You can test this

implementation in a couple planning environments. To do so, open the associated Jupyter notebook
by running the following command:

$ jupyter notebook sim_astar.ipynb
Please include the plot from the “Simple Environment” section of the notebook in your write-up. In

the “Random Cluttered Environment” section, feel free to play with the number of obstacles and other
parameters of the randomly generated environment.

2

Stanford University Principles of Robot Autonomy I - Fall 2022

Note: Notice that we collision-check states but do not collision-check edges. This saves us some
computation (collision-checking is often one of the most expensive operations in motion planning).
Also, in this case the obstacles are aligned with the grid, so paths will remain collision-free. However,
outside such special circumstances one should add edge collision-checking and/or inflate obstacles to
guarantee collision-avoidance.

(i) EJ In the final segment of Problem 1, we transition from the geometric paths obtained from the A*
algorithm to generating feasible trajectories for our differential drive robot.

Smooth the paths from A* by fitting a cubic spline to the path nodes. Implement this within the
compute_smooth_plan function of sim_astar.ipynb. You may need to use the splrep function from
scipy.interpolate (read through the documentation to understand its usage and parameters).

Since all we have is a geometric path, you should estimate the time for each of the points assuming
that we travel at a fixed speed vq4.s along each segment. Compute the cumulative time along the path
waypoints and use it for spline fitting.

Adjust the smoothing parameter o (denoted s in splrep) to strike a balance between following the
original collision-free trajectory and risking collision for additional smoothness.

Please include the plot generated in the “Smooth Trajectory” section of the notebook in your write-up.

Note: There are many ways to ensure smoothed solutions are collision-free (e.g. collision-checking
smoothed paths and running a dichotomic search on « to find a tight fit against obstacles, or inflating
obstacles in the original planning to give additional room for smoothing). This strategy can be used
on geometric sampling-based planning methods as well.

[Section Prep]: ROS2 Navigation Node

Note: This portion of the homework is not graded, but should be completed before Section on Week 5
(10/23 - 10/27) to test in hardware.

Objective: Implement a Path Planning and Trajectory Tracking Node in ROS2 using A* Algorithm and
Spline Interpolation

Import note: all the URLs are highlighted in blue. Make sure you click into them as they are
important references and documentation!

In this assignment, you are tasked with developing a ROS2 node in Python that utilizes the A* algorithm for
path planning and spline interpolation for trajectory generation and tracking for a TurtleBot3 robot. The
node will be implemented using the rclpy library and will interact with custom messages and utility functions
provided in the asl_tb3_lib and asl_tb3_msgs packages. You will be leveraging your implementations of
A* and path smoothing from Problem 1, as well as your differential flatness tracking controller from HW1
(Problem 2).

First, take a brief look at the navigation.py from asl_tb3_lib. Specifically, you will be implementing the
functions compute_heading_control, compute_trajectory_tracking_control, and compute_trajectory_plan.
In this file, you can also find the definition of the TrajectoryPlan class.

Unlike HW1, you will build your navigation node from scratch for this homework. However, feel free to use
the given code for HW1 as a reference.

Implement the Navigation Node

Step 1 — Create a new node. You can use the same autonomy workspace from HW1. In it, make a new
script at “/autonomy_ws/src/autonomy_repo/scripts/navigator.py. Write the necessary code to create
your own navigator node class by inheriting from BaseNavigator.

Hints:

https://github.com/StanfordASL/asl-tb3-utils/blob/main/asl_tb3_lib/asl_tb3_lib/navigation.py
https://github.com/StanfordASL/asl-tb3-utils/blob/1feca9de2dca9c23afb19117fc29c388528193b4/asl_tb3_lib/asl_tb3_lib/navigation.py#L313
https://github.com/StanfordASL/asl-tb3-utils/blob/1feca9de2dca9c23afb19117fc29c388528193b4/asl_tb3_lib/asl_tb3_lib/navigation.py#L324
https://github.com/StanfordASL/asl-tb3-utils/blob/1feca9de2dca9c23afb19117fc29c388528193b4/asl_tb3_lib/asl_tb3_lib/navigation.py#L341
https://github.com/StanfordASL/asl-tb3-utils/blob/1feca9de2dca9c23afb19117fc29c388528193b4/asl_tb3_lib/asl_tb3_lib/navigation.py#L19
https://github.com/StanfordASL/asl-tb3-utils/blob/1feca9de2dca9c23afb19117fc29c388528193b4/asl_tb3_lib/asl_tb3_lib/navigation.py#L89

Stanford University Principles of Robot Autonomy I - Fall 2022

1. Some examples for importing from asl_tb3_lib,

from asl_tb3_lib.navigation import BaseNavigator
from asl_tb3_lib.math_utils import wrap_angle
from asl_tb3_lib.tf_utils import quaternion_to_yaw

2. Use HW1, section, or this minimal node example as references on how to write the basic structure of
a Python ROS2 node.

3. Make sure this script is a proper executable file (i.e. shebang 4+ executable permission).

4. Register your new node in CMakelLists.txt at the root of your ROS2 package. See for example here.

Step 2 — Implement / Override compute_heading_control. This should be identical to the function
compute_control_with_goal from heading_controller.py in HW1. You may also want to add gain initial-
ization to the __init__ constructor.

Step 3 — Implement / Override compute_trajectory_tracking_control. Migrate and re-structure the
compute_control function in P2_trajectory_tracking.py from HW1. This is not as straightforward as step
2. Use the following hints as a guide:

1. Make sure to understand the data structures TurtleBotControl and TrajectoryPlan.

2. The desired states x_d, xd_d, xdd_d, y_d, yd_d, ydd_d need to be computed differently. Use
scipy.interpolate.splev to sample from the spline parameters given by the TrajectoryPlan argu-
ment.

3. The variable initialization in the constructor (__init__) function also needs to be migrated. Constants
like V_PREV_THRESH also needs to be moved into the constructor.

4. The control limit can be removed since the base navigator class has its built-in clipping logic to prevent
generating unreasonably large control targets.

Step 4 — Implement / Override compute_trajectory_plan. You will borrow / migrate code from the
A* problem (HW2). You don’t need to implement additional logic in this question, but you will need solid
understanding on all the code from Problem 2 in order to move things into the right places. The pseudo
code for this function is detailed in Algorithm 2. Here are some hints for implementing each step of the
algorithm:

1. Make sure you understand everything about the AStar class. The easiest way to implement this step is
to copy the entire class into your navigator node, and directly use it in the compute_trajectory_plan
method. See the notebook sim_astar.ipynb for examples on how to

(a) construct an AStar problem
(b) solve the problem

(¢c) access the solution path
2. See sim_astar.ipynb for examples on how to check if a solution exists.

5. The compute_trajectory_tracking_control method uses some class properties to keep track of the
ODE integration states. What are those variables? How should we reset them when a new plan is
generated?

6. See compute_smooth_plan function from sim_astar.ipynb.
7. See compute_smooth_plan function from sim_astar.ipynb.

8. See the block below compute_smooth_plan on how to construct a TrajectoryPlan.

https://github.com/StanfordASL/asl-tb3-utils/blob/main/asl_tb3_examples/scripts/import_example.py
https://github.com/StanfordASL/asl-tb3-utils/blob/main/asl_tb3_examples/scripts/minimal_node.py
https://github.com/StanfordASL/asl-tb3-utils/blob/1feca9de2dca9c23afb19117fc29c388528193b4/asl_tb3_examples/CMakeLists.txt#L14-L19
https://github.com/StanfordASL/asl-tb3-utils/blob/main/asl_tb3_msgs/msg/TurtleBotControl.msg
https://github.com/StanfordASL/asl-tb3-utils/blob/1feca9de2dca9c23afb19117fc29c388528193b4/asl_tb3_lib/asl_tb3_lib/navigation.py#L19-L31
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splev.html

Stanford University Principles of Robot Autonomy I - Fall 2022

Algorithm 2 Compute Trajectory Plan

Require: state, goal, occupancy, resolution, horizon

1: Initialize A* problem using horizon, state, goal, occupancy, and resolution > A* Path Planning
2: if A* problem is not solvable or length of path < 4 then

3: return None

4: end if

5: Reset class variables for previous velocity and time > Reset Tracking Controller History
6: Compute planned time stamps using constant velocity heuristics > Path Time Computation
7: Generate cubic spline paramteres > Trajectory Smoothing
8:

return a new TrajectoryPlan including the path, spline parameters, and total duration of the path

Create the Launch File

Create a launch file at ~/autonomy_ws/src/autonomy_repo/launch/navigator.launch.py. The launch file
needs to

1. Declare a launch argument use_sim_time and make it defaults to "true”.
2. Launch the following nodes

(a) Noderviz_goal_relay.py from package asl_tb3_lib. Set parameter output_channel to /cmd_nav.
(b) Node state_publisher.py from package asl_th3_lib.
(¢) Node navigator.py from package autonomy_repo (This is your navigator node!). Set parameter

use_sim_time to the launch argument defined above.

3. Launch an existing launch file rviz.launch.py package asl_tb3_sim with the following launch argu-
ments
(a) Set config to the path of your default.rviz.

(b) Set use_sim_time to the launch argument defined above.

Hint: take a look at heading_control.launch.py provided from HW1. You may copy the entire file over
and make some really small changes to satisfy the requirements above. These requirements are mostly just
descriptions of what the previously provided launch file is doing.

