
Joseph Lorenzetti, Marco Pavone

Principles of Robot
Autonomy

OCTOBER 3, 2023

2

Forward

This collection of notes is meant to provide a fundamental understanding of
the theoretical and algorithmic aspects associated with robotic autonomy1. In 1 The field of robotic autonomy is vast

and diverse, encompassing theory and
algorithms from many fields of science,
technology, and engineering. These
notes cannot cover all material and
therefore focuses on the most founda-
tional and widely used techniques.

particular, these notes cover topics spanning the three main pillars of autonomy:
motion planning and control, perception, and decision-making, and also include
some information on useful software tools for robot programming, such as the
Robot Operating System (ROS). By avoiding extremely in-depth discussions on
specific algorithms or techniques, these notes focus on providing a high-level
understanding of the full “autonomy stack” and are a good starting point for
any engineer or researcher interested in robotics. Some other great references
that cover a wide range of robotics topics include:

R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005

While these notes are meant to be as self-contained as is practical, prior
knowledge of several topics is generally assumed. Specifically, familiarity with
the basics of calculus, differential equations, linear algebra, probability and
statistics, and programming is helpful.

Acknowledgments

These notes accompany (and are based largely on the content of) the courses
AA274A: Principles of Robot Autonomy I and AA274B: Principles of Robot Autonomy
II2 at Stanford University. We would therefore like to acknowledge the students 2 Co-taught with Professors Jeannette

Bogh and Dorsa Sadigh.who have taken the course and provided useful feedback since its initial offering
in 2017. Special acknowledgements are also reserved for the course assistants:
AA274A, Winter 2017: Andrew Bylard, Benoit Landry, Ed Schmerling,
AA274A, Winter 2018: Tommy Hu, Benoit Landry, Karen Leung, Ed Schmerling,
AA274A, Winter 2019: Christopher Covert, Amine Elhafsi, Karen Leung, Apoorva
Sharma,
AA274A, Autumn 2019: Andrew Bylard, Boris Ivanovic, Jenna Lee, Toki Migi-
matsu, Apoorva Sharma,
AA274A, Autumn 2020: Somrita Banerjee, Abhishek Cauligi, Boris Ivanovic,
Mengxi Li, Joseph Lorenzetti,
AA274B, Winter 2020: Ashar Alam, Erdem Bıyık, Jenna Lee, Toki Migimatsu,
AA274B, Winter 2021: Erdem Bıyık, Abhishek Cauligi,
who were instrumental in developing and refining the course material. In large
part, additional material for the course such as homework and lectures are also
publicly available3. 3 https://github.com/

PrinciplesofRobotAutonomy/

CourseMaterials

Contents

PA R T I R O B O T M O T I O N P L A N N I N G & C O N T R O L

1 Mobile Robot Kinematics 11

1.1 Generalized Coordinates 13

1.2 Kinematic Constraints 13

1.3 Holonomic and Nonholonomic Constraints 15

1.4 Kinematic Models 16

1.5 Kinematic Models of Wheeled Robots 17

1.6 Dynamic Models 20

2 Open-Loop Motion Planning & Control 23

2.1 Kinematic and Dynamic Models 24

2.2 Optimal Control Problem 25

2.3 Differential Flatness 27

2.4 Exercises 34

3 Closed-Loop Motion Planning & Control 37

3.1 Trajectory Tracking 38

3.2 Closed-loop Control 40

3.3 Exercises 42

4 Optimal Control and Trajectory Optimization 43

4.1 Indirect Methods 44

4.2 Direct Methods 49

4.3 Consistency of Time Discretization 50

4.4 Exercises 51

5 Search-Based Motion Planning 53

5.1 Grid-based Motion Planners 55

5.2 Combinatorial Motion Planning 58

5.3 Exercises 61

4 CONTENTS

6 Sampling-Based Motion Planning 63

6.1 Probabilistic Roadmap (PRM) 64

6.2 Rapidly-exploring Random Trees (RRT) 65

6.3 Theoretical Results for PRM and RRT 66

6.4 Fast Marching Tree Algorithm (FMT*) 67

6.5 Kinodynamic Planning 68

6.6 Deterministic Sampling-Based Motion Planning 69

6.7 Exercises 70

PA R T I I R O B O T P E R C E P T I O N

7 Introduction to Robot Sensors 75

7.1 Sensor Classifications 75

7.2 Sensor Performance 76

7.3 Common Sensors on Mobile Robots 79

7.4 Computer Vision 84

8 Camera Models and Calibration 89

8.1 Perspective Projection 89

8.2 Camera Calibration: Direct Linear Method 94

8.3 Limitations 99

8.4 Exercises 100

9 Stereo Vision and Structure From Motion 101

9.1 Stereo Vision 102

9.2 Structure From Motion (SFM) 106

10 Image Processing 109

10.1 Image Filtering 109

10.2 Image Feature Detection 115

10.3 Image Descriptors 119

10.4 Exercises 119

11 Information Extraction 121

11.1 Geometric Feature Extraction 122

11.2 Object Recognition 128

11.3 Exercises 129

12 Modern Computer Vision Techniques 131

12.1 Convolutional Neural Networks 132

12.2 CNNs for Object Detection and Localization 134

principles of robot autonomy 5

PA R T I I I R O B O T L O C A L I Z A T I O N

13 Introduction to Localization and Filtering 139

13.1 Basic Concepts in Probability 140

13.2 Markov Models 144

13.3 Bayes Filter 146

13.4 Discrete Bayes Filter 148

14 Parametric Filters 151

14.1 Gaussian Distribution 152

14.2 Kalman Filter 153

14.3 Extended Kalman Filter (EKF) 156

14.4 Unscented Kalman Filter 158

14.5 Exercises 158

15 Nonparametric Filters 159

15.1 Histogram Filter 160

15.2 Particle Filter 161

15.3 Exercises 162

16 Robot Localization 165

16.1 A Taxonomy of Localization Problems 166

16.2 Robot Localization via Bayesian Filtering 167

16.3 Markov Localization 170

16.4 Extended Kalman Filter (EKF) Localization 171

16.5 Monte Carlo Localization (MCL) 175

17 Simultaneous Localization and Mapping (SLAM) 177

17.1 EKF SLAM Algorithm 177

17.2 EKF SLAM with Unknown Correspondences 180

17.3 Particle SLAM Algorithm 182

17.4 Exercises 185

18 Sensor Fusion 187

18.1 A Taxonomy of Sensor Fusion 188

18.2 Bayesian Approach to Sensor Fusion 189

18.3 Challenges in Sensor Fusion 191

18.4 Multi-Object Tracking 193

18.5 Gating 193

18.6 Data Association 193

18.7 Track Maintenance 194

18.8 Extended Object Tracking 194

6 CONTENTS

PA R T I V R O B O T D E C I S I O N M A K I N G

19 Finite State Machines 197

19.1 FSM Architectures 200

19.2 Implementation Details 202

19.3 Other Useful Tools 203

20 Sequential Decision Making 205

20.1 Deterministic Decision Making Problem 205

20.2 Stochastic Decision Making Problem 210

20.3 Challenges and Extensions of Dynamic Programming 213

21 Reinforcement Learning 215

21.1 Problem Formulation 216

21.2 Model-based Reinforcement Learning 218

21.3 Model-free Reinforcement Learning 222

21.4 Deep Reinforcement Learning 226

21.5 Exploration vs Exploitation 226

22 Imitation Learning 227

22.1 Problem Formulation 227

22.2 Behavior Cloning 228

22.3 DAgger: Dataset Aggregation 229

22.4 Inverse Reinforcement Learning 229

22.5 Learning From Comparisons and Physical Feedback 235

22.6 Interaction-aware Control and Intent Inference 236

PA R T V R O B O T S O F T WA R E

23 Robot System Architectures 243

23.1 Architecture Structures 244

23.2 Architecture Styles 246

24 The Robot Operating System 249

24.1 Challenges in Robot Programming 249

24.2 Brief History of ROS 250

24.3 Robot Programming with ROS 252

24.4 Writing a Simple Publisher Node and Subscriber Node 255

24.5 Other Features in ROS Development Environment 258

principles of robot autonomy 7

PA R T V I A D VA N C E D T O P I C S I N R O B O T I C S

25 Formal Methods 265

25.1 Linear Temporal Logic 266

25.2 Verification 268

25.3 Reactive Synthesis 269

26 Robotic Manipulation 273

26.1 Grasp Modeling 274

26.2 Grasp Evaluation 278

26.3 Grasp Force Optimization 282

26.4 Learning-Based Approaches to Grasping 284

26.5 Learning-Based Approaches to Manipulation 285

PA R T V I I A P P E N D I C E S

A Machine Learning 291

A.1 Loss Functions 292

A.2 Model Training 293

A.3 Neural Networks 295

A.4 Backpropagation and Computational Graphs 297

Part I

Robot Motion Planning &
Control

1
Mobile Robot Kinematics

Mobile Robot Kinematics

Motion planning and control are fundamental components of robotic auton-
omy1. For example, in order for an autonomous car to move from place to place 1 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

it must plan a trajectory and determine what control inputs, such as throttle
and steering, will enable it to follow the trajectory. Robotic grasping and object
manipulation2 tasks provide another classic example, where motion plans that 2 D. Prattichizzo and J. C. Trinkle.

“Grasping”. In: Springer Handbook of
Robotics. Springer, 2016, pp. 955–988

specify how to grasp an object are executed by controlling actuators. Both of
these components, motion planning and control, require an understanding of
the physical behavior of the robot in order to develop reasonable and action-
able plans and controls. In the context of motion planning and control, a robot’s
physical behavior is characterized by its dynamics and kinematics.

Definition 1.0.1 (Dynamics). A robot’s dynamics describe the relationship between
forces acting on the robot and changes to the robot’s physical state.

In other words, dynamics can be thought of as the result of Newton’s Second
Law (F = ma) in the context of a particular robot. For example, the dynamics of
an autonomous car are characterized by the relationship between its acceleration
and external forces such as tire friction, gravity, and aerodynamics.

Definition 1.0.2 (Kinematics). A robot’s kinematics describe additional restrictions
(constraints) on the robot’s motion that are not induced by forces.

A trivial example of a kinematic constraint is that the rate of change of the
robot’s position must equal its velocity. More generally, a robot’s kinematics
describe limitations on its motion that are a function of the robot’s physical state
or geometry. For example, a robotic arm with multiple joints is kinematically
constrained by the rigid connections at each joint which only allow rotation
about a single axis, and static friction kinematically restricts a robot’s wheels
from moving in the direction parallel to the rotation axis.

We can see from these examples that a robot’s dynamics and kinematics
describe limitations on its motion in different ways3, and are defined by the

3 One simple heuristic for determining
how a particular constraint/relationship
should be classified is to remember that
dynamics are affected by changing the
robot’s mass, while kinematics are not.

robot’s design, geometry, mass, and other physical characteristics. Therefore,

12 mobile robot kinematics

we must first study and understand a particular robot’s dynamics and kine-
matics before we can begin to design motion planning and control algorithms.
Specifically, we should try to answer the following questions:

1. What kinematic constraints are imposed by the robot’s construction and
design, and what constraints are imposed by its interactions with the envi-
ronment?

2. What internal and external forces can act on the robot to make it move?
Which laws of physics are relevant for describing how these forces can cause
motion and deformation of the robot’s physical structure?

3. Are all of the robot’s dynamics and kinematics important or significant? Are
they all relevant to the motion planning and control task we are trying to
accomplish?

4. Which of the dynamics and kinematics relationships can be simplified, ap-
proximated, or ignored to make the motion planning and control task easier?

From the relevant dynamics and kinematics relationships we can produce a
mathematical model of the physical behavior of the robot.

Definition 1.0.3 (Kinematic (Dynamic) Model). A kinematic (dynamic) model is
a mathematical representation4 of the kinematic (dynamic) relationships governing a 4 Typically in the form of a set of

ordinary differential equations.particular robot.

If we determine that it is acceptable to make simplifications to the model,
we might say our model is low-fidelity, and alternatively if we make very few
approximations we might say our model is high-fidelity. In practice, the fidelity
of the model is generally defined through an analysis of the trade-offs between
complexity and accuracy.

For an autonomous car, an extremely high-fidelity model could include en-
gine combustion dynamics, suspension dynamics, tire deformation dynamics,
aerodynamics, and more. Incorporating high-fidelity tire dynamics models may
be critical for accurately capturing the phenomenon of drifting, which is im-
portant for motion planning and control in autonomous racing applications.
However, in an autonomous grocery delivery service application we might find
it beneficial to simplify the model by replacing the tire dynamics with a simple
kinematic constraint that the tires cannot move laterally5, which could simplify 5 This constraint is typically referred to

as a no side-slip constraint, and is very
common in basic vehicle models.

the algorithms needed for planning and control.
In fact, in the context of motion planning and control for robotics, models

built entirely from kinematics can be very useful (and much simpler). For this
reason this chapter specifically focuses on robot kinematics, and in particular:

1. How to express the configuration of a robot in terms of general coordinates

2. How to mathematically express kinematic constraints in terms of general
coordinates

principles of robot autonomy 13

3. How to identify different types of kinematic constraints, namely holonomic
and nonholonomic constraints

4. Examples of kinematic models, specifically for wheeled robots

1.1 Generalized Coordinates

A robot’s physical state (also commonly referred to as its “configuration”) can
usually be represented (i.e. quantified) in different ways. The particular choice
of representation defines a finite set of numbers known as generalized coordinates.

Definition 1.1.1 (Generalized Coordinates). Generalized coordinates refer to a set of
coordinates that can completely specify the unique position of your robot.

For example, the wheel rolling on a plane in Figure 1.1 can be represented
by three parameters, x, y, and θ, where (x, y) indicates the position at which the
wheel touches the ground, and θ indicates the direction the wheel is traveling in
the general frame. This set of parameters (x, y, θ) that define the wheel’s config-
uration are generalized coordinates for this system. Note that in practice people
often use “configuration” and “generalized coordinates” interchangeably, even
though the specific choice of generalized coordinates are not necessarily the
only possible representation of the robot’s configuration.

The generalized coordinates are mathematically expressed by the vector
ξ ∈ Rn, where n is the number of generalized coordinates used to describe the
robot’s configuration. A robot’s motion through time (i.e. its trajectory) is then
expressed by the function

ξ(t) : R→ Rn,

where t denotes time. In the case of the wheel in Figure 1.1 the generalized

coordinate vector would be ξ =
[

x y θ
]⊤

.

Figure 1.1: Generalized co-
ordinates for a wheel rolling
without slipping on a plane.

1.2 Kinematic Constraints

Once a set of generalized coordinates ξ has been identified, they can be used
to mathematically define kinematic constraints that define a robot’s motion. A
more formal definition of general kinematic constraints is first presented:

14 mobile robot kinematics

Definition 1.2.1 (Kinematic Constraints). Let the generalized coordinates of a robot
be denoted as ξ = [ξ1, . . . , ξn]⊤. Constraints that depend on these generalized coordi-
nates and their velocities are called kinematic constraints and are expressed as

ai(ξ, ξ̇) = 0, i = 1, . . . , k < n (1.1)

where ξ̇ = dξ
dt are the velocities.

Kinematic constraints in robotics applications are often linear with respect
to the generalized velocities. Constraints of this kind are referred to as Pfaffian
constraints and are expressed as

a⊤i (ξ)ξ̇ = 0, i = 1, . . . , k < n (1.2)

where ai(ξ) ∈ Rn. For notational simplicity these constraints can be compactly
expressed in matrix form as

A⊤(ξ)ξ̇ = 0, (1.3)

where A(ξ) ∈ Rn×k.

Example 1.2.1 (Pendulum). Figure 1.2 shows a simple pendulum that is as-
sumed to rotate about a fixed pivot point. Let the position of the mass be given
by the Cartesian coordinates (x, y), which can be used as the generalized coordi-
nates for this system (i.e. ξ = [x, y]⊤). Since the rod connecting the pivot point
to the mass is assumed to be rigid this implies a kinematic constraint. Assuming
the pivot point is at the origin (0, 0) this constraint can be expressed as

h1(ξ) = x2 + y2 − L2 = 0, (1.4)

where L is the length of the rod. Note that while this does not appear to be a
Pfaffian constraint, it can be equivalently expressed as one. In particular, con-
sider the derivative of the expression with respect to time, which yields the
Pfaffian constraint

dh1(ξ)

dt
=

dh1(ξ)

dξ
ξ̇ = 2xẋ + 2yẏ = 0, (1.5)

where we make the identification

dh1(ξ)

dξ
=
[
2x 2y

]
:= a⊤1 (ξ).

The satisfaction of (1.5) implies that (1.4) holds for all time as long as the pendu-
lum starts in a state ξ(0) satisfying h1(ξ(0)) = 0.

In this particular case a more natural choice of coordinates would simply be
ξ = [θ], which also fully specifies the system’s configuration and eliminates the
need to enforce additional kinematic constraints. In fact, it can be noted that
since x = L sin θ and y = −L cos θ that the above kinematic constraint is trivially
satisfied for all θ.

Figure 1.2: Generalized coordi-
nates for a simple pendulum.

principles of robot autonomy 15

Example 1.2.2 (No-Slip Wheel). Consider again the wheel illustrated in Fig-
ure 1.1 with generalized coordinates ξ = [x, y, θ]⊤, and assume that there is
a no-slip condition between the wheel and the plane it rolls on. This no-slip
condition means that the velocity component of the wheel in the lateral direc-
tion is always zero. Since the heading of the wheel is given by the unit vector
ev = [cos θ, sin θ]⊤, the lateral direction can be described by the perpendicular
unit vector ev,⊥ = [sin θ, − cos θ]⊤.

Since the velocity vector is v = [ẋ, ẏ]⊤, the no-slip kinematic constraint can be
expressed by the inner product v · ev,⊥ = 0, which is equivalently expressed as

a1(ξ, ξ̇) = ẋ sin θ − ẏ cos θ = 0. (1.6)

Note that this constraint is linear in the generalized velocities (ẋ, ẏ) and there-
fore is a Pfaffian constraint.

1.3 Holonomic and Nonholonomic Constraints

It is useful to further classify different types of kinematic constraints based on
how they restrict the motion of the system. In particular, the most common
classifications for kinematic constraints are holonomic or nonholonomic.

1.3.1 Holonomic Constraints

Holonomic constraints are kinematic constraints that can be expressed as a func-
tion of only the generalized coordinates (without dependence on generalized
velocities). In robotics applications, holonomic constraints generally arise due to
mechanical interconnections, such as rigid links and joints of a robotic arm.

Definition 1.3.1 (Holonomic Constraints). Constraints that can be expressed in the
form

hi(ξ) = 0, i = 1, . . . , k < n (1.7)

are called holonomic.

Additionally, a holonomic system is a system that is only subject to holonomic
constraints. Note that these constraints can always be equivalently expressed as
Pfaffian constraints of the form (1.2) by differentiating the expression

dhi(ξ)

dt
=

dhi(ξ)

dξ
ξ̇ = a⊤i (ξ)ξ̇ = 0. i = 1, . . . , k < n (1.8)

However, it is important to note that not all Pfaffian constraints are holonomic.
A Pfaffian constraint is only holonomic if it is integrable to the form (1.7).

Holonomic constraints are a unique subclass of kinematic constraints that
restrict the accessible configurations of the system. In fact, the space of accessible
configurations for a system with n generalized coordinates under k holonomic
constraints will have dimension n− k.

16 mobile robot kinematics

Examples: Consider again the pendulum from Example 1.2.1, where the kine-
matic constraint (1.4) can be expressed as hi(ξ) = 0 (equivalently where the
Pfaffian constraint (1.5) is integrable into the form hi(ξ) = 0). This constraint
restricts the pendulum mass to lie on a circle of radius L, which is a one dimen-
sional subset (n− k = 2− 1 = 1).

Alternatively, consider the wheel from Example 1.2.2, where the kinematic
constraint (1.6) cannot be integrated to yield a constraint of the form hi(ξ) = 0.
In contrast to the pendulum, this system has no restriction on what configura-
tion it can be in as it can potentially move to any point (x, y).

1.3.2 Nonholonomic Constraints

While holonomic constraints are kinematic constraints which restrict the acces-
sible configurations of the system, not all kinematic constraints are holonomic.
In particular, it is possible to have kinematic constraints that do not restrict acces-
sible configurations, but rather restrict the motion between configurations. These
constraints are referred to as nonholonomic constraints.

Definition 1.3.2 (Nonholonomic Constraints). Constraints that can be described in
Pfaffian form, but cannot be integrated to hi(ξ) = 0 form are called nonholonomic.

Additionally, a nonholonomic system is a system that is subject to at least one
nonholonomic constraint. The restriction of instantaneous motion that is in-
duced by a nonholonomic constraint can be interpreted by considering the
Pfaffian form ai(ξ)

⊤ ξ̇ = 0. It is clear that for any coordinate ξ, this constraint
limits the motion (ξ̇) to lie in the null space of ai(ξ)

⊤.

Examples: Consider again the wheel example from Example 1.2.2 which has a
nonholonomic constraint

ai(ξ)
⊤ ξ̇ =

[
sin θ − cos θ 0

]
ξ̇ = 0.

The null space of ai(ξ)
⊤ in this case is spanned by the vectors [cos θ, sin θ, 0]

and [0, 0, 1] which suggests that any potential motion must be made up of a
linear combination of these vectors. Intuitively this would be expected because
[cos θ, sin θ, 0] is the unit vector in the direction of rolling, and [0, 0, 1] would
correspond to the wheel spinning but not rolling.

1.4 Kinematic Models

Once an appropriate set of generalized coordinates ξ ∈ Rn and all relevant
kinematic constraints have been identified for a particular robot the next step is
to develop a kinematic model. In particular these kinematic models will consist
of a set of differential equations of the form ξ̇(t) = G(ξ(t))u(t), where u(t) is
referred to as a system input or control. Given a particular input u(t) and an
initial condition ξ(0) this model will define a trajectory of the system.

principles of robot autonomy 17

Definition 1.4.1 (Kinematic Model). Given a generalized coordinate vector ξ ∈ Rn

and k Pfaffian kinematic constraints A⊤(ξ)ξ̇ = 0, a kinematic model can be defined as
ξ̇ = G(ξ)u where the column space of G(ξ) ∈ Rn×n−k spans the null space of A⊤(ξ).
Additionally, for any input u the solutions to the kinematic model are guaranteed to
satisfy the Pfaffian constraints.

Consider k Pfaffian constraints written in matrix form as A⊤(ξ)ξ̇ = 0 (which
can be a combination of holonomic and nonholonomic constraints). As was
noted earlier these constraints imply that a generalized velocity ξ̇ is only ad-
missible at a configuration ξ if it lies in the n− k dimensional null space of the
matrix A⊤(ξ). A new matrix, G(ξ) ∈ Rn×n−k can therefore be defined such
that the columns of G(ξ) span the null space of A⊤(ξ). In other words, for each
column gi of G it holds that A⊤(ξ)gi = 0. To ensure that the generalized veloc-
ity ξ̇ satisfies the kinematics constraints it is therefore sufficient to require that
ξ̇ = G(ξ)u where u ∈ Rn−k can be any vector. To explicitly show why this is
true, consider any vector u and write ξ̇ = G(ξ)u = ∑n−k

i=1 gi(ξ)ui. When this is
substituted into the Pfaffian constraints the expression becomes

A⊤(ξ)ξ̇ = A⊤(ξ)
(n−k

∑
i=1

gi(ξ)ui
)
,

=
n−k

∑
i=1

A⊤(ξ)gi(ξ)ui,

= 0,

which shows that the kinematic constraints are satisfied.

Examples: Consider again the wheel example from Example 1.2.2 which has a
single nonholonomic constraint

ai(ξ)
⊤ ξ̇ =

[
sin θ − cos θ 0

]
ξ̇ = 0,

where ξ = [x, y, θ]⊤. The null space of ai(ξ)
⊤ in this case is spanned by the

vectors [cos θ, sin θ, 0] and [0, 0, 1] and therefore the kinematic model is given
by ẋ

ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [u1

u2

]
. (1.9)

Note that in many cases the control inputs u1 and u2 also have an intuitive
physical meaning. In this problem u1 is the speed at which the wheel is moving,
and u2 is the angular rate at which it rotates.

1.5 Kinematic Models of Wheeled Robots

Robots come in all shapes, sizes, and configurations and with varying forms of
mobility. However, wheeled robots are perhaps the most widely used because

18 mobile robot kinematics

of their high mobility and simple design. For this reason several standard kine-
matic models for different wheeled robot configurations will now be given.

1.5.1 Unicycle Model

The unicycle model of a robot is the simplest kinematic model, and assumes
that the robot can be approximated by a single wheel. In this case the kine-
matic constraints are exactly the same as the wheel rolling on a plane discussed
previously in Example 1.2.2. A simplified diagram showing the generalized co-
ordinates of this model is given in Figure 1.3, and the kinematic model is the
same as (1.9): ẋ

ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [v
ω

]
, (1.10)

where v is the forward speed of the unicycle and ω is the rate of rotation.
The advantage of the unicycle model lies in its simplicity and its ability to

capture one of the most fundamental behaviors of wheeled robots. Such a
model might be suited for higher level motion planning tasks, such as plan-
ning geometric paths to get a robot from point A to point B. Often times such
a model might be complemented with models of higher fidelity (e.g. dynamics
models) for performing lower level tasks such as control or for refining motion
plans created by the unicycle model.

Figure 1.3: Generalized coordi-
nates for a unicycle.

1.5.2 Differential Drive Model

The differential drive model is a slight variation on the unicycle model (see
Section 1.5.1) that does not lump all of the wheels together. Instead, this model
assumes two wheels are fixed on a rear shared axle, with a passive wheel that
induces no kinematic constraints in the front. As shown in Figure 1.4 this model
has the same generalized coordinates as the unicycle model (ξ = [x, y, θ]⊤) but
also includes some geometry of the robot by assuming the width of the rear axle
is denoted by L.

Same as for the unicycle model, this model assumes the wheels roll with-
out slipping. The derivation of the kinematic constraints is therefore similar
to Example 1.2.2. In particular, the heading of each wheel is always given by
ev = [cos θ, sin θ]⊤, the lateral direction is given by ev,⊥ = [sin θ, − cos θ]⊤, and
thus the two no-slip kinematic constraints can be expressed as

ṗl · ev,⊥ = 0, ṗr · ev,⊥ = 0,

where ṗl and ṗr are the left and right wheel velocity vectors, respectively. The
next step is to determine how to express ṗl and ṗr as functions of the general-
ized coordinates and generalized velocities. From the geometry of the robot it
can be seen that

pl = [x− L
2

sin θ, y +
L
2

cos θ], pr = [x +
L
2

sin θ, y− L
2

cos θ],

principles of robot autonomy 19

where pl and pr are the positions of the left and right wheels. By taking the
derivative with respect to time the velocities are given by

ṗl = [ẋ− θ̇
L
2

cos θ, ẏ− θ̇
L
2

sin θ], ṗr = [ẋ + θ̇
L
2

cos θ, ẏ + θ̇
L
2

sin θ].

It turns out that after some algebraic manipulation the no-slip kinematic con-
straints simply become:

ṗl · ev,⊥ = ṗr · ev,⊥ = ẋ sin θ − ẏ cos θ = 0,

which means having the no-slip kinematic constraint on both wheels is actually
redundant! This also makes intuitive sense because the wheels are rigidly con-
nected together, so if one wheel cannot move laterally then the other must not
be able to. Additionally, it is noted that this nonholonomic constraint is identical
to the one for the unicycle and so the kinematic model is also identical to (1.10).
However the difference is that the control inputs can now be expressed in a more
realistic form with respect to the actual geometry of the robot.

In particular, instead of the inputs being the forward speed v and body rota-
tion rate ω as in (1.10), the inputs will be chosen to be the left and right wheel
rotation rates, ωl and ωr. A relationship between these sets of inputs can be de-
rived by exploiting the geometry of the robot and the no-slip wheel assumption.
In particular, since the position p = [x, y] can be written as p = 1

2 (pl + pr) the
velocity vector ṗ = 1

2 (ṗl + ṗr). From the no-slip wheel assumption the speed
can be expressed as v = ev · ṗ, which can be simplified to

v = ev · ṗ,

= ev ·
1
2
(ṗl + ṗr),

=
1
2
(ev · ṗl + ev · ṗr),

=
1
2
(vl + vr),

=
r
2
(ωl + ωr),

where r is the radius of the wheel and vl and vr are the speeds of the left and
right wheels.

Additionally, the no-slip condition on each individual wheel can be expressed
as vl = ev · ṗl and vr = ev · ṗr which can be expanded to

ẋ cos θ + ẏ sin θ − θ̇
L
2
= vl ,

ẋ cos θ + ẏ sin θ + θ̇
L
2
= vr.

Noting that ẋ cos θ + ẏ sin θ = v these expressions can be written as L
2 θ̇ = vr − v

and L
2 θ̇ = v− vl . Finally, combining these expressions yields

Lθ̇ = vr − vl ,

= r(ωr −ωl).

20 mobile robot kinematics

In summary, a one-to-one mapping between the inputs is given by

v =
r
2
(ωl + ωr), ω =

r
L
(ωr −ωl).

Finally, the differential drive kinematic model is given byẋ
ẏ
θ̇

 =

 r
2 cos θ r

2 cos θ
r
2 sin θ r

2 sin θ
r
L − r

L

 [ωr

ωl

]
. (1.11)

Overall, the complexity of this model over the unicycle model has not in-
creased. However, by leveraging the geometry of the robot the inputs to this
model may be more intuitive for motion planning and control tasks since the
actual control mechanism is generally a motor attached to the wheel axles.

Figure 1.4: Generalized coor-
dinates for a differential drive
robot.

1.6 Dynamic Models

As was discussed in the introduction, mobile robot kinematic models are useful
for describing fundamental physical behavior in a simple way, but they do not
completely capture all real world influences on the robot’s motion. The unicycle
and differential drive models are examples of kinematic models that are approx-
imations of the true system behavior. In particular they both make the no-slip
wheel assumption, which directly lead to the kinematic constraints. Addition-
ally, the choice of the inputs for the kinematic models ignores other important
dynamics of the robot. In the unicycle model it is assumed the velocity is the
input, but in practice directly commanding a desired velocity is not always
straightforward since the amount of force required to change velocities varies
with the mass of the robot (F = ma). In the differential drive model the inputs
are the rotational rates of the wheels, but again in practice the amount of torque
output required by the motor to change the rotation rate can vary depending on
the robot’s mass as well as other motor dynamics.

One common extension to kinematic models to incorporate dynamics is to
simply add integrators to replace the input variables. The most common ex-
ample of this is to replace a velocity input v with an acceleration input a and
add the integrator v̇ = a. The force that generates the acceleration can then be
considered as the input by using the dynamics equation v̇ = 1

m F where m is
the mass of the robot. Similarly, a rotation rate input ω could be replaced by a
rotational acceleration input. For example, the unicycle model (1.10) could be
extended with integrator states to be

ẋ
ẏ
v̇
θ̇

ω̇

 =

v cos θ

v sin θ

a
ω

α

 . (1.12)

principles of robot autonomy 21

where a is linear acceleration in the forward direction and α is the angular ac-
celeration (which of course could also be written with forces and torques as
inputs).

In summary, factors to consider when deciding whether a certain kinematic
model is sufficient. or if additional kinematics/dynamics are needed. include
the robot’s configuration/geometry and the task at hand (e.g. planning, control,
etc.).

2
Open-Loop Motion Planning & Control

The previous chapter on motion planning and control introduced techniques
for developing mathematical models to describe robot motion by analyzing its
kinematics and dynamics. These models are typically expressed in the form of
differential equations that are functions of a set of generalized coordinates/ve-
locities and inputs to the system. The next step is to discover how these models
can be leveraged for robot motion planning and control. In particular this chap-
ter and the next will focus on robot control, where the goal is to determine what
inputs to apply to the system to achieve desirable behavior. To address the robot
control problem a control law must be developed, which is a set of rules or a
mathematical function that determines what inputs should be applied to the
system at any given time.

The ecosystem of techniques for robot control is vast, and control laws can
generally be categorized in several ways. One of the most fundamental classi-
fications for a control law is if it is open-loop or closed-loop. Open-loop control
laws do not rely on observations to influence the choice of control input, while
closed-loop control laws do. As a practical example, suppose you are standing
in a room and wanted to walk to the other side and sit in a chair. For open-loop
control you might look at where the chair is relative to your current position,
think about how to walk there, and then with your eyes closed walk to the chair
and sit. Alternatively, for closed-loop control you might keep your eyes open the
whole time.

In practice, open-loop control laws suffer from robustness issues since they
do not make corrections based on real-time observations. However, open-loop
control is still an extremely important topic within the context of robotics. In
particular, suppose you are interested not just in getting your robot from one
point to another, but doing so in the best or optimal way. This problem, known
as trajectory optimization or optimal control1, can be solved to obtain an optimal 1 The terms trajectory optimization

and optimal control will often be used
interchangeably.

trajectory for the robot along with the corresponding sequence of control inputs.
In theory, applying this optimal control sequence as an open-loop control law
would then make the robot follow the optimal trajectory.

This chapter will discuss several common techniques related to optimal con-
trol and trajectory optimization, including a brief review on dynamic/kinematic

24 open-loop motion planning & control

models, the formulation of the optimal control problem, approaches for solv-
ing optimal control problems, and some other topics useful in the context of
robotics. The next chapter will then focus on the development of closed-loop
control laws, including approaches that leverage the open-loop optimal control
techniques discussed here.

Open-Loop Motion Planning & Control

This chapter and the next will focus on two of the most fundamental classifica-
tions for a control law, namely whether it is open-loop or closed-loop. In particular,
this chapter will focus on open-loop control laws that arise from the study of
optimal control and trajectory optimization problems2,3. In general, open-loop 2 D. E. Kirk. Optimal Control Theory: An

Introduction. Dover Publications, 2004

3 R. M. Murray. Optimization-Based Con-
trol. California Institute of Technology,
2009

control laws depend only on time and initial condition of the system.

Definition 2.0.1 (Open-loop control). If the control law is determined as a function
of time for a specified initial state value, i.e.,

u(t) = f (x(t0), t), (2.1)

then it is said to be in open-loop form.

2.1 Kinematic and Dynamic Models

Chapter 1 discussed techniques for deriving kinematic and dynamic models of
a robot in the form of ordinary differential equations (ODE). Such models are
extremely useful in the context of robot motion planning and control, and are
essential in the context of optimal control. For the remainder of this chapter it
will be assumed that such a model has already been identified and is expressed
in the form

ẋ(t) = a(x(t), u(t), t), (2.2)

where x ∈ Rn may be comprised of generalized coordinates ξ and velocities
ξ̇ and will be referred to as the robot’s state, u ∈ Rm is the control input, and
the function a : Rn ×Rm ×R −→ Rn defines the model. While the set of ODEs
(2.2) may have been derived by considering kinematics, dynamics, or a combina-
tion of the two, this model will be generally referred to as the robot’s dynamics
model.

For clarity, note that (2.2) is a compact expression written in vector form for
the system of n first-order differential equations

ẋ1(t) = a1(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t), t)

ẋ2(t) = a2(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t), t)
...

ẋn(t) = an(x1(t), x2(t), . . . , xn(t), u1(t), u2(t), . . . , um(t), t),

principles of robot autonomy 25

where xi is the i-th component of the vector x and uj is the j-th component of
the vector u.

Solutions to the set of differential equations (2.2) are trajectories of the sys-
tem. Given an initial condition x(t0) and a control function u(t) defined for
t ≥ t0, any technique for solving ODEs can be applied to compute the state
trajectory x(t) for t > t0. Common numerical integration approaches for solving
the ODE system include the Runge-Kutta schemes, of which the most common
are the forward or backward Euler schemes. The forward Euler scheme approxi-
mates ẋ(t) ≈ xi+1−xi

∆t with ∆t = ti+1 − ti and evaluates a at time ti. This leads to
the recursive update

xi+1 = xi + a(xi, ui, ti)∆t, i = 0, 1, . . . (2.3)

where ui = u(ti) and xi = x(ti).

2.2 Optimal Control Problem

Perhaps the most common open-loop control laws used for motion planning
and control in robotics are synthesized by formulating and solving optimal
control problems. These problems are designed to answer the question: from
the current state of the robot, x(t0), what future control inputs u(t) would make
the robot follow an optimal future trajectory? In general, generating optimal
open-loop control laws require three major components:

1. A model (2.2) that describes the robot’s motion as a function of the input,
developed by analyzing the robot’s kinematics/dynamics.

2. A metric that defines the quality of a particular trajectory, known as a cost
function or a reward function4. 4 The term cost is more commonly used

in optimal control literature, while
reward is used in the reinforcement
learning literature.

3. An algorithm for searching the space of possible control inputs to find one
that corresponds to an optimal trajectory5.

5 For example, convex optimization
solvers2.2.1 Problem Formulation

In this chapter the performance metric that defines the quality of a particular
trajectory will be referred to as the cost function. The standard form for defining
the cost function in optimal control problems is

J(x(t), u(t), t) = h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t)dt. (2.4)

where h(x(t f), t f) is referred to as a terminal cost and where the integral can be
viewed as a sum of stage costs induced along the path from times t0 to t f . In
robotics, the function J might quantify objectives such as “get from point A to
point B as quickly as possible” or “get from point A to point B while using as
little effort as possible”.

26 open-loop motion planning & control

Constraints can also be considered in the optimal control problem. In the
field of robotics it is common to consider constraints on the state and control
that are expressed compactly as

x(t) ∈ X , u(t) ∈ U , (2.5)

where X is the set of all admissible states and U is the set of all admissible control
inputs. A common way to define the sets X and U is by a set of inequalities on
x and u, respectively. For example, let’s assume the first element of x is con-
strained by x1 ≥ 0, then X = {x | x1 ≥ 0} such that any vector x with x1 ≥ 0
belongs to the set X (and is therefore admissible). Constraints are commonly used in

the context of robotics to account for
actuator limits (e.g. how fast the wheels
can turn, how much torque a motor
can produce), or constraints on the
trajectory itself (e.g. avoid collisions
with surrounding objects).

The optimal control problem is then expressed as an optimization problem
over the state trajectory x(t) and control inputs u(t) with the goal of minimizing
the cost function (2.4) while also satisfying the constraints (2.5).

Definition 2.2.1 (Optimal Control Problem). An optimal control problem seeks an
admissible control u(t) which causes the system (2.2) to follow an admissible trajec-
tory x(t) that minimizes a performance metric J(x(t), u(t), t). This problem can be
expressed as an optimization problem:

minimize
u,x

h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t)dt,

s.t. ẋ(t) = a(x(t), u(t), t),

x(t) ∈ X , u(t) ∈ U ,

x(t0) = x0,

(2.6)

where t0 is the initial time, t f is either a fixed final time or an optimization variable, and
x0 is a known initial condition.

The solution to the optimal control problem (2.6) is an admissible and opti-
mal trajectory defined over the interval t ∈ [t0, t f], and is denoted by u∗(t) and
x∗(t).

2.2.2 Solving the Optimal Control Problem

Once the optimal control problem (2.6) has been formulated, the next step is
to find a solution. However, this can be challenging since (2.6) is an infinite-
dimensional optimization problem (because the optimization is over an infinite-
dimensional function and not a finite set of parameters). Unless an analytical
solution to the problem can be found, this problem must be transformed into a
finite dimensional problem so that it can be solved numerically on a computer.
In general, algorithms for numerically solving optimal control problems can be
classified as either direct or indirect methods.

Direct Methods: Direct methods follow a “first discretize, then optimize" ap-
proach. In the first step the problem (2.6) is converted into a finite-dimensional

principles of robot autonomy 27

problem by discretizing the functions x(t) and u(t). For example this might be
accomplished by defining the new optimization variables to be x(ti) and u(ti)

for a finite number of time points ti. This finite-dimensional optimization prob-
lem is generally referred to as a nonlinear program (NLP), which can be solved
with existing numerical algorithms6. 6 Several solvers for solving general

NLPs include IPOPT and SNOPT, and
software packages for solving optimal
control problems using the direct
method include DIDO, PROPT, and
GPOPS.

Indirect Methods: Indirect methods follow a “first optimize, then discretize"
approach. These methods first derive the necessary conditions of optimality,
which are expressed as a two-point boundary value problem. This two-point
boundary value problem is essentially a set of ODEs with boundary conditions
at two points7 that must be numerically solved. 7 This is in contrast to initial value prob-

lems, which have a single boundary
condition and can easily be numerical
integrated to find a solution.Indirect methods are less commonly used in robotics because the derivation

of the necessary conditions of optimality must be done on a case by case basis,
and can become quite challenging. They become particularly difficult to use
when constraints are imposed in the problem. In contrast, direct methods offer
much more flexibility and have been quite successful in practice.

2.3 Differential Flatness

Solving optimal control problems to compute optimal trajectories and optimal
control inputs for a system can sometimes be computationally challenging. In
fact, sometimes it is more desirable to have a computationally efficient way
of generating “good” trajectories, rather than a challenging way of generating
“optimal” ones.

For a special class of models, which are referred to as differentially flat, com-
puting “good” trajectories without having to formulate optimal control prob-
lems is quite easy. There are several models that are common in robotics that are
differentially flat, including a simple car model and quadrotor models.

Figure 2.1: Simple model for
an automobile. The state con-
sists of the (x, y) position of the
center of the rear axle and the
heading angle θ. The control
inputs are the steering angle ϕ

and the forward velocity.

Example 2.3.1 (Simple Car Model). Consider the car model corresponding to
Figure 2.1:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ =
v
L

tan ϕ,

(2.7)

where (x, y) is the position and θ is the orientation of the vehicle, v is the speed,
ϕ is the steering angle, and L is the length of the wheelbase. The state x is there-
fore defined as x = [x, y, θ]⊤ and the control is defined as u = [v, ϕ]⊤.

Suppose the motion planning task is to find a control sequence u(t) that will
take the car from an initial state x0 to a final desired state x f . One option would
be to formulate an optimal control problem with constraints x(t0) = x0 and
x(t f) = x f . However, it turns out that for this model there is a simpler ap-
proach. In fact, for this model it is sufficient to specify a differentiable trajectory

28 open-loop motion planning & control

for x(t) and y(t), and the remaining state variables and control inputs can be
analytically determined!

To see why this is, consider a differentiable trajectory for x(t) and y(t) with
derivatives ẋ(t) and ẏ(t). From the dynamics model (2.7) it can be seen that the
first two equations can be leveraged to compute θ(t):

θ = tan−1(ẏ/ẋ).

Furthermore, once θ(t) has been computed the speed is defined:

v = ẋ/ cos θ, or v = ẏ/ sin θ.

Finally, given θ(t) and v(t) it is possible to directly solve for the steering angle:

ϕ = tan−1(
Lθ̇

v
).

This property, that from the specification of a few variables and their deriva-
tives the remaining state and control values are defined, is known as differential
flatness.

Definition 2.3.1 (Differential Flatness). A non-linear system

ẋ(t) = a(x(t), u(t)), (2.8)

is differentially flat with flat output z if there exists a function α such that

z = α(x, u, u̇, . . . , u(p)), (2.9)

and such that the solutions to the system x(t) and u(t) can be written as functions of
the flat output z and a finite number of its derivatives:

x = β(z, ż, . . . , z(q))

u = γ(z, ż, . . . , z(q)).
(2.10)

For a differentially flat system, all of the feasible trajectories for the system
can be written as functions of a flat output z(t) and its time derivatives. Addi-
tionally, note that the number of flat outputs is always equal to the number of
system inputs. In the context of motion planning and control this is extremely
useful for trajectory design because the flat outputs can be specified and then
directly mapped to the corresponding control inputs.

2.3.1 Trajectory Design for Differentially Flat Systems

As previously mentioned, trajectory design for differentially flat systems only
requires specification of the trajectories of the flat outputs, which greatly simpli-
fies motion planning and control.

Consider a nonlinear system model of the form (2.8) that is differentially flat
with flat output z where the objective is to design a trajectory from x0 to x f over

principles of robot autonomy 29

a horizon of T seconds. First, find the boundary conditions for the flat output
z(0) and z(T) that satisfy the boundary conditions on x by noting that

x0 = β(z(0), ż(0), . . . , z(q)(0)),

x f = β(z(T), ż(T), . . . , z(q)(T)).
(2.11)

Second, compute any smooth trajectory for the flat outputs z(t) that satisfy
these boundary conditions. Third, use (2.10) to map the flat output trajectory
z(t) to the state and control trajectories x(t) and u(t).

Since the flat outputs can be specified as any smooth trajectory, a common
choice is to parameterize them using N smooth basis functions:

zj(t) =
N

∑
i=1

α
[j]
i ψi(t), (2.12)

where zj is the j-th element of z, α
[j]
i ∈ R are variables that parameterize the

trajectory and ψi(t) are the smooth basis functions. One potential choice is to
use polynomial basis functions ψ1(t) = 1, ψ2(t) = t, ψ3(t) = t2, and so on.
Another advantage of choosing this parameterization of zj(t) is that it is linear

in the variables α
[j]
i . This makes it easy to map specifications on z into values for

αi that define the trajectory. Consider differentiating (2.12) q times:

żj(t) =
N

∑
i=1

α
[j]
i ψ̇i(t),

...

z(q)j (t) =
N

∑
i=1

α
[j]
i ψ

(q)
i (t).

(2.13)

Now, from the initial and final conditions zj(0), żj(0), . . . , z(q)j (0) and zj(T), żj(T), . . . , z(q)j (T)

the coefficients α
[j]
i can be computed by solving the following linear system (as-

suming the matrix is full rank):

ψ1(0) ψ2(0) . . . ψN(0)
ψ̇1(0) ψ̇2(0) . . . ψ̇N(0)

...
...

...

ψ
(q)
1 (0) ψ

(q)
2 (0) . . . ψ

(q)
N (0)

ψ1(T) ψ2(T) . . . ψN(T)
ψ̇1(T) ψ̇2(T) . . . ψ̇N(T)

...
...

...

ψ
(q)
1 (T) ψ

(q)
2 (T) . . . ψ

(q)
N (T)

α
[j]
1

α
[j]
2
...

α
[j]
N

 =

zj(0)
żj(0)

...

z(q)j (0)

zj(T)
żj(T)

...

z(q)j (T)

. (2.14)

Once the values for α
[j]
i are known, the entire trajectory zj(t) is therefore known!

Note that this approach is not strictly limited to specifying the initial and
final conditions. It is also possible to specify other constraints on zj and its

30 open-loop motion planning & control

derivatives as long as they are equality constraints. This is accomplished by
simply adding equations corresponding to the desired constraints to the linear
system of equations (2.14). However, if too many constraints are added the
linear system (2.14) may not have a solution (i.e. the system is over-determined).
Assuming the constraints are not conflicting, this problem can typically be fixed
by adding additional basis functions.

To summarize, for differentially flat nonlinear systems, the motion planning
and control problem can be greatly simplified by planning in the flat output
space. This is possible because of nonlinear functions that allow the flat output
trajectory to be directly mapped to state and control trajectories that satisfy the
system dynamics.

2.3.2 Constraints and Time Scaling

As previously shown, some constraints (e.g. boundary conditions) can be im-
posed on the trajectory by converting them into conditions on z and its deriva-
tives, and then solving the linear system of equations (2.14). However, applying
bound constraints can be slightly more challenging since they are expressed
as inequality constraints rather than equality constraints. Nonetheless, bound
constraints are common in robotics and therefore it is important to be able to
consider them in the trajectory generation process. For example, the simple car
robot from Example 2.3.1 could have an upper bound on its speed:

|v(t)| ≤ vmax.

One technique for handling these types of constraints is to use time scaling.
The general approach to satisfy bound constraints by time scaling is:

1. Specify boundary conditions and solve the linear system of equations (2.14)
to get a candidate trajectory x(t) with control inputs u(t).

2. If the candidate trajectory violates any bound constraints, generate a new
trajectory by keeping the same geometric path but decreasing the rate at
which it moves along the path.

2.3.3 Geometric Path

A geometric path is a sequence of states for the robot that is not associated with
time. Given a candidate trajectory x(t), the geometric path can be defined by
alternatively expressing the trajectory as x(t) = x(s(t)) where s is a new “path”
parameter and s(t) is defined with s(0) = s0, s(T) = s f , and ṡ(t) > 0. A
common choice for the path parameter s is the arc length along the path. The
geometric trajectory is then written as just x(s), such that the state is now a
function of the position along the path and not time. Note that x(t) : [0, T] −→
Rn and x(s) : [s0, s f] −→ Rn are actually two different functions. In particular,
the function x(t) can be derived from x(s) by the definition of the function
s(t) : [0, T] −→ [s0, s f] and the composition x(s(t)).

principles of robot autonomy 31

2.3.4 Time Scaling

For some systems, once the geometric path x(s) has been extracted from the
candidate trajectory x(t), it is possible to arbitrarily redefine new trajectories
with different time scales by simply redefining s(t). In other words parts of the
original candidate trajectory can be sped up or slowed down as desired.

To motivate why time scaling is important we can consider a simplified prob-
lem that does not involve a dynamics model. In particular, consider a scalar
variable x ∈ R and a desired geometric path that connects x0 and x f that is
parameterized as x(s) = x0 + s(x f − x0) for s ∈ [0, 1] (note that x(0) = x0 and
x(1) = x f). By choosing how s varies in time (i.e. the function s(t)) this geo-
metric path can be transformed into many different trajectories, x(t). As a simple
choice, the function s(t) can be parameterized as the cubic polynomial:

s(t) =
3

T2 t2 − 2
T3 t3.

This specific choice ensures that s(0) = 0, s(T) = 1, and ṡ(0) = ṡ(T) = 0 such
that the trajectory will be defined over the time interval t ∈ [0, T]. Substituting
this function into x(s) then yields an expression for the trajectory x(t):

x(t) = x0 +
(3

T2 t2 − 2
T3 t3)(x f − x0).

One easy way to scale the trajectory in this case is to simply change T, with
larger values of T meaning that it will take longer for x to traverse the geometric
path from x0 to x f . In fact, the maximum velocity can also be computed as:

ẋmax =
3

2T
(x f − x0).

Therefore, not only does rescaling the trajectory by changing T make the path
traversal time change, but it can also be used to decrease quantities such as the
maximum velocity!

Time Scaling with Differential Models: Some additional considerations need to be
made when time-scaling trajectories that must also satisfy differential models.
First, note that the time derivative of the state can be rewritten by using the
chain rule:

ẋ(t) =
dx(t)

dt
=

dx(s)
ds

ds(t)
dt

.

Now consider a candidate trajectory x(t) and an associated geometric path x(s)
for some s(t) that is defined over the interval t ∈ [0, T] with s(0) = s0 and
s(T) = s f . Since x(t) is a trajectory of the dynamics (2.8), the geometric path
x(s) and time scaling law s(t) satisfy

dx(s)
ds

ds(t)
dt

= a(x(s), u(s)), (2.15)

for every point s ∈ [s0, s f].

32 open-loop motion planning & control

To design a new time scaling law s̃(t) over some potentially new time interval
t ∈ [0, T̃] where s̃(0) = s0 and s̃(T̃) = s f , it is important to note that the
dynamics equations must still be satisfied8. In other words, for every s̃ ∈ [s0, s f]: 8 The geometric path is still defined

on the interval [s0, s f] so this interval
must remain the same for any new time
scaling law, but the time interval can
change.

dx(s̃)
ds̃

˙̃s = a(x(s̃), ũ(s̃)). (2.16)

Since the geometric path is fixed, the terms dx(s̃)
ds̃ and x(s̃) are fixed. Thus a new

time scaling law s̃(t) is only admissible if a new control ũ(s̃) can also be found
that guarantees that (2.16) holds. Luckily, for some specific systems this is easy
with the appropriate choice of path parameter s.

Example 2.3.2 (Time Scaling for Simple Car Model). Consider again the sim-
ple car model (2.7) from Example 2.3.1. Suppose a candidate trajectory xc(t)
with control uc(t) has been defined by leveraging the differential flatness of the
model (i.e. setting up and solving (2.14) and then mapping the flat outputs zc(t)
into the state and control). For this system a good choice for the path parameter
is the arc-length, such that

s(t) =
∫ ⊤

0
v(t′)dt′, ṡ(t) = v(t).

With this choice of path parameter the geometric path function xc(s), s0 =

0, and s f = Lpath are all fixed (where Lpath is the total length of the path).
Rewriting the dynamics (2.16) based on the simple car model:

dxc(s̃)
ds̃

˙̃s = v(s̃) cos θc(s̃),

dyc(s̃)
ds̃

˙̃s = v(s̃) sin θc(s̃),

dθc(s̃)
ds̃

˙̃s =
v(s̃)

L
tan ϕ(s̃).

Any choice of the time scaling function s̃(t) must be able to satisfy these equa-
tions, and note that the trivial choice of s̃(t) = s(t) will automatically satisfy
these equations with the candidate control inputs uc(t).

Since the choice of the path parameter yields ˙̃s = v(s̃), these equations can be
further simplified:

dxc(s̃)
ds̃

= cos θc(s̃),

dyc(s̃)
ds̃

= sin θc(s̃),

dθc(s̃)
ds̃

=
1
L

tan ϕ(s̃).

The first two equations are guaranteed to be satisfied for all s̃ ∈ [s0, s f] because
the original candidate trajectory satisfies the dynamics. Additionally, the third
equation is guaranteed to be satisfied by choosing ϕ(s̃) = ϕc(s̃) (i.e. using the
same steering input as with the candidate trajectory).

principles of robot autonomy 33

This is interesting because it means that the equations are all satisfied inde-
pendently of the choice of ˙̃s. Therefore, since ˙̃s = v(s̃) this means that the speed
input can be chosen arbitrarily while maintaining the same geometric path!
This is extremely useful because it means that bound constraints on the speed
|v(t)| ≤ vmax can be easily enforced.

Time Scaling with Kinematic Models: Time-scaling trajectories is much more
straightforward when kinematic models are used. Consider the case where the
model of the system is derived from k Pfaffian constraints A⊤(x)ẋ = 0. In this
case the kinematic model can be written in the form:

ẋ = G(x)u, (2.17)

where the columns of the matrix G(x) span the null space of the matrix A⊤(x).
Now again consider a path parameter s that is used to reparameterize trajecto-
ries x(t) as x(s(t)), and satisfies s(0) = s0, s(T) = s f , and ṡ(t) > 09. Rewriting 9 The condition ṡ(t) > 0 is critical

to ensure that the function s(t) is
invertible. In other words, to guarantee
that there is a one-to-one mapping
between t and s.

the time derivative of the state using the chain rule yields:

dx(s)
ds

ṡ = G(x)u(t). (2.18)

By making a substitution that u(t) = ug(s)ṡ the dynamics can be further written
as:

dx(s)
ds

= G(x)ug(s). (2.19)

The terms ug(s) are referred to as geometric controls, since they are defined only
with respect to the path parameter s. Critically, (2.19) says that once the geo-
metric controls ug(s) are defined, the entire geometric path x(s) is also defined!
The choice of the timing law s(t) can then be chosen in any manner and it will
not change the geometric path, but will change the time trajectory x(t). In par-
ticular, once the geometric control ug(s) and timing law are chosen, the actual
controls are computed simply by the previous relationship u(t) = ug(s)ṡ.

Based on this analysis, the procedure for rescaling a trajectory of a kinematic
model can be made more concrete. First, consider a given trajectory x(t) with
control u(t) defined over t ∈ [0, T] that satisfies the kinematic model (2.17). For
simplicity, consider the path parameter s to be arc-length of the trajectory such
that s(0) = 0 and s(T) = Lpath. The following steps can then be used to define
a new control input ũ(t) that will make the kinematic model follow the same
geometric path but with a different time scale:

1. Determine s(t) based on the original trajectory x(t). In other words, figure
out how far along the trajectory the system is at each time t. Then reparame-
terize the control u(t) as a function of s, u(s(t)).

2. Compute the geometric controls ug(s) = u(s(t))/ṡ(t) for each point s ∈
[s0, s f].

3. Define a new timing law s̃(t) that satisfies s̃(0) = 0 and s̃(T̃) = Lpath with
˙̃s > 0 over the interval [0, T̃].

34 open-loop motion planning & control

4. Compute the new control ũ(t) = ug(s̃(t)) ˙̃s(t) for all t ∈ [0, T̃].

Example 2.3.3 (Time Scaling for Unicycle Model). Consider the kinematic unicy-
cle model:

ẋ = v cos θ,

ẏ = v sin θ,

θ̇ = ω,

(2.20)

where (x, y) is the position and θ is the orientation, v is the speed, and ω is the
rotation rate. The state x is defined as x = [x, y, θ]⊤ and the control is defined
as u = [v, ω]⊤.

To time-scale trajectories of this system, consider the use of arc-length as path
parameter:

s(t) =
∫ t

0
v(τ)dτ, ṡ(t) = v(t),

such that for a trajectory defined on the interval t ∈ [0, T] with total length Lpath,
the path parameter is defined with s(0) = 0 and s(T) = Lpath. With this choice,
the geometric controls are given by:

vg(s) =
v(s)
ṡ(t)

= 1,

ωg(s) =
ω(s)
ṡ(t)

=
ω(s)
v(s)

,

where v(s(t)) has been substituted in for ṡ(t). Therefore if a new timing law s̃(t)
is introduced this will automatically define a new velocity ṽ(s̃) at each point s̃,
which can then be used to solve for the new ω̃ inputs by:

ω̃(s̃) = ωg(s̃) ˙̃s(t) =
ω(s̃)
v(s̃)

ṽ(s̃).

Alternatively, since it is easier to work with the velocity directly rather than s̃(t),
in this case it is possible to just specify ṽ(s̃) for all s̃ ∈ [0, Lpath] and then to

compute ω̃(s̃) = ω(s̃)
v(s̃) ṽ(s̃). Then, to determine the new controls as functions of

time rather than s̃, it can be noted that

τ(s) =
∫ s

0

ds′

ṽ(s′)
,

defines a function τ(s) that maps each point s ∈ [0, Lpath] to a new time.

2.4 Exercises

2.4.1 Trajectory Generation via Differential Flatness

Complete Problem 1: Trajectory Generation via Differential Flatness located in the
online repository:

principles of robot autonomy 35

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW1,

where you will use an extended unicycle model to practice generating dy-
namically feasible trajectories by levering the system’s differential flatness prop-
erty. You will also have the chance to use time scaling techniques to design
trajectories that satisfy control constraints.

3
Closed-Loop Motion Planning & Control

The previous chapter introduced the concepts of open-loop and closed-loop con-
trol laws, and then dove into techniques for designing open-loop control laws
for robots based on optimal control and differential flatness. These techniques
are useful for determining control inputs that accomplish different objectives,
such as “move from point A to point B in a minimal amount of time while sat-
isfying some constraints”. Additionally, computing open-loop control laws is
often computationally less challenging that computing closed-loop control laws.
However in practice open-loop control is not very robust since observations
are not leveraged to update the control input. One solution to this robustness
problem is to convert the open-loop control law into a closed-loop control law,
typically referred to as trajectory tracking controllers. Another solution is to not
use any open-loop techniques but rather to directly synthesize a closed-loop
control law, for example by performing a Lyapunov stability analysis. This chap-
ter will introduce techniques for synthesizing closed-loop controllers in both of
these ways.

Closed-loop Motion Planning & Control

Recall from the previous chapter that open-loop control laws are defined as a
function of time for a given initial condition. In contrast, closed-loop control
laws are a function of the current state, and therefore are reactive.

Definition 3.0.1 (Closed-loop Control). If the control law is a function of the state
and time, i.e.,

u(t) = π(x(t), t) (3.1)

then the control is said to be in closed-loop form.

Closed-loop controllers (also sometimes referred to as feedback controllers
or policies), are much more robust than open-loop controllers. For example,
suppose a controller needs to be designed to make a wheeled robot move from
point to point. If the model used for open-loop controller design wasn’t perfect,
if the initial state was not perfectly known, or if external disturbances affected

38 closed-loop motion planning & control

the system (e.g. wheel slipping), then the robot would not exactly reach its
desired destination. Alternatively, a closed-loop control law can continuously
correct for these errors since it is always taking in new information.

3.1 Trajectory Tracking

One common approach to closed-loop control is to simply extend the open-loop
control techniques from the previous chapter to include a feedback component.
Such an approach consists of two steps:

1. Use open-loop control techniques to design a desired trajectory xd(t) and
corresponding control ud(t).

2. Design a closed-loop control law that is designed to make sure the system
stays close to the desired trajectory.

These controllers are referred to as trajectory tracking controllers, and their con-
trol law is defined as

u(t) = ud(t) + π(x(t)− xd(t), t). (3.2)

This type of control law is also said to be a “feedforward plus feedback” con-
troller. This is because the term ud(t) is an open-loop “feedforward” term that
attempts to generally make the system follow the desired trajectory, while the
term π(x(t) − xd(t), t) is a “feedback” term that attempts to correct for any
errors.

The previous chapter discussed techniques for solving open-loop control
problems to define the desired trajectory, and additionally there are several
approaches for designing the feedback component π(x(t)− xd(t), t):

• Geometric approaches generally leverage some sort of insight about the sys-
tem and are therefore hard to discuss in general settings. They are also typi-
cally difficult to derive theoretical guarantees for.

• Linearization based approaches typically linearize nonlinear dynamics models
about points along the desired trajectory. These linearized models are then
used to design linear controllers (e.g. linear quadratic regulators). For some
nonlinear systems, instead of linearizing about specific points it possible to
feedback linearize the system. This essentially means that the non-linearities
can be exactly “canceled” out such that the system can be considered lin-
ear. Linear control theory can then be applied to design a feedback control
scheme.

• Non-linear control techniques also exist which do not rely on linearization.
These approaches are also heavily system dependent, but one common tool
for non-linear control is based on Lyapunov theory.

principles of robot autonomy 39

• Optimization-based feedback control laws can also be designed. These ap-
proaches often leverage optimal control theory, some of which was pre-
sented in the previous chapter. One common optimization-based approach
for closed-loop control is known as model predictive control (MPC).

3.1.1 Trajectory Tracking for Differentially Flat Systems

For differentially flat systems linearization based approaches to designing tra-
jectory tracking controllers are particularly useful1. In fact, every flat system can 1 J. Levine. Analysis and Control of

Nonlinear Systems: A Flatness-based
Approach. Springer, 2009

be linearized via dynamic feedback and a coordinate change to yield a dynami-
cal system of the form

z(q+1) = w, (3.3)

where z(q+1) is the q + 1-th order derivative of the flat outputs z and q is the
degree of the flat output space (i.e. the highest order of derivatives of the flat
output that are needed to describe system dynamics), and w is a modified “vir-
tual” input term.

The set of ODEs (3.3) are linear, which means that techniques from linear
control theory can be applied to design a control law for w. In particular, for
trajectory tracking problems suppose a reference flat output trajectory zd(t)
has been defined which corresponds to the virtual input wd(t). Let the error
between the actual flat output and desired flat output be defined as e(t) =

z(t)− zd(t) and consider a closed-loop control law of the form

wi(t) = wi,d(t)−
q

∑
j=0

ki,je
(j)
i (t), (3.4)

where (·)i denotes the i-th component of the vector, e(j) = z(j) − z(j)
d is the j-th

order derivative of the error, and ki,j are called controller gains. The application
of this control law to the system (3.3) will result in closed-loop dynamics of the
form

z(q+1) = wd −
q

∑
j=0

Kje(j),

where Kj is a diagonal matrix with i-th diagonal element ki,j. Since z(q+1)
d =

wd(t) this can be simplified to give the closed-loop error dynamics:

e(q+1) +
q

∑
j=0

Kje(j) = 0. (3.5)

This set of linear ODEs describes the dynamics of the error, and many classical
techniques from linear control theory can be used to choose the gains ki,j that
will guarantee this system is stable. Having stable error dynamics means that
the error will decay to zero, which in this case means the system will track the
desired trajectory.

40 closed-loop motion planning & control

Example 3.1.1 (Extended Unicycle Trajectory Tracking). Consider the dynami-
cally extended unicycle model

ẋ(t) = v cos(θ(t)),

ẏ(t) = v sin(θ(t)),

v̇(t) = a(t),

θ̇(t) = ω(t),

(3.6)

where the two inputs are the acceleration a(t) and the rotation rate ω(t). This
system is differentially flat with flat outputs x and y and order q = 1. It can
therefore be expressed as:

z̈ =

[
ẍ
ÿ

]
=

[
cos(θ) −v sin(θ)
sin(θ) v cos(θ)

]
︸ ︷︷ ︸

:=J

[
a
ω

]
:=

[
w1

w2

]
,

and a trajectory tracking controller can be defined as

w1 = ẍd − kpx(x− xd)− kdx(ẋ− ẋd),

w2 = ÿd − kpy(y− yd)− kdy(ẏ− ẏd),

where (·)d represents a term associated with the desired trajectory. The control
inputs a(t) and ω(t) can then be computed by solving the linear system

J

[
a
ω

]
=

[
w1

w2

]
,

assuming that J is full rank.

3.2 Closed-loop Control

Trajectory tracking is just one example of closed-loop control, which assumes
the existence of a desired trajectory for which to track. As previously discussed,
one way of computing the desired trajectory is by solving an open-loop opti-
mal control problem. However, in the context of optimal control, modifying
an open-loop optimal control with feedback is not always the most desirable
option. Instead, it may be preferred to just directly solve a closed-loop optimal
control problem to obtain an optimal policy u∗ = π(x(t), t). Techniques for
solving closed-loop optimal control problems typically are based on either the
Hamilton-Jacobi-Bellman equation or dynamic programming.

Another common closed-loop control problem is to drive to or stabilize the
system about a particular state (often called regulation). For systems with linear
dynamics models the most controller for regulation problems is called the lin-
ear quadratic regulator. However, for nonlinear systems, stabilizing closed-loop
controllers are commonly designed through Lyapunov analysis2. 2 J.-J. E. Slotine and W. Li. Applied

Nonlinear Control. Pearson, 1991

principles of robot autonomy 41

3.2.1 Lyapunov-based Control

A Lyapunov stability analysis is a common tool for analyzing the stability of
nonlinear systems. This analysis is based on the definition of a Lyapunov func-
tion, which can be thought of as a measure of the “energy” of the system. Sim-
ilar to mechanical systems, if the energy does not increase in time then the
system is considered stable3. 3 Note there are more technical defini-

tions of stability, but for simplicity these
will not be discussed here

The most challenging part of a Lyapunov stability analysis is finding a suit-
able Lyapunov function, and for many complex systems this may be extremely
difficult. However, one of the advantages of the method is that it provides nice
theoretical guarantees regarding the stability of the system, and is applicable to
any system of interest.

Example 3.2.1 (Pose Stabilization). 4 Consider a robot that is modeled by the 4 M. Aicardi et al. “Closed loop steering
of unicycle like vehicles via Lyapunov
techniques”. In: IEEE Robotics & Au-
tomation Magazine 2.1 (1995), pp. 27–
35

unicycle robot model (differential drive robot model) represented graphically in
Figure 3.1

ẋ(t) = v(t) cos θ(t),

ẏ(t) = v(t) sin θ(t),

θ̇(t) = ω(t),

(3.7)

where the control inputs are the robot speed v and the rotational rate ω. The
objective is to design a closed-loop controller that will drive the robot the origin
(i.e. x = 0, y = 0, θ = 0).

Figure 3.1: Pose stabilization
of a unicycle robot in Cartesian
coordinates.

To make the controller design easier the dynamics will be alternatively ex-
pressed in polar coordinates. This can be accomplished by defining

ρ =
√

x2 + y2,

α = atan2(y, x)− θ + π,

δ = α + θ,

(3.8)

where ρ is the Euclidean distance to the origin, α is the heading angle with
respect to the line from the robot to the origin, and δ is the angle between the x-
axis and the line from the robot to the origin. These coordinates are graphically
shown in Figure 3.2.

Figure 3.2: Pose stabilization
of a unicycle robot using polar
coordinates.

Using the newly defined polar coordinates, the dynamics equations (3.7) can
be equivalently expressed as

ρ̇(t) = −v(t) cos α(t),

α̇(t) =
v(t) sin α(t)

ρ(t)
−ω(t),

δ̇(t) =
v(t) sin α(t)

ρ(t)
.

(3.9)

By expressing the dynamics in polar form, a Lyapunov stability analysis can
now be easily performed. Consider the following candidate Lyapunov function:

V(ρ, α, θ) =
1
2

ρ2 +
1
2
(α2 + k3δ2), (3.10)

42 closed-loop motion planning & control

and consider the following closed-loop control law:

v = k1ρ cos α,

ω = k2α + k1
sin α cos α

α
(α + k3δ),

(3.11)

where k1, k2, k3 > 0.
The candidate Lyapunov function is quadratic and therefore is positive ev-

erywhere, V ≥ 0, and is equal to zero only at the origin with ρ = 0, α = 0,
δ = 0. Therefore, if it is possible to show that along all closed-loop system tra-
jectories the Lyapunov function is decreasing (V̇ < 0), then it can be guaranteed
that the system will converge to the origin! To show that the Lyapunov function
decreases along trajectories of the system, begin by taking the derivative of V:

V̇ = ρρ̇ + αα̇ + k3δδ̇.

This quantity can now be shown to decrease along all closed-loop trajectories by
substituting in the dynamics equations (3.8) with the closed-loop control law as
defined by (3.11):

V̇ = ρρ̇ + αα̇ + k3δδ̇,

= −ρv cos α + α
(v sin α

ρ
−ω

)
+

k3δv sin α

ρ
,

= −k1ρ2 cos2 α− k2α2,

where in the last line the control laws were substituted in for v and ω and al-
gebraically simplified. Note that since k1 and k2 have been chosen to be strictly
positive, this function must be strictly negative for all values of ρ and α! There-
fore this Lyapunov stability analysis has theoretically proven that the system
under the closed-loop control law (3.11) will converge to the origin.

3.3 Exercises

Both exercises for this chapter can be found in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW1.

3.3.1 Pose Stabilization

Complete Problem 2: Pose Stabilization, where you will implement the Lyapunov-
based pose controller for the unicycle robot described in Example 3.2.1.

3.3.2 Trajectory Tracking

Complete Problem 3: Trajectory Tracking, where you will implement the differen-
tial flatness-based trajectory tracking controller for the extended unicycle robot
described in Example 3.1.1.

4
Optimal Control and Trajectory Optimization

Previously, the idea of using optimal control1 techniques (also referred to as tra- 1 D. E. Kirk. Optimal Control Theory: An
Introduction. Dover Publications, 2004jectory optimization) for robot motion planning and control was presented. In this

chapter, the optimal control problem is revisited in more detail, including a brief
discussion on the use of both indirect and direct methods.

Optimal Control and Trajectory Optimization

Consider an optimal control problem (OCP) formulated as the following opti-
mization problem:

minimize
u,x

h(x(t f), t f) +
∫ t f

t0

g(x(t), u(t), t)dt,

s.t. ẋ(t) = a(x(t), u(t), t),

x(t0) = x0,

(4.1)

where x ∈ Rn is the robot state, u ∈ Rm is the control input, x0 is a known robot
initial condition, a(x, u, t) is a function describing the robot’s dynamics, and the
functions h(x(t f), t f) and g(x(t), u(t), t) define the cost function2. The goal is to 2 State constraints x(t) ∈ X and control

constraints u(t) ∈ U are also often
included in practice, but for simplicity
are not included here.

solve the optimal control problem (4.1) in order to define an optimal open-loop
control law of the form

u∗(t) = f (x(t0), t).

Unfortunately, this optimization problem is particularly challenging to solve
since it is infinite-dimensional3. Methods for solving (4.1) can be categorized as 3 It is referred to as infinite-dimensional

because it is an optimization over
functions and not just a finite set of
parameters.

either indirect or direct. Both types of methods (almost always) require some
form of discretization, such that the problem can be solved numerically. How-
ever, the way in which the problem is discretized is what makes each method
unique.

1. Indirect methods follow a “first optimize, then discretize" approach. These
methods first derive conditions for optimality of the original infinite-dimensional
problem. A solution is then recovered by discretizing the optimality condi-
tions.

44 optimal control and trajectory optimization

2. Direct methods follow a “first discretize, then optimize" approach. These
methods first discretize the original problem into a finite-dimensional prob-
lem (called a nonlinear program), which is then solved numerically to recover
an optimal solution.

4.1 Indirect Methods

As previously mentioned, indirect methods solve the optimal control problem
(4.1) by deriving necessary optimality conditions (NOC). A numerical procedure
is then used to find solutions that satisfy these conditions of optimality, thereby
“indirectly” solving the original OCP. As a brief example, for unconstrained
finite-dimensional optimization problems the classic first-order necessary op-
timality condition4 is that the gradient of the function must be zero (e.g. mini- 4 It is important to note that these

conditions are called necessary because
they are “necessary”, but they may not
be “sufficient”. In other words there
may exist solutions that satisfy the
NOCs but do not solve the original
problem.

mize f (x) = x2 with x ∈ R has NOC d f
dx = 0).

4.1.1 Constrained Finite-Dimensional Optimization

Before discussing techniques to derive necessary optimality conditions for the
infinite-dimensional OCP (4.1), it is useful to briefly examine analogous con-
ditions in finite-dimensional optimization5. Consider the equality-constrained 5 S. Boyd and L. Vandenberghe. Convex

optimization. Cambridge University
Press, 2004

finite-dimensional optimization problem:

minimize
x

f (x),

s.t. hi(x) = 0, i = 1, . . . , m
(4.2)

with variable x ∈ Rn.
Necessary optimality conditions for (4.2) are derived by first forming a function
called the Lagrangian L(x, λ), which augments the objective function with a
weighted sum of the constraint functions:

L(x, λ) = f (x) +
m

∑
i=1

λihi(x), (4.3)

where λ ∈ Rm is a vector of Lagrange multipliers. The NOCs are then given as:

∇xL(x∗, λ∗) = 0,

∇λL(x∗, λ∗) = 0,
(4.4)

which are the gradients of the Lagrangian with respect to the variables x and
the multipliers λ. Note that the NOCs (4.4) are a set of n + m algebraic equa-
tions with n + m unknowns. In contrast, it will be seen next that the NOCs for
infinite-dimensional problems are not algebraic, but rather differential.

4.1.2 Necessary Optimality Conditions

Analogously to the Lagrangian (4.3) in finite-dimensional optimization, the first
step to defining the NOCs for the infinite-dimensional OCP (4.1) is to define a

principles of robot autonomy 45

function called the Hamiltonian:

H(x(t), u(t), p(t), t) := g(x(t), u(t), t) + p⊤(t)a(x(t), u(t), t), (4.5)

where p(t) ∈ Rn is a multiplier referred to as a costate. The NOCs are then
given by a set of differential and algebraic equations:

ẋ∗(t) =
∂H
∂p

(x∗(t), u∗(t), p∗(t), t),

ṗ∗(t) = −∂H
∂x

(x∗(t), u∗(t), p∗(t), t),

0 =
∂H
∂u

(x∗(t), u∗(t), p∗(t), t),

(4.6)

which must be satisfied for all t ∈ [t0, t f]. These NOCs consist of 2n first order
differential equations and m algebraic equations. Identifying unique solutions
to the 2n differential equations requires 2n boundary conditions (actually 2n + 1
if the final time t f is not fixed). The initial condition x∗(t0) = x0 specifies n of
these conditions, and the remaining conditions are given by

(∂h
∂x

(x∗(t f), t f)− p∗(t f))
)⊤

δx f

+
(

H(x∗(t f), u∗(t f), p∗(t f), t f) +
∂h
∂t

(x∗(t f), t f)
)
δt f = 0,

(4.7)

where δx f and δt f are referred to as variations. If either the final time or final
state is fixed in the optimal control problem the corresponding variation is
forced to be zero, which changes the boundary conditions (4.7). The resulting
boundary conditions for the four possible scenarios are now summarized:

Fixed Final Time and Fixed Final State: If both t f and x(t f) are fixed, both vari-
ations δt f and δx f are set to zero. In this case the boundary conditions (4.7) are
trivially satisfied, and the remaining boundary conditions on the NOCs (4.6) are
given by:

x∗(t0) = x0,

x∗(t f) = x f .

Fixed Final Time and Free Final State: If only t f is fixed, then only the variation
δt f = 0. In this case the conditions (4.7) simplify and the boundary conditions
for the NOCs (4.6) are given by:

x∗(t0) = x0,

∂h
∂x

(x∗(t f), t f)− p∗(t f) = 0.

Free Final Time and Fixed Final State: If only x f is fixed, then only the variation
δx f = 0. In this case the conditions (4.7) simplify and the boundary conditions

46 optimal control and trajectory optimization

for the NOCs (4.6) are given by:

x∗(t0) = x0,

x∗(t f) = x f ,

H(x∗(t f), u∗(t f), p∗(t f), t f) +
∂h
∂t

(x∗(t f), t f) = 0.

Note that in this case since the final time is free an additional boundary condi-
tion is added, so there are now 2n + 1 total conditions.

Free Final Time and Free Final State: If neither t f or x(t f) is fixed, then the
boundary conditions for the NOCs (4.6) are given by:

x∗(t0) = x0,

∂h
∂x

(x∗(t f), t f)− p∗(t f) = 0,

H(x∗(t f), u∗(t f), p∗(t f), t f) +
∂h
∂t

(x∗(t f), t f) = 0.

Again, since the final time is free an additional boundary condition is added
such that there are 2n + 1 total. Note that last two conditions are both extracted
from (4.7) because the variations δx f and δt f are independent.

4.1.3 Two-Point Boundary Value Problems

Finding solutions that satisfy the necessary optimality conditions (4.6) for the
optimal control problem is challenging. In particular, any solution must sat-
isfy a set of 2n differential equations with boundary conditions specified at
both t0 and t f . The problem of finding solutions to differential equations with
boundary conditions specified at two points is called a two-point boundary value
problem. Luckily, numerical procedures have been developed for solving these
types of problems. For example the scikits.bvp_solver package in Python or
the function bvp4c in Matlab implement schemes for solving these problems.

Most solvers for two-point boundary value problems typically assume the
NOCs (4.6) and their boundary conditions are expressed in the standard form:

ż = g(z, t), l(z(t0), z(t f)) = 0. (4.8)

However, some types of problems may not directly fit into this standard form.
For such instances, it is sometimes possible to convert a non-standard form
problem into the standard form (4.8) 6. 6 U. Ascher and R. D. Russell. “Refor-

mulation of boundary value problems
into “standard” form”. In: SIAM Review
23.2 (1981), pp. 238–254

In optimal control settings one common case where the two-point boundary
value problem cannot directly be expressed in standard form is free final time
problems, where t f needs to be determined but does not have any associated
dynamics. A useful trick in this case is to define a new variable τ = t

t f
∈ [0, 1]

to replace the time variable t (since before t f wasn’t known but now τf = 1 is
known). With this new variable the following changes can be made:

principles of robot autonomy 47

1. Replace all derivatives with respect to t with derivatives with respect to τ,
using d(·)

dτ = t f
d(·)
dt (chain rule).

2. Introduce a “dummy” state r that corresponds to t f with dynamics ṙ = 0.

3. Replace t f with r in all NOCs and in all boundary conditions.

The “dummy” state r can then be included in the vector z and the NOCs ex-
pressed in the standard form (4.8). In summary, this approach can be thought of
as “tricking” the standard-form solver to think that the final time is 1 and that t f

is actually a state with dynamics (although the dynamics are ṫ f = 0).

Example 4.1.1 (Free Final Time OCP). Consider a double integrator system

ẍ = u,

where x ∈ R is the state and u ∈ R is the control input where the control task is
to find a trajectory that minimizes the cost function

J =
1
2

αt2
f +

∫ t f

0

1
2

βu2(t)dt,

and satisfies the boundary conditions

x(0) = 10, ẋ(0) = 0, x(t f) = 0, ẋ(t f) = 0.

This problem is a free final time problem with a fixed final state, and the cost
is formulated to find a trajectory that minimizes a combination of the time to
reach the final state and the amount of control effort required to get there. A
trade-off between minimizing final time and minimizing control effort is made
by adjusting the weighting parameters7 α and β. From the cost function it is 7 What does intuition suggest the

optimal behavior would be for α = 0 or
for β = 0?

apparent that:

h(x(t f), t f) =
1
2

αt2
f , g(x(t), u(t), t) =

1
2

βu2(t),

and the dynamics equation can be equivalently expressed as a first-order system
of ODEs by setting x1 = x and x2 = ẋ:

ẋ1 = x2,

ẋ2 = u,

such that x = [x1, x2]
⊤ and the boundary conditions become:

x1(0) = 10, x2(0) = 0, x1(t f) = 0, x2(t f) = 0.

Now that the problem has been introduced, the first step is to derive the
Hamiltonian:

H =
1
2

βu2 + p1x2 + p2u,

48 optimal control and trajectory optimization

where p1 and p2 are the costates. Next, the NOCs (4.6) can be derived by taking
the partial derivatives of H with respect to p, x, and u:

ẋ∗1 = x∗2 ,

ẋ∗2 = u∗,

ṗ∗1 = 0,

ṗ∗2 = −p∗1 ,

0 = βu∗ + p∗2 .

The next step is then to determine appropriate boundary conditions for the
NOCs. As mentioned before, this problem is a free final time and fixed final
state problem. Therefore the boundary conditions are given by

x∗1(0) = 10,

x∗2(0) = 0,

x∗1(t f) = 0,

x∗2(t f) = 0,
1
2

βu∗(t f)
2 + p∗1(t f)x∗2(t f) + p∗2(t f)u∗(t f) + αt f = 0.

Now, from the last NOC it can be seen that the optimal control u∗ can be
solved for in terms of the costate p∗2 :

u∗ = − 1
β

p∗2 .

This expression can then be substituted into the second NOC and into the
boundary conditions. At this point the resulting two-point boundary value
problem can be expressed in the standard form (4.8) (by using the free final time
trick previously discussed), and solved numerically. However, it also turns out
that this problem is simple enough to solve analytically as well.

Analytical Solution: Integrating the differential equations for the costates p1 and
p2 gives:

p∗1 = C1,

p∗2 = −C1t + C2,

where C1 and C2 are constants. Therefore, the optimal control u∗ can be ex-
pressed as u∗ = C1

β t− C2
β and the states x1 and x2 can be integrated to yield:

x∗2 =
C1

2β
t2 − C2

β
t + C3,

x∗1 =
C1

6β
t3 − C2

2β
t2 + C3t + C4,

where C3 and C4 are additional constants. There are now five unknown quan-
tities, C1, C2, C3, C4, and t f , which can be determined by leveraging the five

principles of robot autonomy 49

boundary conditions. In particular from the condition x∗1(0) = 10 and x∗2(0) = 0
it is easy to see that C3 = 0 and C4 = 10. The remaining boundary conditions
can then be used to analytically solve for the remaining constants, and in partic-
ular:

t f = (1800
β

α
)1/5.

For a couple of interesting insights, it can be noted that as β −→ 0 the cost
function penalizes the final time more, and from the expression for t f we can
see that t f −→ 0. Additionally, as α −→ 0 the cost function penalizes control
inputs, and correspondingly it can be seen in the expression for t f that t f −→ ∞.
Further, note that the optimal control takes the form

u∗(t) =
C1

β
t− C2

β
.

Thus the control input is linear in time and its magnitude is inversely propor-
tional to β.

4.2 Direct Methods

Unlike indirect methods, direct methods do not require a derivation of the nec-
essary optimality conditions. Instead these methods directly discretize the origi-
nal optimal control problem (4.1) to turn it into a finite-dimensional constrained
optimization problem called a nonlinear programming problem.

While several approaches for discretizing the OCP exist, one simple approach
is to just use a forward Euler time discretization. Recall that the forward Euler
time discretization method (the simplest of the Runge-Kutta methods) can be
used to numerically solve differential equations. In particular, with the choice of
a time step hi the differential equations ẋ = a(x, u, t) are discretized as:

xi+1 = xi + hia(xi, ui, ti), (4.9)

where xi = x(ti), ui = u(ti), and ti+1 − ti = hi. With this recursive expres-
sion (4.9), an initial condition x(t0), and a sequence of inputs u(ti) for i ≥ 0,
the states x(ti) can be computed easily. Suppose the optimal control prob-
lem (4.1) was defined over the time interval [t0, t f]. Applying a forward Euler
time discretization essentially partitions this interval into a finite set of N times
{t0, t1, . . . , tN} where tN = t f and the time step between each is hi = ti+1 − ti.
Then the parameters of the optimization problem will simply become the state
and controls at these times, xi = x(ti) and ui = u(ti) for i = 0, . . . , N.

Rewriting the original OCP (4.1) as a function of the discrete set of param-
eters ti, xi, and ui will require modifications to both the constraints and to the
cost function. First, the recursive formula (4.9) is used to replace the dynamics
constraint ẋ = a(x, u, t) in the OCP8. Updating the cost function is going to 8 The original dynamics model

ẋ = a(x, u, t) is sometimes called
the continuous time model and the recur-
sive formula xi+1 = xi + ha(xi , ui , ti) is
called the discrete time model.

require a numerical approximation of the integral, such as by using one of the

50 optimal control and trajectory optimization

Newton-Cotes formulas. The simplest of which would yield the approximation:

∫ t f

t0

g(x(t), u(t), t)dt ≈
N−1

∑
i=0

hig(xi, ui, ti).

The OCP (4.1) can now be expressed completely as the finite-dimensional non-
linear program (NLP):

minimize
ui ,xi

h(xN , tN) +
N−1

∑
i=0

hig(xi, ui, ti),

s.t. xi+1 = xi + hia(xi, ui, ti), i = 0, . . . , N − 1,

x0 = x(t0).

(4.10)

4.3 Consistency of Time Discretization

The finite-dimensional problem (4.10) is only an approximation of the original
problem (4.1), so it is important to justify that this approximation method is
consistent with the original problem. This is accomplished by taking a look at
the necessary optimality conditions for the NLP (4.10) and comparing them to
the necessary optimality conditions for the original OCP (4.1).

Recall that the necessary conditions of optimality for equality-constrained
finite-dimensional optimization problems have previously been discussed in
Section 4.1.1. In particular, the Lagrangian is first formulated, which for (4.10)
takes the form:

L = h(xN , tN) +
N−1

∑
i=0

hig(xi, ui, ti) +
N−1

∑
i=0

λ⊤i (xi + hia(xi, ui, ti)− xi+1).

Note that even though the initial condition constraint is included in (4.10) it can
be ignored in the Lagrangian by simply assuming x0 is not actually a decision
variable in the optimization problem (since it is fixed). The NOCs are then given
by:

∇xi L = hi
∂g
∂x

(xi, ui) + hi
(∂a

∂x
(xi, ui)

)⊤
λi + (λi − λi−1) = 0, i = 1, . . . , N − 1

∇xN L =
∂h
∂x

(xN)− λN−1 = 0,

∇ui L = hi
∂g
∂u

(xi, ui) + hi
(∂a

∂u
(xi, ui)

)⊤
λi = 0, i = 0, . . . , N − 1

xi + hia(xi, ui, ti)− xi+1 = 0, i = 0, . . . , N − 1
(4.11)

Now, from the indirect method with equations (4.5), (4.6), and boundary con-
ditions (4.7) with fixed final time and free final state, the NOCs for the infinite-

principles of robot autonomy 51

dimensional OCP can be written as:

∂g
∂x

(x(t), u(t)) +
(∂a

∂x
(x(t), u(t))

)⊤p(t) + ṗ(t) = 0, t ∈ [t0, t f]

∂h
∂x

(x(t f))− p(t f) = 0,

∂g
∂u

(x(t), u(t)) +
(∂a

∂u
(x(t), u(t))

)⊤p(t) = 0, t ∈ [t0, t f]

ẋ(t)− a(x(t), u(t), t) = 0, t ∈ [t0, t f]

x0 − x(t0) = 0.

(4.12)

The NOCs (4.11) for the discretized problem and the NOCs for the original
OCP (4.12) are remarkably similar. In fact, the NOCs (4.11) can be seen as them-
selves simply the discretized versions of (4.12). To see this, simply perform a
forward Euler discretization of the equations in (4.12) with:

ṗ(t) =
λi − λi−1

hi
, p(ti) = λi, i = 0, . . . , N − 1,

ẋ(t) =
xi+1 − xi

hi
, x(ti) = xi, u(ti) = ui, i = 0, . . . , N − 1.

Therefore, as the time step hi −→ 0 the NOCs for the discretized (direct method)
problem converge to the NOCs derived directly for the original infinite-dimensional
OCP (indirect method)!

4.4 Exercises

4.4.1 Optimal Control and Trajectory Optimization

Complete Extra Problem: Optimal Control and Trajectory Optimization located in
the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW1,

where you will compute a dynamically feasible and optimal trajectory for a
unicycle robot by using an indirect method to set up the necessary optimality
conditions and solve them using a two-point boundary value solver.

5
Search-Based Motion Planning

Previous chapters addressed the problem of robotic motion planning and con-
trol by leveraging techniques from control theory and optimal control. In par-
ticular, these techniques were used to generate open and closed-loop control
laws to accomplish specific tasks such as trajectory generation, trajectory track-
ing, and stabilization or regulation about a particular robot state. One common
component among all of these algorithms was the use of a model of the robot’s
kinematics or dynamics, which mathematically defines how the robot transi-
tions from state to state based on control inputs.

In this chapter yet another set of algorithms for motion planning/trajec-
tory generation is discussed1. These algorithms are particularly well suited 1 S. M. LaValle. Planning Algorithms.

Cambridge, U.K.: Cambridge Univer-
sity Press, 2006

for higher-level motion planning tasks, such as motion planning in environ-
ments with obstacles. This is accomplished by focusing on formulating the mo-
tion planning problem for a robot with respect to the robot’s configuration space
rather than the state space that was used in previous chapters. While the robot’s
configuration is derivable from its state (and still characterizes all of the robot’s
degrees of freedom), the definition of the configuration space can be useful be-
cause it can be tailored to collision avoidance tasks2. Historically speaking, these 2 In some cases the choice of configu-

ration and state may end up being the
same.

approaches were developed alongside many of the techniques from previous
chapters, and are still being researched today.

Search-Based Motion Planning

Recall the general definition of the motion planning problem:

Definition 5.0.1 (Motion planning problem). Compute a sequence of actions to
go from an initial condition to a terminal condition while respecting constraints and
possibly optimizing a cost function.

Previous chapters approached this problem by formulating mathematical
optimization problems that minimized a cost function subject to constraints
on the motion (i.e. from dynamics/kinematics, control limits, or conditions on
the robot’s state), or leveraged differential flatness properties of the model. In
these approaches, the robot’s trajectory was parameterized by its state x and the

54 search-based motion planning

corresponding control inputs u which satisfied a set of differential equations

ẋ = f (x, u).

In this chapter, the motion planning problem will instead be addressed with
respect to a configuration space (C-space). The configuration q of a robot is deriv-
able from the full dynamics state x and captures all of the degrees of freedom
of the robot (i.e. all rigid body transformations). In some cases the state and
configuration of the robot may be the same, but in other cases the definition
of the configuration can be tailored to simplify the motion planning problem.
One important example of this is for geometric path planning, where paths in the
configuration space can be planned without considering the robot kinematic/-
dynamics model.

Example 5.0.1 (Motivating Example). Consider the L-shaped robot from Figure
5.1 that lives in a 2D world with obstacles, and is trying to get from one point
to another. Additionally, suppose this robot has a state x = [x, y, θ, ẋ, ẏ, θ̇]⊤, and
consider a configuration space defined by q = [x, y, θ]⊤ which fully captures
the robot’s degrees of freedom. Since the motion planning problem in this case
involves obstacle avoidance, it might be easier to just plan a sequence of config-
urations q that are collision free (as is shown in the right-side graphic of Figure
5.1).

In this case, the use of the configuration space has simplified the motion
planning problem by abstracting away the consideration of the robot’s dynam-
ics. Once the geometric path has been defined in configuration space, other
techniques (such as those discussed in previous chapters) could be used to per-
form lower-level control functions for path tracking.

Figure 5.1: Motivating exam-
ple: motion planning in a 2D
workspace with obstacles.

Additionally, it is important to note that the C-space is a subset of R3, and in
particular the C-space is R2 × S1. This subspace is special because it includes
the manifold S1, which characterizes the fact that the rotational degree of free-
dom θ satisfies θ = θ ± 2πk for all k = 1, 2, This distinction is important

principles of robot autonomy 55

to make because it endows the planner with the ability to move from one an-
gle to another in two different ways (i.e. the robot can turn left or turn right).
For example, suppose the robot in Figure 5.1 has a current heading of θ0 and
wants move to have a heading θg subject to the constraint of avoiding a C-space
obstacle (see Figure 5.2). If the equivalence between the angles 0 and 2π is not
established in the definition of the configuration space, the robot would not be
able to traverse a collision-free path to the desired heading in the configura-
tion space (see red trajectory). Instead, since the configuration space is defined
with respect to S1, the robot is able to achieve the desired heading (see green
trajectory).

Figure 5.2: Example trajectory
planning where the description
of the configuration space us-
ing the manifold S1 is crucial
to path planning. In particu-
lar, rotating clockwise leads to
collision but rotating counter-
clockwise is a feasible path.

In this chapter two types of motion planning algorithms that plan in the con-
figuration space will be discussed. The first class consists of grid-based methods,
and the second class consists of methods referred to as combinatorial planners.

5.1 Grid-based Motion Planners

Suppose the robot’s configuration q is a d dimensional vector, then the C-space
is a subset of Rd. Critically, this is a continuous space and therefore there are
an infinite number of potential configurations the robot could be in. To simplify
this problem, grid-based motion planners use a grid to discretize the C-space
into a finite number of allowable configurations. For example, in a simple C-
space in two dimensions the grid might look like that shown in Figure 5.3. In
grid-based planners, undesirable configurations are simply represented by iden-
tifying some cells of the grid to be forbidden (e.g. for obstacle avoidance). The
dynamics/kinematics of the robot are also abstracted away and it is assumed
that the robot has the ability to move freely between adjacent cells (configura-
tions). After this discretization, the resulting motion planning problem is some-
times referred to as a discrete planning problem because only a finite number of
options are available at each step, and only a finite number of configurations
are possible. The planning problem then reduces to finding a way to traverse
through the cells from the initial configuration to a desired final configuration.

Mathematically, problems of this type are commonly expressed using discrete
graphs. A graph G = (V, E), is simply defined by a set of vertices V and a set

56 search-based motion planning

Figure 5.3: Discretizing the
configuration space using a
grid.

of edges E. In the context of grid-based motion planners, each vertex v ∈ V
represents a free cell of the grid, and each edge (v, u) ∈ E corresponds to a
connection between adjacent cells. With the graph representation, the planning
problem is to find a way to traverse through the graph to reach the desired
vertex. Algorithms for solving such problems are referred to as graph search
methods.

The advantages of such approaches are that they are simple and easy to use,
and for some problems can be very fast. The disadvantages are primarily the
result of the discretization procedure. In some cases, if the resolution of the
grid is not fine enough the search algorithm may not always be able to find a
solution. Additionally, for a fixed resolution the size of the graph grows expo-
nentially with respect to the dimension of the configuration space. Therefore
this approach is generally limited to simple robots with a low-dimensional con-
figuration space.

5.1.1 Label Correcting Algorithms

Since the graph is defined by a finite number of vertices (also referred to as
nodes) and edges, it should be theoretically possible to solve a graph search
problem in finite time. However in order to achieve this in practice, several
simple “accounting” tricks need to be used to keep track of how the search has
progressed and to avoid redundant exploration. Additionally, it is desirable to
find a “best” path, and so a mechanism for keeping track of the current best
path is required during the search.

A general set of algorithms known as label correcting algorithms employ such
accounting techniques to guarantee good performance. In these algorithms, the
notion of a “best” path is logged in terms of a cost-of-arrival.

Definition 5.1.1 (Cost-of-Arrival). The cost-of-arrival associated with a vertex q with

principles of robot autonomy 57

respect to a starting vertex qI is the cost associated with taking the best known route
from qI to q along edges of the graph, and is denoted C(q).

Additionally, in a slight abuse of notation the cost from traversing an edge
from vertex q to vertex q′ is denoted as C(q, q′). To keep track of what nodes
have already been visited and which still need further exploration, label cor-
recting algorithms define a set of frontier vertices (sometimes also referred to as
alive). This allows guarantees to be made that the search algorithm will avoid re-
dundant exploration, and will terminate in finite time. It also guarantees that if
a path from the initial vertex qI to the goal vertex qG exists, that it will be found.

In general, label correcting algorithms take the following steps to find the
best path from an initial vertex qI to a desired vertex qG

3: 3 In terms of robot motion planning this
would be a search over paths through
the discretized configuration space.
Therefore the vertices of the graph
are referred to as q to better connect
this abstraction with their physical
interpretation being a particular robot
configuration q.

1. Initialize the set of frontier vertices as Q = {qI} and set C(qI) = 0. Initialize
the cost-of-arrival of all other vertices q′ as C(q′) = ∞.

2. Remove a vertex from Q and explore each of its connected vertices q′. For
each q′, determine the candidate cost-of-arrival C̃(q′) associated with moving
from q to q′ as C̃(q′) = C(q) + C(q, q′). If the candidate cost-of-arrival C̃(q′)
is lower than the current cost-of-arrival C(q′) AND is lower than the current
cost-of-arrival C(qG), then set C(q′) = C̃(q′), define q as the parent of q′, and
add q′ to the set Q if q′ is not qG.

3. Repeat step 2 until the set of frontier vertices Q is empty.

The bulk of the work is done is Step 2. In particular, for the selected q from
Q, these algorithms search its connected neighbors q′ to see if moving from q
to q′ will lead to a lower overall cost than previously found paths to q′. This is
why the algorithms are called “label correcting”, since they “correct” the cost-of-
arrival as better paths are found throughout the search process. Eventually, once
the best path from qI to q is found, q will never again be added to the set Q and
therefore the algorithm is guaranteed to eventually terminate.

Theorem 5.1.2 (Label Correcting Algorithms). If a feasible path exists from qI to qG,
then the label correcting algorithm will terminate in finite time with C(qG) equal to the
optimal cost of traversal, C∗(qG).

The primary way in which label correcting algorithms differ from each other
is in how they select the next vertex q from the set of frontier nodes Q. In fact,
the set Q is often referred to as a priority queue since the algorithm might assign
priority values to the order in which vertices are selected. Different approaches
for prioritizing include depth-first search, breadth-first search, and best-first search.

Depth-First Search Depth-first search in a directed graph expands each node
up to the deepest level of the graph, until a chosen node has no more succes-
sors. Another way to think about this in terms of the set Q is “last in/first out”,
where whenever a new vertex q is selected from Q it chooses those vertices that
were most recently added.

Figure 5.4: Depth-First Search

58 search-based motion planning

Breadth-First Search Breadth-first search begins with the start node and ex-
plores all of its neighboring nodes. Then for each of these nodes, it explores
all their unexplored neighbors and so on. In terms of Q, this is like storing the
frontier nodes as a queue with the first node added is the first node selected.

Figure 5.5: Breadth First Search

Best-First Search Also commonly known as Dijkstra’s algorithm, this approach
greedily selects vertices q from Q by looking at the current best cost-of-arrivals.
Mathematically,

q = arg min
q∈Q

C(q).

This approach is sometimes considered an “optimistic” approach since it is
essentially making the assumption that the best current action will always cor-
respond to the best overall plan. In practice this approach typically provides
a more efficient search procedure relative to depth-first or breadth-first ap-
proaches because it can account for the cost of the path, however additional
improvements can be made.

5.1.2 A* Algorithm

A* is a label correcting algorithm that is a modified version of Dijkstra’s al-
gorithm. In Dijkstra’s algorithm the goal vertex qG is not taken into account,
potentially leading to wasted effort in cases where the greedy choice makes no
progress towards the goal. This is quantified by a quantity called the cost-to-go.

Definition 5.1.3 (Cost-to-Go). The cost-to-go associated with a vertex q with respect
to a goal vertex qG is the cost associated with taking the best known route from q to qG

along edges of the graph.

In practice, the cost-to-go is not usually known, and therefore heuristics are
used to provide approximate cost-to-go values h(q). In order for the heuristic to
be useful, it must be a positive underestimate of the true cost-to-go. An example
of a heuristic h is to simply use distance to the goal.

While Djikstra’s algorithm only prioritizes a vertex q based on its cost-of-
arrival C(q), A* prioritizes based on cost-of-arrival C(q) plus an approximate
cost-to-go h(q). This provides a better estimate of the total quality of a path than
just using the cost-of-arrival alone. The A* algorithm is defined in Algorithm 1.
Note that in the case that the heuristic is chosen to be h(q) = 0 for all q then A*
is the same as Djikstra’s algorithm.

5.2 Combinatorial Motion Planning

Combinatorial approaches to motion planning find paths through the continu-
ous configuration space without resorting to discretizations like in grid-based
planners. Recall that in grid-based planners, cells in the discretized configura-
tion space that were undesirable were blocked out and simply not considered
in the resulting path search. However, in the case of combinatorial planners

principles of robot autonomy 59

Algorithm 1: A* Algorithm
Data: qI , qG, G
Result: path
C(q) = ∞, f (q) = ∞, ∀q
C(qI) = 0, f (qI) = h(qI)

Q = {qI}
while Q is not empty do

q = arg minq′∈Q f (q′)

if q = qG then
return path

Q.remove(q)
for q′ ∈ {q′ | (q, q′) ∈ E} do

C̃(q′) = C(q) + C(q, q′)
if C̃(q′) < C(q′) then

q′.parent = q
C(q′) = C̃(q′)
f (q′) = C(q′) + h(q′)
if q′ ̸∈ Q then

Q.add(q′)

return failure

the structure of the free portion of the configuration space is considered in a
different way.

Figure 5.6: Free (white) and
forbidden spaces (grey and red)
of the configuration space for
a simple circular robot in a 2D
world. Note that the forbidden
space accounts for the physical
dimensions of the robot.

First, the subset of the configuration space C that is free (i.e. results in no col-
lisions) is denoted as C f ree and is called the free space (see Figures 5.6 and 5.7).
Combinatorial motion planning approaches operate by computing roadmaps
through the free space C f ree. A roadmap is a graph G where each vertex repre-
sents a point in C f ree and each edge represents a path through C f ree that con-
nects a pair of vertices. The set S is then defined for a particular roadmap graph
G as the set of all points in C f ree that are either vertices of G or lie on any edge
of G. This graph structure is similar to that used in grid-based planners, with
the important distinction that the vertices can potentially be any configuration
q ∈ C f ree while in grid-based planners the vertices are defined ahead of time by

60 search-based motion planning

Figure 5.7: Once the free
(white) and forbidden (grey
and red) configurations have
been identified, the physical
dimensions of the robot can
be ignored. This figure shows
an example of a path plan-
ning problem in C-space with
obstacles.

discretization. This distinction is very important because the flexibility of choos-
ing the vertices does not result in any loss of information! Once the roadmap
has been defined, a path can be defined by first connecting the initial configu-
ration qI and goal configuration qG to the roadmap and then solving a discrete
graph search over the roadmap graph G.

In general combinatorial planners are complete (i.e. the algorithm will either
find a solution or will correctly report that no solution exists), and can even be
optimal in some cases. However, often times in practice they are not computa-
tionally feasible to implement except in problems with low-dimensional con-
figuration spaces and/or simple geometric representations of the environment.
Additionally, it requires that the free space be completely defined in advance,
which is not necessarily a realistic requirement.

5.2.1 Cell Decomposition

One common approach for deriving the roadmap is to use cell decomposition to
decompose C f ree. Cell decomposition refers to the process of partitioning C f ree

into a finite set of regions called cells, which should generally satisfy:

• Each cell should be easy to traverse and ideally convex.

• Decomposition should be easy to compute.

• Adjacencies between cells should be straightforward to determine, in order to
build the roadmap.

Example 5.2.1 (2D Cell Decomposition). Consider a two-dimensional configura-
tion space as shown in Figure 5.8. This space is decomposed into cells that are

principles of robot autonomy 61

either lines or trapezoids by a process called vertical cell decomposition. Once
the cells have been defined, the roadmap is generated by placing a vertex in
each cell (e.g. at the centroid) as well as a vertex on each shared edge between
cells.

If the forbidden space is polygonal, cell decomposition methods work pretty
well and each cell can be made to be convex. In general, there exist several
approaches for performing cell decomposition. However, cell decomposition in
higher dimensions becomes increasingly challenging.

Figure 5.8: Example of 2D
Cell Decomposition with C f ree

colored white. A roadmap is
defined as the graph G with
vertices shown as black dots
and edges connecting them. To
solve a planning problem with
qstart and qgoal these points are
first connected to the roadmap,
and then the path is easily
defined.

5.2.2 Other Roadmaps

Other ways to define roadmaps besides using cell decomposition exist. Two
possible examples include a maximum clearance or minimum distance ap-
proach. Maximum clearance roadmaps simply try to always keep as far from
obstacles as possible, for example by following the centerline of corridors. These
roadmaps are also sometimes referred to as “generalized Voronoi diagrams”.
Minimum distance roadmaps are generally the exact opposite of maximum
clearance roadmaps in that they tend to graze the corners of the forbidden
space. In practice this is likely not desirable and therefore these approaches
are less commonly used (without modification).

5.3 Exercises

5.3.1 A* Motion Planning

Complete Problem 1: A* Motion Planning located in the online repository:

62 search-based motion planning

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW2,

where you will implement the A* grid-based motion planning algorithm for
some simple 2D environments.

6
Sampling-Based Motion Planning

The previous chapter introduced motion planning problems that are formulated
with respect to the robot’s configuration space (C-space). In particular, two
specific approaches for motion planning in C-space were discussed: grid-based
methods and combinatorial planning methods. Grid-based methods discretize
the continuous C-space into a grid, and then use graph search methods such
as A* to compute paths through the grid. Combinatorial planners compute a
roadmap that consists of a finite set of points in the C-space, but avoids the use
of a rigid grid structure. Planning with the roadmap then consists of connecting
the initial configuration and desired configuration to the roadmap, and then
performing a graph search to find a path along the roadmap.

Generally speaking, grid-based methods suffer from the rigidity of the dis-
cretization that is performed. In contrast, combinatorial planners have much
more flexibility because any configuration q can be a part of the roadmap. How-
ever, both types of planners require a complete characterization of the free con-
figuration space (e.g. points in the configuration space that don’t result in a
collision with obstacles) in advance. In this chapter, a class of motion planning
algorithms is presented which builds a roadmap that is similar to combinatorial
planners, but without requiring a full characterization of the free configura-
tion space. Instead, these algorithms build roadmaps one point at a time by
sampling a point in the configuration space, and then querying an indepen-
dent module to determine if the sample is admissible. This class of planners are
referred to as sampling-based methods1. 1 S. M. LaValle. Planning Algorithms.

Cambridge, U.K.: Cambridge Univer-
sity Press, 2006

Sampling-Based Motion Planning

In contrast to the search-based motion planners discussed in the last chapter,
sampling-based methods leverage an independent module that can be queried
to determine if a configuration is admissible. In the context of robotics, an
admissible configuration in motion planning problems is often one that is
collision-free and therefore this module is often referred to as a collision de-
tection module (or simply a collision checker). The collision detection module is
used to probe and incrementally build a roadmap in the configuration space,

64 sampling-based motion planning

rather than attempting to completely characterize the free space in advance (as
is done in combinatorial planners).

Sampling-based algorithms are a common choice for practical applications
as they are conceptually simple, flexible, relatively easy to implement, and can
be extended beyond the geometric case (i.e. they can consider differential con-
straints). The disadvantages of the approach are typically with respect to theo-
retical guarantees, for example these approaches cannot certify that a solution
doesn’t exist. In this chapter the focus will be on two popular sampling-based
methods: probabilistic roadmaps (PRM) and the rapidly-exploring random
trees (RRT) algorithm. Additional techniques such as the fast-marching tree
algorithm (FMT*), kinodynamic planning, and deterministic sampling-based
methods will also be briefly mentioned.

6.1 Probabilistic Roadmap (PRM)

It is easiest to start with the probabilistic roadmap algorithm because it is con-
ceptually quite similar to combinatorial planners from the previous section.
In particular, the PRM algorithm also generates a topological graph G called a
roadmap where the vertices are configurations q in the free part of the configu-
ration space C f ree, and edges connect the vertices (and must also entirely lie in
C f ree). Once the roadmap is generated, a motion plan can be found for a given
initial configuration qI and goal configuration qG by first connecting them to the
roadmap, and then using a graph-search algorithm (e.g. A*) to find a path along
the roadmap graph G. The difference between PRM and combinatorial planners
lies in the method in which the roadmap is generated.

The key insight of the PRM algorithm is that a complete characterization
of the free configuration space (which is computationally expensive) can be
avoided by sampling configurations q at random and then using a collision
checker to validate if q ∈ C f ree. The general outline of the algorithm follows:

1. Randomly sample n configurations qi from the configuration space.

2. Query a collision checker for each qi to determine if qi ∈ C f ree, if qi ̸∈ C f ree

then it is removed from the sample set.

3. Create a graph G = (V, E) with vertices from the sampled configurations
qi ∈ C f ree. Define a radius r and create edges for every pair of vertices q and
q′ where: (i) ∥q − q′∥ ≤ r and (ii) the straight line path between q and q′ is
also collision free.

An example of the roadmap resulting from applying this algorithm is shown
in Figure 6.1. Note that using the connectivity radius r is a simple and efficient
way of connecting the sampled vertices without having a burdensome number
of edges. This is desirable because having too many edges is unnecessary, will
make the graph-search more challenging, and will require more collision checks
to be made2. On the flip side, making the radius r too small could mean not 2 Edge validation is usually performed

by densely sampling the edge and
checking for collisions at each.

principles of robot autonomy 65

Figure 6.1: Example solution
found via the PRM algorithm.
The black dots represent the
randomly sampled vertices of
the graph, and the grey lines
represent the edges created
between vertices within a pre-
defined radius r of each other.
The initial configuration qstart

and goal configuration qgoal ,
are connected through this
roadmap along the pink line,
which is found by a graph-
search algorithm.

enough connections are made.
The downside of PRM is that finding good solutions may require a large

number of samples n to sufficiently cover the configuration space. Similar to
why having too many edges is not good, having too many samples will require
a lot of queries of the collision checker, which may be costly. However, there
are some scenarios where building a roadmap that completely covers the space
C f ree is beneficial, namely in multi-query planning problems. In multi-query
problems, it is assumed that the motion planner will be called many times for
different initial qI and goal qG configurations. In this case the PRM graph can
be built once to cover C f ree, and then it can be reused as many times as needed.
In other words, the costly sampling and collision checking only needs to be
done once at the start, so it may be worth the “investment”. Note however that
this only works if the environment stays the same in between each query of the
motion planner. If the environment changes, the entire PRM roadmap would
have to be rebuilt from scratch!

6.2 Rapidly-exploring Random Trees (RRT)

In multi-query problems where the environment does not change in between
each query, the probabilistic roadmap (PRM) algorithm offers the advantage
of front-loading some work to provide efficient queries later. However, many
problems in robotics are alternatively classified as single-query problems, where
it is assumed that only a single query will be made to the motion planner. A
common single-query planning scenario arises from changing environments,
such as if there is a moving obstacle. In this case building up a roadmap over
the entire free configuration space C f ree may result in wasted effort. The RRT al-
gorithm solves this problem by incrementally sampling and building the graph,
starting at the initial configuration qI , until the goal configuration qG is reached.

66 sampling-based motion planning

Additionally, the graph is built as a tree, which is a special type of graph that
has only one path between any two vertices in the graph.

In general, the RRT algorithm begins by initializing a tree3 T = (V, E) with 3 The tree is a graph, however since it
has special structure it is denoted as T
rather than G.

a vertex at the initial configuration (i.e. V = {qI}). At each iteration the RRT
algorithm then performs the following steps:

1. Randomly sample a configuration q ∈ C.

2. Find the vertex qnear ∈ V that is closest to the sampled configuration q.

3. Compute a new configuration qnew that lies on the line connecting qnear and q
such that the entire line from qnear to qnew is contained in the free configura-
tion space C f ree.

4. Add a vertex qnew and an edge (qnear, qnew) to the tree T.

Thus after each iteration only a single point is sampled and potentially added
to the tree. Additionally, every so often the sampled point q can be set to be the
goal configuration qG. Then, if the nearest point qnear can be connected to qG

by a collision-free line the search can be terminated. Intuitively, this approach
works because of a phenomenon referred to as the Voronoi bias, which essen-
tially describes the fact that there is more “empty space” near the nodes on the
frontier of the tree. Therefore, a randomly sampled point is more likely to be
drawn in this “empty space”, causing the frontier to be extended (and therefore
driving exploration).

Note that variations on this standard algorithm exist, in particular there exist
different ways of connecting a sampled point to the existing tree. One popular
variant that modifies the way a sampled point is connected to the tree is known
as RRT* (pronounced RRT star). This modified RRT algorithm introduces a no-
tion of optimality into the planner and will in fact return an optimal solution
as the number of samples approaches infinity. Another variant of RRT is called
RRT-Connect, which simultaneously builds a tree from both the initial configu-
ration qI and the goal configuration qG and tries to connect them.

6.3 Theoretical Results for PRM and RRT

One of the main challenges of sampling-based motion planning is that it is
unclear how many samples are needed to find a solution. However, some the-
oretical guarantees can be provided regarding their asymptotic behavior (i.e.
behavior as number of samples n −→ ∞). In particular, both PRM4 and RRT

4 With a constant connectivity radius r.

are guaranteed5 to eventually find a solution if it exists 6,7. Regarding solution

5 These guarantees also require an
assumption that the configuration space
is bounded, for example if C is the
d-dimensional unit hypercube with
2 ≤ d ≤ ∞.

6 S. M. LaValle. Rapidly-Exploring
Random Trees: A New Tool for Path
Planning. 1998

7 L. E. Kavraki et al. “Probabilistic
roadmaps for path planning in high-
dimensional configuration spaces”.
In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580

quality, it has been shown that PRM (with the appropriate choice of the radius r)
can find optimal paths as the number of samples n −→ ∞. However, RRT can be
arbitrarily bad with non-negligible probability 8. 8 S. Karaman and E. Frazzoli.

“Sampling-based Algorithms for
Optimal Motion Planning”. In: Int.
Journal of Robotics Research 30.7 (2011),
pp. 846–894

principles of robot autonomy 67

Figure 6.2: Example exploration
tree by the RRT algorithm. The
black dots represent points
sampled at each iteration of the
algorithm, which are connected
to the nearest vertex that is
currently part of the tree.

6.4 Fast Marching Tree Algorithm (FMT*)

As previously mentioned, PRM is an asymptotically optimal algorithm which
means that with enough samples it will find good paths. However, in practice
PRM with a large number of samples also requires a lot of collision checks and
is therefore costly. On the other hand, RRT is fast but in general will not find
good paths. FMT* is a an advanced sampling-based motion planning algorithm
that maintains the advantages of both of these algorithms (i.e. fast and asymp-
totically optimal) 9. 9 L. Janson et al. “Fast Marching Tree: A

Fast Marching Sampling-Based Method
for Optimal Motion Planning in Many
Dimensions”. In: Int. Journal of Robotics
Research 34.7 (2015), pp. 883–921

FMT* builds a tree structured graph in the same way RRT does (which main-
tains the efficiency of RRT), but makes connections in a way that allows for
asymptotic optimality. In particular, the technique used for making new con-
nections is referred to as dynamic programming. Dynamic programming can be
used to find the best paths with respect to a cost-of-arrival, denoted c(q), which
represents the cost to move from the initial configuration qI to the configura-
tion q. An example of a common metric is simply the Euclidean distance, which
would result in a “shortest” path. In the context of motion planning, dynamic
programming leverages Bellman’s principle of optimality, which states that the
optimal paths satisfy:

c(v) = min
u:∥u−v∥<rn

Cost(u, v) + c(u), (6.1)

where u are nodes within radius rn of node v, Cost(u, v) is the cost of an edge
between u and v, and c(u) is the cost-to-arrive at u. In words, this relationship
says that the cost-of-arrival at any configuration v on the optimal path is defined
by searching over all local neighboring configurations to find which would re-
sult in the best path. FMT* uses this principle repeatedly every time it needs
to connect a new sample to the tree. However, in practice using the condition
(6.1) is complicated by the fact that the resulting edge may result in a collision.

68 sampling-based motion planning

FMT* handles this by ignoring obstacles when using the condition (6.1) to con-
nect a new sample to the tree, and then if a collision occurs from the resulting
connection it is simply skipped and the algorithm moves on to a new sam-
ple. Therefore this application of dynamic programming is referred to as lazy
because it only checks for collisions after the fact. It turns out that this substan-
tially reduces the total amount of collision checks required, and only leads to
sub-optimality in rare cases.

Figure 6.3: Example of a step
in FMT*. Suppose the sam-
ple v has been selected to be
the next point to be added
to the tree. The candidate
costs Cost(u1, v) + c(u1) and
Cost(u2, v) + c(u2) are evalu-
ated to see which connection
would minimize cv. Suppose
u2 was selected by this criteria
(i.e. u2 satisfies (6.1)), then the
collision checker would see that
the edge (u2, v) results in a col-
lision and the sample v would
be skipped (but could be added
later).

6.5 Kinodynamic Planning

The geometric motion planning algorithms previously considered assume that
the robot does not have any constraints on its motion and only a collision-free
solution is required. This makes the planning task easier because two config-
urations q and q′ can be simply connected by the planner with a straight line.
However, robots do typically have kinematic/dynamical constraints on their
motion, and for some motion planning problems it is desirable or even nec-
essary to take those constraints into account. The problem of planning a path
through the free configuration space C f ree that satisfies a given set of differential
constraints is referred to as kinodynamic motion planning10. 10 E. Schmerling, L. Janson, and M.

Pavone. “Optimal sampling-based
motion planning under differential
constraints: the driftless case”. In: IEEE
International Conference on Robotics and
Automation. 2015, pp. 2368–2375

Similar to previous chapter, it is assumed that the robot operates in a state
space X ⊆ Rn and can apply controls u ∈ U ⊆ Rm, and that the motion
constraints are given by the differential model (i.e. from kinematic or dynamics
constraints):

ẋ = f (x, u), (6.2)

where x ∈ Rn and u ∈ Rm. Note that the state space X is not necessarily the
same as the configuration space C, but the configuration q is derivable from
the state x. As was previously mentioned, the configuration space is something
that can be chosen to capture the information that is necessary for obstacle
avoidance. However to include dynamics constraints it is required that the
motion planning now be done in the state space X.

The RRT algorithm can be extended to the kinodynamic case with relative
simplicity. In particular, a random state x is sampled from the state space X
and its nearest neighbor xnear on the current tree T is found. Instead of connect-
ing x and xnear with a straight line (which is likely not dynamically feasible), a

principles of robot autonomy 69

random control u ∈ U and random time t are sampled. Then, the state is prop-
agated forward by integrating the differential equations (6.2) with the chosen
u for a time t and initial condition xnear. The resulting state xnew is then added
to the tree if the path from xnear to xnew is collision free. This is referred to as a
forward-propagation-based approach.

Another approach to kinodynamic planning leverage steering-based algo-
rithms. In these approaches, the planner selects two points in the state space x
and x′ and then uses a steering subroutine to find a feasible trajectory to con-
nect these points. Crucially, these approaches only work well if the steering
subroutine is efficient. This approach is be particularly well suited for differential
flat systems.

(a) Reeds-Shepp car (b) Double integrator system

Figure 6.4: Results from a
kinodynamic planner called
Differential FMT* (DFMT*)
(Schmerling et al.). The figure
on the left shows the results
for a Reeds-Shepp car model,
and on the right is a double
integrator model.

6.6 Deterministic Sampling-Based Motion Planning

Probabilistic sampling-based algorithms, such as the probabilistic roadmap
(PRM) and the rapidly exploring random tree (RRT) algorithms, have been quite
successful in practice for robotic motion planning and often have nice theoret-
ical properties (e.g. in terms of probabilistic completeness or even asymptotic
optimality). Such algorithms are probabilistic because they compute a path by
connecting independently and identically distributed (i.i.d.) random points
in the configuration space. However, this randomization introduces several
challenges for practical use, including certification for safety-critical applica-
tions and the ability to use offline computation to improve real-time execution.
Hence, it is important to ask whether similar (or better) theoretical guarantees
and practical performance could be obtained by considering deterministic ap-
proaches.

An important metric for answering this question is referred to as the l2-
dispersion.

Definition 6.6.1 (l2-dispersion). For a finite set S of points contained in X ⊂ Rd, its

70 sampling-based motion planning

l2-dispersion D(S) is defined as:

D(S) := sup
x∈X

min
s∈S
∥s− x∥2. (6.3)

Intuitively, the l2-dispersion of S quantifies how well a space is covered by
the set of points in S in terms of the largest Euclidean ball that touches and con-
tains none of the points. For a fixed number of samples, a small l2-dispersion
(only a small radius ball can be fit among the points of S without touching or
containing any) means that the points are more uniformly distributed.

To create a deterministic sampling based motion planning algorithm, it is
desirable to generate a set of samples S with low-dispersion. In fact, low-
dispersion sampling sequences exist that give sets S with l2-dispersion D(S)
on the order of O(n−1/d) where d is the dimension of the space. Additionally,
for d = 2 it is possible to create sequences of points S that minimize the l2-
dispersion. Then, if the set S of n samples has l2-dispersion that satisfies

D(S) ≤ γn−1/d,

for some γ > 0, and if limn→∞ n1/drn = ∞, then the arc length of the path cn

returned will converge to the optimal path c∗ as n −→ ∞.
In summary, deterministic sampling can be used to generate motion plan-

ning algorithms. These deterministic algorithms still maintain the asymptotic
optimality guarantees that probabilistic planners do, and can even use a smaller
connection radius rn.

6.7 Exercises

All exercises for this chapter can be found in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW2.

6.7.1 Rapidly-Exploring Random Trees

Complete Problem 2: Rapidly-Exploring Random Trees (RRT), where you will im-
plement the RRT sample-based motion planning algorithm to plan paths in
simple 2D environments. Additionally, in this problem you will start with a
simple geometric planner that does not consider robot dynamics, but will then
extend the RRT algorithm to consider a wheeled robot modeled with Dubins car
dynamics.

6.7.2 Motion Planning & Control

Complete Problem 3: Motion Planning & Control, where you will combine an A*
planner with a differential flatness-based tracking controller and a pose stabi-
lization controller to enable a unicycle robot to autonomously move through a
2D environment. Note that this problem requires exercises from previous chap-
ters to be completed first.

principles of robot autonomy 71

6.7.3 Bi-Directional Sampling-based Motion Planning

Complete Extra Problem: Bi-Directional Sampling-based Motion Planning, where
you will implement a variation of the RRT algorithm known as RRT-Connect,
which uses a bi-direction approach to building the RRT tree. This algorithm
will be implemented for both a simple geometric path planner as well as for a
Dubins car robot.

Part II

Robot Perception

7
Introduction to Robot Sensors

The three main pillars of robotic autonomy can broadly be characterized as
perception, planning, and control (i.e. the “see, think, act” cycle). Perception
categorizes those challenges associated with a robot sensing and understanding
its environment, which are addressed by using various sensors and then extract-
ing meaningful information from their measurements. The next few chapters
will focus on the perception/sensing problem in robotics, and in particular will
introduce common sensors utilized in robotics, their key performance charac-
teristics, as well as strategies for extracting useful information from the sensor
outputs.

Introduction to Robot Sensors

Robots operate in diverse environments and often require diverse sets of sensors
to appropriately characterize them. For example, a self-driving car may utilize
cameras, stereo cameras, lidar, and radar. Additionally, sensors are also required
for characterizing the physical state of the vehicle itself, for example wheel
encoders, heading sensors, GNSS positioning sensors1, and more2. 1 Global Navigation Satellite System

2 R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

7.1 Sensor Classifications

To distinguish between sensors that measure the environment and sensors that
measure quantities related the robot itself, sensors are categorized as either
proprioceptive or exteroceptive.

Definition 7.1.1 (Proprioceptive). Proprioceptive sensors measure values internal
to the robot, for example motor speed, wheel load, robot arm joint angles, and battery
voltage.

Definition 7.1.2 (Exteroceptive). Exteroceptive sensors acquire information from the
robot’s environment, for example distance measurements, light intensity, and sound
amplitude.

Generally speaking, exteroceptive sensor measurements are often more likely
to require interpretation by the robot in order to extract meaningful environ-

76 introduction to robot sensors

mental features. In addition to characterizing what the sensor measures, it is
also useful to characterize sensors based on how they operate. In particular it is
common to characterize a sensor as either passive or active.

Definition 7.1.3 (Passive Sensor). Passive sensors measure ambient environmental
energy entering the sensor, for example thermometers and cameras.

Definition 7.1.4 (Active Sensor). Active sensors emit energy into the environment
and measure the reaction, for example ultrasonic sensors and laser rangefinders.

Classifying a sensor as active or passive is important because this property
introduces unique challenges. For example the performance of passive sensors
depend heavily on the environment, such as a camera being dependent on the
ambient lighting to get a good image.

7.2 Sensor Performance

Different types sensors also have different types of performance characteristics.
Some sensors provide extreme accuracy in well-controlled laboratory settings
but are overcome with error when subjected to real-world environmental vari-
ations. Other sensors provide narrow, high-precision data in a wide variety of
settings. In order to quantify and compare such performance characteristics it is
necessary to define relevant metrics. These metrics are generally either related
to design specifications or in situ performance (i.e. how well a sensor performs in
the real environment).

7.2.1 Design Specification Metrics

A number of performance characteristics are specifically considered when de-
signing the sensor, and are also used to quantify its overall nominal perfor-
mance capabilities.

1. Dynamic range quantifies the ratio between the lower and upper limits of the
sensor inputs under normal operation. This metric is usually expressed in
decibels (dB), which is computed as

DR = 10 log10(r) [dB],

where r is the ratio between the upper and lower limits. In addition to dy-
namic range (ratio), the actual range is also an important sensor metric. For
example, an optical rangefinder will have a minimum operating range and
can thus provide spurious data when measurements are taken with the object
closer than that minimum.

2. Resolution is the minimum difference between two values that can be de-
tected by a sensor. Usually, the lower limit of the dynamic range of a sensor
is equal to its resolution. However, this is not necessarily the case for digital
sensors.

principles of robot autonomy 77

3. Linearity characterizes whether or not the sensor’s output depends linearly
on the input.

4. Bandwidth or frequency is used to measure the speed with which a sensor
can provide a stream of readings. This metric is usually expressed in units
of Hertz (Hz), which is measurements per second. High bandwidth sensors
are usually desired so that information can be updated at a higher rate. For
example, mobile robots may have a limit on their maximum speed based on
the bandwidth of their obstacle detection sensors.

7.2.2 In Situ Performance Metrics

Metrics related to the design specifications can be reasonably quantified in a
laboratory environment and then extrapolated to predict performance during
real-world deployment. However, a number of important sensor metrics cannot
be adequately characterized in laboratories settings since they are influenced by
complex interactions between the environment.

1. Sensitivity defines the ratio of change in the output from the sensor to a
change in the input. High sensitivity is often undesirable because any noise
to the input can be amplified, but low sensitivity might degrade the ability to
extract useful information from the sensor’s measurements. Cross-sensitivity
defines the sensitivity to environmental parameters that are unrelated to the
sensor’s target quantity. For example, a flux-gate compass can demonstrate
high sensitivity to magnetic north and is therefore useful for mobile robot
navigation. However, the compass also has high sensitivity to ferrous build-
ing materials, so much so that its cross-sensitivity often makes the sensor
useless in some indoor environments. High cross-sensitivity of a sensor is
generally undesirable, especially when it cannot be modeled.

2. Error of a sensor is defined as the difference between the sensor’s output
measurements and the true values being measured, within some specific
operating context. Given a true value v and a measured value m, the error is
defined as e := m− v.

3. Accuracy is defined as the degree of conformity between the sensor’s mea-
surement and the true value, and is often expressed as a proportion of the
true value (e.g., 97.5% accuracy). Thus small error corresponds to high accu-
racy and vice versa. For a measurement m and true value v, the accuracy is
defined as a := 1− |m− v|/v. Since obtaining the true value v can be difficult
or impossible, characterizing sensor accuracy can be challenging.

4. Precision defines the reproducibility of the sensor results. For example, a sen-
sor has high precision if multiple measurements of the same environmental
quantity are similar. It is important to note that precision is not the same as
accuracy, a highly precise sensor can still be highly inaccurate.

78 introduction to robot sensors

7.2.3 Sensor Errors

When discussing in situ performance metrics such as accuracy and precision, it
is often important to also be able to reason about the sources of sensor errors.
In particular it is important to distinguish between two main types of error,
systematic errors and random errors.

1. Systematic errors are caused by factors or processes that can in theory be mod-
eled (i.e. they are deterministic and therefore reproducible and predictable).
Calibration error is a classic source of systematic error in sensors.

2. Random errors cannot be predicted using a sophisticated model (i.e. they are
stochastic and unpredictable). Hue instability in a color camera, spurious
rangefinding errors, and black level noise in a camera are all examples of
random errors.

In order to reliably use a sensor in practice it is useful to have a characteri-
zation of the systematic and random errors, which could allow for corrections
to make the sensor more accurate and provide information about its precision.
Quantifying the sensor error and identifying sources of error is referred to as
error analysis. Error analysis for a typical sensor might involve identifying all
of the sources of systematic errors, modeling random errors (e.g. by Gaussian
distributions), and then propagating the errors from each identified source to
determine the overall impact on the sensor output.

Unfortunately, it is typically challenging to perform a complete error analy-
sis in practice for several reasons. One of the main reasons is due to a blurring
between systematic and random errors that is the result of changes to the oper-
ating environment. For example, exteroceptive sensors on a mobile robot will
have constantly changing measurement sources as the robot moves through the
environment, and could even be influenced by the motion of the robot itself.
Therefore, an exteroceptive sensor’s error profile may be heavily dependent on
the particular environment and even the particular state of the robot! As a more
concrete example, active ranging sensors tend to have failure modes that are
triggered largely by specific relative positions of the sensor and environment
targets. For example, when oriented at specific angles to a smooth sheetrock
wall a sonar sensor will produce specular reflections that result in highly in-
accurate range measurements. During the motion of a robot, these particular
relative angles would likely occur at stochastic intervals and therefore this error
source might be considered random. Yet, if the robot were to stop at the specific
angle for inducing specular reflections, the error would be persistent and could
be modeled as a systematic error. In summary, while systematic and random
sensor errors might be well defined in controlled settings, in practical settings
characterizing error becomes a lot more challenging due to the complexity and
quantity of potential error sources.

principles of robot autonomy 79

7.2.4 Modeling Uncertainty

If all sensor measurement errors were systematic and could be modeled then
theoretically they could be corrected for. However in practice this is not the case
and therefore some alternative representation of the sensor error is needed. In
particular, characterizing uncertainty due to random errors is typically accom-
plished by using probability distributions.

Since it is effectively impossible to know all of the sources of random error
for a sensor it is common to make assumptions about what the distribution
of the sensor error looks like. For example, it is commonly assumed that ran-
dom errors are zero-mean and symmetric, or to go slightly further that they
are Gaussian. More broadly, it is commonly assumed that the distribution is
unimodal. These assumptions are usually made because they simplify the mathe-
matical tools used for performing theoretical analyses.

However, it is also crucial to understand the limitations of these assumptions.
In fact, in many cases even the most broad assumptions (e.g. that the distribu-
tion is unimodal) can be quite wrong in practice. As an example consider the
sonar sensor once again. When ranging an object that reflects the sound signal
well, the sonar will exhibit high accuracy and the random errors will generally
be based on noise (e.g. from the timing circuitry). In this operating instance it
might be a perfectly fine assumption that the noise distribution is unimodal and
perhaps even Gaussian. However, if the sonar sensor is moving through an en-
vironment and is faced with materials that cause coherent reflection (rather than
directly returning the sound signal to the sonar sensor) then overestimates of
the distance to the object are likely. In this case, the error will be biased toward
positive measurement error and will be far from the correct value. Therefore
it can be seen that modeling the sonar sensor uncertainty over all operating
regimes of the robot would at least require a bimodal distribution in this case.
Additionally, since overestimation is more common than underestimation, the
distribution should also be asymmetric. As a second example, consider ranging
via stereo vision. Once again, at least two modes of operation can be identified.
If the stereo vision system correctly correlates two images, then the resulting
random error will be caused by camera noise and will limit the measurement
accuracy. But the stereo vision system can also correlate two images incorrectly.
In such a case stereo vision will exhibit gross measurement error, and one can
easily imagine such behavior violating both the unimodal and the symmetric
assumptions.

7.3 Common Sensors on Mobile Robots

7.3.1 Encoders

Encoders are electro-mechanical devices that convert motion into a sequence
of digital pulses, which can then be converted to relative or absolute position
measurements. These sensors are commonly used for wheel/motor sensing

80 introduction to robot sensors

to determine rotation angle and rotation rate. Since these sensors have vast
applications outside of mobile robotics there has been substantial development
in low-cost encoders that offer excellent resolution. In mobile robotics, encoders
are one of the most popular means to control the position or speed of wheels
and other motor-driven joints. These sensors are proprioceptive and therefore
their estimates are expressed in the reference frame of the robot.

Figure 7.1: Quadrature optical
wheel encoder. (Figure from
Siegwart et al.)

Optical encoders shine light onto a photodiode through slits in a metal or
glass disc, and measure the sine or square wave pulses that result from disk
rotation (see Figure 7.1). After some signal processing it is possible to integrate
the number of wave peaks to determine how much the disk has rotated. En-
coder resolution is measured in cycles per revolution (CPR) and the minimum
angular resolution can be readily computed from an encoder’s CPR rating. A
typical encoder in mobile robotics may have 2000 CPR, while the optical en-
coder industry can readily manufacture encoders with 10,000 CPR. In terms of
bandwidth, it is of course critical that the encoder is sufficiently fast to handle
the expected shaft rotation rates. Luckily, industrial optical encoders present no
bandwidth limitation to mobile robot applications. Usually in mobile robotics
the quadrature encoder is used. In this case, a second illumination and detec-
tor pair is placed 90 degrees shifted with respect to the original in terms of the
rotor disc. The resulting twin square waves, shown in Figure 7.1, provide signif-
icantly more information. The ordering of which square wave produces a rising
edge first identifies the direction of rotation. Furthermore, the resolution is im-
proved by a factor of four with no change to the rotor disc. Thus, a 2000 CPR
encoder in quadrature yields 8000 counts.

As with most proprioceptive sensors, encoders typically operate in a very
predictable and controlled environment. Therefore systematic errors and cross-
sensitivities can be accounted for. In practice, the accuracy of optical encoders
is often assumed to be 100% since any encoder errors are dwarfed by errors in
downstream components.

7.3.2 Heading Sensors

Heading sensors can be proprioceptive (e.g. gyroscopes, inclinometers) or exte-
roceptive (e.g. compasses). They are used to determine the robot’s orientation in
space. Additionally, they can also be used to obtain position estimates by fusing

principles of robot autonomy 81

the orientation and velocity information and integrating, a process known as
dead reckoning.

Compasses: Compasses are exteroceptive sensors that measure the earth’s mag-
netic field to provide a rough estimate of direction. In mobile robotics, digital
compasses using the Hall effect are popular and they are inexpensive but often
suffer from poor resolution and accuracy. Flux gate compasses have improved
resolution and accuracy, but are more expensive and physically larger. Both
compass types are vulnerable to vibrations and disturbances in the magnetic
field, and are therefore less well suited for indoor applications.

Gyroscopes: Gyroscopes are heading sensors that preserve their orientation
with respect to a fixed inertial reference frame. Gyroscopes can be classified in
two categories: mechanical gyroscopes and optical gyroscopes. Mechanical gyro-

Figure 7.2: Two-axis mechan-
ical gyroscope. (Figure from
Siegwart et al.)

scopes rely on the angular momentum of a fast-spinning rotor to keep the axis
of rotation inertially stable. Generally the inertial stability increases with the
spinning speed ω, the precession speed Ω, and the wheel’s inertia I since the
reactive torque τ can be expressed as:

τ = IωΩ.

Mechanical gyroscopes are configured with an inner and outer gimbal as seen
in Figure 7.2 such that no torque can be transmitted from the outer pivot to
the wheel axis. This means that the spinning axis will therefore be space-stable
(i.e. fixed in an inertial reference frame). Nevertheless, friction in the bearings
of the gimbals may introduce small torques, which over time introduces small
errors. A high quality mechanical gyroscope can cost up to $100,000 and has an
angular drift of about 0.1 degrees in 6 hours.

Optical gyroscopes are a relatively new invention. They use angular speed
sensors with two monochromatic light beams, or lasers, emitted from the same
source. Two beams are sent, one clockwise and the other counterclockwise,

82 introduction to robot sensors

through an optical fiber. Since the laser traveling in the direction of rotation has
a slightly shorter path, it will have a higher frequency. This frequency difference
δ f is proportional to the angular velocity, which can therefore be estimated.
In modern optical gyroscopes, bandwidth can easily exceed 100 kHz, while
resolution can be smaller than 0.0001 degrees/hr.

7.3.3 Accelerometer

An accelerometer is a device used to measure net accelerations (i.e. the net ex-
ternal forces acting on the sensor, including gravity). Mechanical accelerometers
are essentially spring-mass-damper systems that can be represented by the sec-
ond order differential equation3: 3 G. Dudek and M. Jenkin. “Inertial

Sensors, GPS, and Odometry”. In:
Springer Handbook of Robotics. Springer,
2008, pp. 477–490

Fapplied = mẍ + cẋ + kx

where m is the proof mass, c is the damping coefficient, k is the spring constant,
and x is the relative position to a reference equilibrium. When a static force is
applied, the system will oscillate until it reaches a steady state where the steady
state acceleration would be given as:

aapplied =
kx
m

.

The design of the sensor chooses m, c, and k such that system can stabilize
quickly and then the applied acceleration can be calculated from steady state.
Modern accelerometers, such as the ones in mobile phones, are usually very
small and use Micro Electro-Mechanical Systems (MEMS), which consist of a
cantilevered beam and a proof mass. The deflection of the proof mass from its
neutral position is measured using capacitive or piezoelectric effects.

7.3.4 Inertial Measurement Unit (IMU)

Inertial measurement units (IMU) are devices that use gyroscopes and ac-
celerometers to estimate their relative position, orientation, velocity, and ac-
celeration with respect to an inertial reference frame. Their general working
principle is shown in Figure 7.3.

The gyroscope data is integrated to estimate the vehicle orientation while the
three accelerometers are used to estimate the instantaneous acceleration of the
vehicle. The acceleration is then transformed to the local navigation frame by
means of the current estimate of the vehicle orientation relative to gravity. At
this point the gravity vector can be subtracted from the measurement. The re-
sulting acceleration is then integrated to obtain the velocity and then integrated
again to obtain the position, provided that both the initial velocity and position
are a priori known. To overcome the need of knowing of the initial velocity, the
integration is typically started at rest when the velocity is zero.

One of the fundamental issues with IMUs is the phenomenon called drift,
which describes the slow accumulation of errors over time. Drift in any one

principles of robot autonomy 83

component will also effect the downstream components as well. For example,
drift in the gyroscope unavoidably undermines the estimation of the vehicle ori-
entation relative to gravity, which results in incorrect cancellation of the gravity
vector. Additionally, errors in acceleration measurements will cause the inte-
grated velocity to drift in time (which will in turn also cause position estimate
drift). To account for drift periodic references to some external measurement is
required. In many robot applications, such an external reference may come from
GNSS position measurements, cameras, or other sensors.

Figure 7.3: Inertial measure-
ment unit (IMU) block diagram.

7.3.5 Beacons

Beacons are signaling devices with precisely known positions (e.g. stars and
lighthouses are classic examples). Position of a mobile robot can be determined
by knowing the position of the beacon and by having access to relative position
measurements. The GNSS positioning system and camera-based motion capture
system for indoor use are more advanced examples. GNSS based positioning is
extremely popular in robotics, and works by processing synchronized signals
from at least four satellites. Signals from four satellites are needed (at a mini-
mum) to enable the estimation of four unknown quantities (the three position
coordinates plus a clock correction). Modified GNSS-based methods, such as
differential GPS, can be used to increase positioning accuracy.

7.3.6 Active Ranging

Active ranging sensors provide direct measurements of distance to objects in
the vicinity of the sensor. These sensors are important in robotics for both lo-
calization and environment reconstruction. There are two main types of active
ranging sensors: time-of-flight active ranging sensors (e.g. ultrasonic, laser
rangefinder, and time-of-flight cameras) and geometric active ranging sensors
(e.g. based on optical triangulation and structured light).

Figure 7.4: The Velodyne HDL-
64E High Definition Real-Time
3D Lidar sensor, a time-of-flight
active ranging sensor. (Image
retrieved from velodyneli-
dar.com)

Time-of-flight Active Ranging: Time-of-flight active ranging sensors make use
of the propagation speed of sounds or electromagnetic waves. In particular, the
travel distance is given by

d = ct,

84 introduction to robot sensors

where d is the distance traveled, c is the speed of wave propagation, and t is
the time of flight. The propagation speed c of sound is approximately 0.3m/ms
whereas the speed of electromagnetic signals is 0.3m/ns, which is 1 million
times faster! The time of flight for a distance of 3 meters is 10 milliseconds for
an ultrasonic system, but only 10 nanoseconds for a laser rangefinder, which
makes measuring the time of flight t for electromagnetic signals more techno-
logically challenging. This explains why laser range sensors have only recently
become affordable and robust for use on mobile robots. The quality of different
time-of-flight range sensors may depend on:

1. uncertainties in determining the exact time of arrival of the reflected signal,

2. inaccuracies in the time-of-flight measurement (particularly with laser range
sensors),

3. the dispersal cone of the transmitted beam (mainly with ultrasonic range
sensors),

4. interaction with the target (e.g. surface absorption, specular reflections),

5. variation of propagation speed,

6. the speed of the mobile robot and target (in the case of a dynamic target).

Geometric Active Ranging: Geometric active ranging sensors use geometric
properties in the measurements to establish distance readings. Generally, these
sensors project a known pattern of light and then geometric properties can be
used to analyze the reflection and estimate range via triangulation. Optical
triangulation sensors (1D) transmit a collimated (parallel rays of light) beam
toward the target and use a lens to collect reflected light and project it onto a
position-sensitive device or linear camera. Structured light sensors (2D or 3D)
project a known light pattern (e.g. point, line, or texture) onto the environment.
The reflection is captured by a receiver and then, together with known geomet-
ric values, range is estimated via triangulation.

7.3.7 Other Sensors

Some classical examples of other sensors include radar, tactile sensors, and
vision based sensors (e.g. cameras). Radar sensors leverage the Doppler effect to
produce velocity relative velocity measurements. Tactile sensors are particularly
useful for robots that interact physically with their environment.

7.4 Computer Vision

Vision sensors have become crucial sensors for perception in the context of
robotics. This is generally due to the fact that vision provides an enormous

principles of robot autonomy 85

amount of information about the environment and enables rich, intelligent inter-
action in dynamic environments4. The main challenges associated with vision- 4 In fact, the human eye provides

millions of bits of information per
second.

based sensing are related to processing digital images to extract salient infor-
mation like object depth, motion and object detection, color tracking, feature
detection, scene recognition, and more. The analysis and processing of images
are generally referred to as computer vision and image processing. Tremendous ad-
vances and new theoretical findings in these fields over the last several decades
have led to sophisticated computer vision and image processing techniques to
be utilized in industrial and consumer applications such as photography, defect
inspection, monitoring and surveillance, video games, movies, and more. This
section introduces some fundamental concepts related to these fields, and in
particular will focus on cameras and camera models.

7.4.1 Digital Cameras

While the basic idea of a camera has existed for thousands of years, the first
clear description of one was given by Leonardo Da Vinci in 1502 and the oldest
known published drawing of a camera obscura (a dark room with a pinhole to
image a scene) was shown by Gemma Frisius in 1544. By 1685, Johann Zahn
had designed the first portable camera, and in 1822 Joseph Nicephore Niepce
took the first physical photograph.

Modern cameras consist of a sensor that captures light and converts the re-
sulting signal into a digital image. Light falling on an imaging sensor is usually
picked up by an active sensing area, integrated for the duration of the exposure
(usually expressed as the shutter speed, e.g. 1/125, 1/60, 1/30 of a second), and
then passed to a set of sense amplifiers. The two main kinds of sensors used in
digital cameras today are charge coupled devices (CCD) and complementary
metal oxide on silicon (CMOS) sensors. A CCD chip is an array of light-sensitive
picture elements (pixels), and can contain between 20,000 and several million
pixels total. Each pixel can be thought of as a light-sensitive discharging capac-
itor that is 5 to 25µm in size. While complementary metal oxide semiconductor
(CMOS) chips also consist of an array of pixels, they are quite different from
CCD chips. In particular, along the side of each pixel are several transistors spe-
cific to that pixel. CCD sensors have typically outperformed CMOS for quality
sensitive applications such as digital single-lens-reflex cameras, while CMOS
sensors are better for low-power applications. However, today CMOS sensors
are standard in most digital cameras.

7.4.2 Image Formation

Before reaching the camera’s sensor, light rays first originate from a light source.
In general the rays of light reflected by an object tend to be scattered in many
directions and may consist of different wavelengths. Averaged over time, the
emitted wavelengths and directions for a specific object can be precisely de-
scribed using object-specific probability distribution functions. In particular,

86 introduction to robot sensors

the light reflection properties of a given object are the result of how light is re-
flected, scattered, or absorbed based on the object’s surface properties and the
wavelength of the light. For example, an object might look blue because blue
wavelengths of light are primarily scattered off the surface while other wave-
lengths are absorbed. Similarly, a black object looks black because it absorbs
most wavelengths of light, and a perfect mirror reflects all visible wavelengths.

Cameras capture images by sensing these light rays on a photoreceptive sur-
face (e.g. a CCD or a CMOS sensor). However, since light reflecting off an object
is generally scattered in many directions, simply exposing a planar photorecep-
tive surface to these reflected rays would result in many rays being captured
at each pixel. This would lead to blurry images! A solution to this issue is to
add a barrier in front of the photoreceptive surface that blocks most of these
rays, and only lets some of them pass through an aperture (see Figure 7.5). The
earliest approach to filtering light rays in this way was to have a small hole in
the barrier surface. Cameras with this type of filter were referred to as pinhole
cameras.

Figure 7.5: Light rays on a pho-
toreceptive surface referred
to as the image plane. On the
left, numerous rays being re-
flected and scattered by the
object leads to blurry images
whereas (on the right), a bar-
rier has been added so that
the scattered light rays can be
distinguished.

7.4.3 Pinhole Camera Model

A pinhole camera has no lens but rather a single very small aperture. Light
from the scene passes through this pinhole aperture and projects an inverted
image onto the image plane (see Figure 7.6). While modern cameras do not
operate in this way, the principles of the pinhole camera can be used to derive
useful mathematical models.

To develop the mathematical pinhole camera model, several useful reference
frames are defined. First, the camera reference frame is centered at a point O (see
Figure 7.6) that is at a focal length f in front of the image plane. This reference
frame with directions (i, j, k) is defined with the k axis coincident with the op-
tical axis that points toward the image plane. The coordinates of a point in the
camera frame are denoted by uppercase P = (X, Y, Z). When a ray of light
is emitted from a point P and passes through the pinhole at point O, it gets
captured on the image plane at a point p. Since these points are all collinear
it is possible to deduce the following relationships between the coordinates
P = (X, Y, Z) and p = (x, y, z):

x = λX, y = λY, z = λZ,

principles of robot autonomy 87

Figure 7.6: Pinhole camera
model. Due to the geometry of
the pinhole camera system, the
object’s image is inverted on the
image plane. In this figure, O is
the camera center, c is the im-
age center, and p the principal
point.

for some λ ∈ R. This leads to the relationship:

λ =
x
X

=
y
Y

=
z
Z

.

Further, from the geometry of the camera it can be seen that z = f where f is
the focal length, such that these expressions can be rewritten as:

x = f
X
Z

, y = f
Y
Z

. (7.1)

Therefore the position of the pixel on the image plane that captures a ray of
light from the point P can be computed.

7.4.4 Thin Lens Model

One of the main issues with having a fixed pinhole aperture is that there is a
trade-off associated with the aperture’s size. A large aperture allows a greater
number of light rays to pass through, which leads to blurring of the image.
However, a small aperture lets through fewer light rays and the resulting image
is darker. As a solution, lenses can focus light via refraction and can be used to
replace the aperture, therefore avoiding the need for these trade-offs.

A similar mathematical model to the pinhole model can be introduced for
lenses by using properties from Snell’s law. Figure 7.7 shows a diagram of the
most basic lens model, which is the thin lens model (which assumes no optical
distortion due to the curvature of the lens). Snell’s law states that rays passing
through the center of the lens are not refracted, and those that are parallel to the
optical axis are focused on the focal point labeled F′. In addition, all rays pass-
ing through P are focused by the thin lens on the point p. From the geometry of
similar triangles, a mathematical model similar to (7.1) is developed:

y
Y

=
z
Z

,
y
Y

=
z− f

f
=

z
f
− 1, (7.2)

where again the point P has coordinates (X, Y, Z), its corresponding point p on
the image plane has coordinates (x, y, z), and f is the focal length. Combining

88 introduction to robot sensors

these two equations yields the thin lens equation:

1
z
+

1
Z

=
1
f

. (7.3)

Note that in this model for a particular focal length f , a point P is only in sharp
focus if the image plane is located a distance z from the lens. However, in prac-
tice an acceptable focus is possible withing some range of distances (called
depth of field or depth of focus). Additionally, if Z approaches infinity light
would focus a distance of f away from the lens. Therefore, this model is essen-
tially the same as a pinhole model if the lens is focused at a distance of infinity.
As can be seen, this formula can also be used to estimate the distance to an ob-
ject by knowing the focal length f and the current distance of the image plane to
the lens z. This technique is called depth from focus.

Figure 7.7: The thin lens model.

8
Camera Models and Calibration

The previous chapter began an introduction to the problem of robotic percep-
tion, which consists of tasks related to sensing and understanding the robot’s
own movements as well as the environment in which it operates1. This chapter 1 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

continues that discussion by diving more deeply into one of the most power-
ful and challenging tools in robotic perception: computer vision. In particular,
this chapter will focus on some of the fundamental mathematical tools for cali-
brating cameras and processing their images to extract some useful information
about the scene2,3. 2 D. A. Forsyth and J. Ponce. Computer

Vision: A Modern Approach. Prentice
Hall, 2011

3 R. Hartley and A. Zisserman. “Camera
Models”. In: Multiple View Geometry in
Computer Vision. Academic Press, 2002

Camera Models and Calibration

As was discussed in the previous chapter, cameras provide a crucial sensing
modality in the context of robotics. This is generally due to the fact that images
inherently contain an enormous amount of information about the environment.
However, while images do contain a lot of information, extracting the informa-
tion that is relevant to the robot is quite challenging. One of the most basic tasks
related to image processing is determining how a particular point in the scene
maps to a point in the camera image, which is sometimes referred to as perspec-
tive projection. Last chapter, the pinhole camera model and the thin lens model were
presented, and in this chapter the pinhole camera model is leveraged to further
explore perspective projection4. 4 All results also hold under the thin

lens model, assuming the camera is
focused at ∞.

8.1 Perspective Projection

The pinhole camera model, shown graphically in Figure 8.1, can be used to
mathematically define relationships between points P in the scene and points
p on the image plane. Notice that any point P in the scene can represented
in two ways: in camera frame coordinates (denoted as PC) or in world frame
coordinates (denoted as PW). The overall objective of this section is to find de-
rive a mathematical model that can be used to map a point PW expressed in
world frame coordinates to a point p on the image plane. To accomplish this
two transformations are combined together, namely a transformation of P from

90 camera models and calibration

Figure 8.1: Graphical represen-
tation of the pinhole camera
model. In this model the point
OC is the camera center, c is
the image center, and f is the
focal length of the camera. It
is assumed that all light rays
from point P in the scene pass
through point OC and are cap-
tured on the image plane at
point p.

world frame coordinates to camera frame coordinates (PW to PC) and a transfor-
mation from camera coordinates to image coordinates (PC to p).

8.1.1 Mapping Camera Frame Coordinates to Image Coordinates (PC −→ p)

The first step considered is the mapping from a point in the scene expressed in
camera frame coordinates, PC, to the corresponding point on the image plane, p,
using the pinhole camera model. Recall from the previous chapter the pinhole
camera equations:

x = f
XC
ZC

, y = f
YC
ZC

, (8.1)

where PC = (XC, YC, ZC), p = (x, y), and f is the focal length of the pinhole
camera5. 5 The z term of p is generally not

included simply because z = f is a
fixed value.

Note that the quantities x and y are coordinates in the camera frame, but it
is often desirable to express the point p in terms of pixel coordinates. However,
pixel coordinates are generally defined with respect to a reference frame in
the lower corner of the image plane (to avoid negative coordinates). This new
reference frame is shown in Figure 8.2, where the image center c is defined in
this new reference frame with coordinates (x̃0, ỹ0), where ˜(·) is the notation
used to denote a coordinate with respect to this new reference frame. In this
new reference frame, the point PC gets mapped to the coordinates (x̃, ỹ) by:

x̃ = f
XC
ZC

+ x̃0, ỹ = f
YC
ZC

+ ỹ0. (8.2)

Finally, these new coordinates can be mapped to pixel coordinates if the number
of pixels per unit distance are known. In particular, the point PC is mapped to
pixel coordinates (u, v) by:

u = α
XC
ZC

+ u0, v = β
YC
ZC

+ v0, (8.3)

principles of robot autonomy 91

Figure 8.2: A new reference
frame with coordinates denoted
by ˜(·) is defined with its origin
in the lower corner of the image
plane. The image center coor-
dinates in this new frame are
denoted (x̃0, ỹ0).

where α = kx f , u0 = kx x̃0, β = ky f , v0 = kyỹ0, and kx and ky are the number of
pixels per unit distance in image coordinates.

Homogeneous Coordinates: Note that the transformation from the point PC in
camera frame coordinates to p in pixel coordinates given by (8.3) is not linear.
However, this transformation can be represented as a linear mapping6 through 6 Expressing the perspective projec-

tion as a linear map will simplify the
mathematics later on.

an additional change of coordinates. In particular, the points PC and p will be
expressed in homogeneous coordinates.

For a 2D point (x1, x2) or a 3D point (x1, x2, x3) in Euclidean space, the point
can be represented in homogeneous coordinates by the transformation:

(x1, x2) =⇒ (αx1, αx2, α), and (x1, x2, x3) =⇒ (αx1, αx2, αx3, α), (8.4)

for any α ̸= 0. These new coordinates are called homogeneous coordinates
because the scaling factor α can be chosen arbitrarily as long as α ̸= 0. A set of
homogeneous coordinates can then be transformed back by:

(y1, y2, y3) =⇒
(y1

y3
,

y2

y3

)
, and (y1, y2, y3, y4) =⇒

(y1

y4
,

y2

y4
,

y3

y4

)
. (8.5)

To denote when a point is described in homogeneous coordinates the super-
script h will be used. For example, the point PC = (XC, YC, ZC) in camera frame
coordinates can be expressed by:

Ph
C = (XC, YC, ZC, 1),

by choosing α = 1, and the point p = (u, v) in pixel coordinates can be ex-
pressed in homogeneous coordinates by:

ph = (ZCu, ZCv, ZC) = (αXC + u0ZC, βYC + v0ZC),

by choosing α = ZC and substituting the expressions (8.3). With the expression
of these points in homogeneous coordinates it can be seen that their relationship
is transformed from the nonlinear relationship (8.3) to the linear relationship:α 0 u0 0

0 β v0 0
0 0 1 0

Xc

Yc

Zc

1

 =

αXc + u0Zc

βYc + v0Zc

Zc

 . (8.6)

92 camera models and calibration

Often in practice a skewness parameter γ is also added (which generally
ends up being close to 0), and this relationship can be written in the more com-
pact form: [

K 03×1

]
Ph

C = ph, K =

α γ u0

0 β v0

0 0 1

 . (8.7)

The matrix K defined in (8.7) is sometimes referred to as the camera matrix or
matrix of intrinsic parameters. It is referred to in this way because it contains the
five parameters that define the fundamental characteristics of the camera (from
the perspective of the pinhole camera model). While these parameters may be
specified by the camera manufacturer, they are often extracted by performing a
camera calibration.

8.1.2 Mapping World Coordinates to Camera Coordinates (PW −→ PC)

Recall from Figure 8.1 that a point P in the scene can either be expressed in
terms of camera frame coordinates PC or world frame coordinates PW . While the
previous section discussed the use of the pinhole model to map PC coordinates
to pixel coordinates p, this section will discuss the mapping between the camera
and world frame coordinates of the point P (see Figure 8.3).

Figure 8.3: A depiction of the
point P expressed either in
camera coordinates, PC, or in
world frame coordinates, PW .
The world frame origin is de-
noted by OW and the camera
frame origin is denoted by OC.

From Figure 8.3 it can be seen that PC can be written as:

PC = t + q, (8.8)

where t is the vector from OC to OW expressed in camera frame coordinates and
q is the vector from OW to P expressed in camera frame coordinates. However,
the vector q is in fact the same vector as PW , just expressed in different coordi-
nates (i.e. with respect to a different frame). The coordinates can be related by a
rotation:

q = RPW , (8.9)

principles of robot autonomy 93

where R is the rotation matrix relating the camera frame to world frame and is
defined as:

R =

 iw · i jw · i kw · i
iw · j jw · j kw · j
iw · k jw · k kw · k

 , (8.10)

where i, j, and k are the unit vectors that define the camera frame and iw, jw,
and kw are the unit vectors that define the world frame. To summarize, the point
PW can be mapped to camera frame coordinates PC as:

PC = t + RPW , (8.11)

where t is the vector in camera frame coordinates from OC to OW and R is the
rotation matrix defined in (8.10). Similar to the previous section, these expres-
sions can also be equivalently expressed for the case where the points PW and
PC are expressed in homogeneous coordinates:(

PC

1

)
=

[
R t

01×3 1

](
PW

1

)
. (8.12)

8.1.3 Mapping World Frame Coordinates to Image Coordinates (PW −→ p)

The original objective of perspective projection was to find a way to mathemat-
ically relate the position of a point P in world frame coordinates (denoted PW)
to the corresponding pixel coordinates p on the image plane. With the relation-
ship (8.12) developed for mapping PW to the camera frame coordinates PC, and
the relationship (8.7) for mapping PC to pixel coordinates p, the direct map-
ping from PW to p can now be defined. In particular, simply combining the two
transformation together yields:

ph =
[
K 03×1

] [R t
01×3 1

]
Ph

W ,

which can then be simplified to:

ph = K
[

R t
]

Ph
W . (8.13)

In (8.13), Ph
W is the homogeneous coordinate representation of PW and ph is

the homogeneous coordinate representation of p. Additionally, recall that the
matrix K ∈ R3×3 is the matrix of intrinsic camera parameters, and the matrix
[R t] ∈ R3×4 contains extrinsic parameters (i.e. that describe the camera’s
position and orientation relative the points in the scene). Note that the total
number of degrees of freedom is 11, where 5 are from the intrinsic parameters
that define K, 3 are from the rotation matrix R, and 3 are from the position
vector t.

94 camera models and calibration

8.2 Camera Calibration: Direct Linear Method

Before the expression (8.13) can be used in practice, the camera’s intrinsic and
extrinsic parameters need to be determined (i.e. K, R, and t). One approach is
to use the direct linear transformation method for camera calibration, which
requires a set of known correspondences pi ←→ PW,i for i = 1, . . . , n.

8.2.1 Direct Linear Calibration: Step 1

First, each corresponding pair of points pi = (ui, vi) and PW,i = (XW,i, YW,i, ZW,i)

is written in homogeneous coordinates and the expression (8.13) is used to
write:

ph
i = MPh

W,i, i = 1,n (8.14)

where M = K[R t] is referred to as the homography. The first step of the camera
calibration process is to use the n correspondences to compute the homography
M, and then later the intrinsic and extrinsic parameters can be extracted from
M. To determine M, a useful first step is to rewrite M in terms of its rows:

M =

m1

m2

m3

 , (8.15)

where mi ∈ R1×4 is the i-th row of M. By considering the rows of M individu-
ally, the relationship (8.14) can be written as:αui

αvi

α

 =

m1 · Ph
W,i

m2 · Ph
W,i

m3 · Ph
W,i

 , i = 1,n

which by mapping the homogeneous coordinates ph
i back to the original coordi-

nates pi yields the 2n expressions:

ui =
m1 · Ph

W,i

m3 · Ph
W,i

, i = 1, . . . , n

vi =
m2 · Ph

W,i

m3 · Ph
W,i

, i = 1, . . . , n,

or equivalently (via algebraic manipulation) the expressions:

ui(m3 · Ph
W,i)− (m1 · Ph

W,i) = 0, i = 1, . . . , n

vi(m3 · Ph
W,i)− (m2 · Ph

W,i) = 0, i = 1, . . . , n.
(8.16)

Now, these 2n equations can be combined together in one large matrix equation:

P̃m = 0, m =

m⊤1
m⊤2
m⊤3

 , (8.17)

principles of robot autonomy 95

where m ∈ R12×1 is a vector consisting of the stacked rows of M and P̃ ∈
R2n×12 is a matrix of known coefficients determined by the quantities ui, vi, and
Ph

W,i. For a more concrete representation of how P̃ is defined, the first couple
rows are given by:

P̃ =

−(Ph

W,1)
⊤ 01×4 u1(Ph

W,1)
⊤

01×4 −(Ph
W,1)

⊤ v1(Ph
W,1)

⊤

−(Ph
W,2)

⊤ 01×4 u2(Ph
W,2)

⊤

...
...

...

 . (8.18)

Note that n ≥ 6 (i.e. at least 6 correspondences have been made) is a require-
ment to ensure that m can be uniquely defined. Ideally, with this sufficient
number of correspondences the equation (8.18) could be directly solved. How-
ever, in practice a more robust procedure is to build P̃ with more than 6 points,
which would lead to an overdetermined set of equations that may not have a
solution7! Therefore, the determination of m is accomplished by formulation the 7 This is particularly true in real-world

applications where noise corrupts the
data.

optimization problem:

min.
m
∥P̃m∥2,

s.t. ∥m∥2 = 1,
(8.19)

where the constraint ∥m∥2 = 1 is required to ensure that the optimization
problem does not simply choose mi = 0 for each i = 1, . . . , 12. This optimization
problem is called a constrained least-squares problem.

Example 8.2.1 (Constrained Least-Squares). The constrained least squares prob-
lem

min.
x
∥Ax∥2,

s.t. ∥x∥2 = 1,

with x ∈ Rn and A ∈ Rm×n and m > n is a finite-dimensional optimization
problem. Consider the corresponding Lagrangian:

L = x⊤A⊤Ax + λ(1− x⊤x),

and the necessary optimality conditions:

∇xL = 2(A⊤A− λI)x = 0,

∇λL = 1− x⊤x = 0.

The first NOC can be rewritten as A⊤Ax = λx, and therefore any x that satisfies
this condition must be an eigenvector of the matrix A⊤A. Additionally, while all
the eigenvectors satisfy this condition the minimizer is the eigenvector associ-
ated with the smallest eigenvalue. This eigenvector can efficiently be computed
by a singular value decomposition of A = UΣV⊤ and then choosing m to be the
column of V associated with the smallest singular value (since A⊤A = VΣ2V⊤).

96 camera models and calibration

8.2.2 Direct Linear Calibration: Step 2

Once the optimization problem (8.19) has been solved for m the homography
M is completely defined. The next step in the camera calibration process is to
extract the intrinsic and extrinsic camera parameters from the matrix M. For
this section the matrix M is expressed in terms of its columns:

M =
[
c1 c2 c3 c4

]
,

where ci is the i-th column of M. It is now possible to factorize M as:

M = K
[

R t
]

, (8.20)

by taking the first three columns of M and performing a RQ factorization:[
c1 c2 c3

]
= KR, (8.21)

where R is an orthogonal matrix and K is an upper triangular matrix. Once K is
known the vector t can be computed by t = K−1c4.

8.2.3 A Flexible Camera Calibration Method (Zhang, 2000):

The homography M is defined for a specific set of extrinsic parameters R and t.
In practice it might be desirable to estimate the camera’s intrinsic parameters
from N different images from different perspectives (and therefore with N dif-
ferent homographies). In this case the procedure described in 8 can be used to 8 Z. Zhang. “A Flexible New Technique

for Camera Calibration”. In: IEEE
Transactions on Pattern Analysis and
Machine Intelligence 22 (2000)

extract the intrinsic parameters K.
This approach begins by assuming that the known points PW for each indi-

vidual image lie on a plane. For example the calibration “scene” might consist
of a pattern (e.g. a checkerboard pattern) on a planar surface. In this case, it can
simply be assumed that the world frame origin also lies on this plane such that
ZW = 0 for all points on the plane. Since ZW = 0 the relationship between ph

and Ph
W given by (8.13) can be simplified to:

ph = M̃P̃h
W , (8.22)

with

M̃ = K
[
r1 r2 t

]
, P̃h

W =
[

XW YW 1
]⊤

, (8.23)

where M̃ is the simplified homography matrix, P̃h
W is the simplified position of

the point P in world frame written in homogeneous coordinates, and ri is the
i-th column of the rotation matrix R. Note that the homography matrix M̃ can
still be estimated using the same procedure discussed before.

A set of constraints on the intrinsic parameter matrix K are next identified by
writing the homography M̃ as:[

c̃1 c̃2 c̃3

]
=
[
Kr1 Kr2 Kt

]
.

principles of robot autonomy 97

This relationship, and the knowledge that r1 and r2 are orthonormal, leads to
the following constraints:

c̃⊤1 Bc̃2 = 0, c̃⊤1 Bc̃1 = c̃⊤2 Bc̃2, (8.24)

where B = K−⊤K−1 ∈ R3×3 is a symmetric matrix. Solving for the intrinsic
camera parameters K can therefore be accomplished by using the constraints
(8.24) to solve for the symmetric matrix B, and then to use the definition of B to
back out the parameters that define K.

Several useful tricks can be employed to compute the matrix B from the
constraints (8.24). The main trick is to notice that even though B consists of
nine parameters, since it is symmetric only six parameters are required to fully
specify it. Therefore B ∈ R3×3 is reparameterized as a vector b ∈ R6 as:

b =
[

B11 B12 B22 B13 B23 B33

]⊤
. (8.25)

This reparameterization is useful because it allows us to rewrite the expression
c̃⊤i Bc̃j as:

c̃⊤i Bc̃j = v⊤ij b, (8.26)

where:

vij =
[
c̃i1 c̃j1, c̃i1 c̃j2 + c̃i2 c̃j1, c̃i2 c̃j2, c̃i3 c̃j1 + c̃i1 c̃j3, c̃i3 c̃j2 + c̃i2 c̃j3, c̃i3 c̃j3

]⊤
,

where c̃ik is the k-th element of the column vector c̃i and c̃jk is the k-th element
of the column vector c̃j. With this reparameterization, the constraints (8.24) can
be rewritten as:

c̃⊤1 Bc̃2 = 0 =⇒ v⊤12b = 0

c̃⊤1 Bc̃1 = c̃⊤2 Bc̃2 =⇒ (v11 − v22)
⊤b = 0,

or by combining them: [
v⊤12

(v11 − v22)
⊤

]
b = 0, (8.27)

which is linear in the unknowns b. Importantly, while the homographies M are
different for each image, the intrinsic camera parameters (i.e. the vector b) are
the same! Therefore for N images from the same camera (but with potentially
different perspectives) these constraints (8.27) can be stacked to give:

Vb = 0, (8.28)

where V ∈ R2N×6. In the case where the skewness parameter γ is included in K
there must be N ≥ 3 images in order to specify B uniquely. Similar to how the
homography for an image M was computed in the previous section, the vector b
will be specified by the solution to the constrained least squares problem:

min.
b
∥Vb∥2,

s.t. ∥b∥2 = 1.
(8.29)

98 camera models and calibration

Once b has been determined, the intrinsic camera parameters K can be solved
for recalling the definition of B = K−TK−1. In particular, the intrinsic parame-
ters are given by:

v0 =
B12B13 − B11B23

B11B22 − B2
12

,

λ = B33 −
B2

13 + v0(B12B13 − B11B23)

B11
,

α =

√
λ

B11
,

β =

√
λB11

B11B22 − B2
12

,

γ =
−B12α2β

λ
,

u0 =
γv0

β
− B13α2

λ
,

(8.30)

where λ can be though of as a scaling parameter that accounts for the fact that
there are five unknown camera intrinsic parameters but six degrees of freedom
in B.

Once the camera intrinsic parameters K have been extracted from this proce-
dure, given any new homography M̃ the extrinsic parameters can be computed
by:

r1 =
K−1 c̃1

∥K−1 c̃1∥
,

r2 =
K−1 c̃2

∥K−1 c̃2∥
,

r3 = r1 × r2,

t =
K−1 c̃3

∥K−1 c̃1∥
.

(8.31)

As one final step, it is noted that the matrix R defined with columns r1, r2, and
r3 will not in generally satisfy the properties of a rotation matrix (i.e. orthonor-
mality). One final step to this overall procedure is to correct this issue by find-
ing the rotation matrix that best corresponds to these column vectors. This is
accomplished again by optimization, and in particular by formulating the prob-
lem:

min.
R
∥R−Q∥2,

s.t. R⊤R = I,
(8.32)

where
Q =

[
r1 r2 r3

]
.

This problem is solved by choosing R = UV⊤ where U and V are defined by the
singular value decomposition of Q = UΣV⊤.

principles of robot autonomy 99

8.3 Limitations

8.3.1 Radial Distortion

The pinhole camera model provides a nominal camera model for which it is
relatively straightforward to develop a mathematical model of the perspective
projection. However, in practice this model is not a perfect representation of
the imaging process. One such effect that is not captured by the pinhole model
is radial distortion, which is an effect seen in real lenses where either barrel dis-
tortion or pincushion distortion will affect the real pixel coordinates. Images
showing both barrel and pincushion distortion are provided in Figure 8.4.

Figure 8.4: Different kinds of
radial distortions that are seen
in real lenses, which may affect
the accuracy of the pinhole
camera model.

There are methods that can be used to correct for image distortion. A simple
and efficient way is to model the relationship between the ideal pixel coordi-
nates (u, v) and the distorted pixel coordinates (ud, vd) as:[

ud

vd

]
=

[
u
v

]
(1 + kr2)

[
u− ucd

v− vcd

]
+

[
ucd

vcd

]
(8.33)

where k ∈ R is the radial distortion factor, (ucd, vcd) are the pixel coordinates of
the image center, and r2 = (u− ucd)

2 + (v− vcd)
2 is the square of the distance

between the ideal pixel location and the center of distortion.. Note that k differs
in different cameras and needs to be pre-determined.

8.3.2 Measuring Depth

Once the camera intrinsic and extrinsic parameters K, R, and t are known it is
still not possible to map pixel coordinates to the corresponding point in space.
Mathematically this is a result of the matrix M in (8.14) not being invertible,
but intuitively this is because the distance along the line of sight from p to P in
Figure 8.1 cannot be determined!

However, there are some techniques that can enable depth estimates to be
made with a single camera. One approach is known as depth from focus, where
several images are taken until the projection of point P is in focus. Based on the

100 camera models and calibration

thin lens model, when this occurs:

1
z
+

1
Z

=
1
f

,

where f is the focal length, Z is the depth of the point P in camera frame, and
z is the depth of the image plane in the camera frame when the projection of
point P is in focus. Since f and z are known, the depth Z can therefore be com-
puted. If two cameras are used, depth estimation is possible via binocular re-
construction or stereo vision. This approach requires known corresponding pixel
coordinates p and p′ of each camera, and then uses triangulation to determine
the 3D position of the source point P in the scene.

8.4 Exercises

8.4.1 Camera Calibration

Complete Problem 1: Camera Calibration located in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW3,

where you will estimate the intrinsic parameters of a camera using the
method described in Section 8.2.3.

9
Stereo Vision and Structure From Motion

The previous chapter developed a mathematical relationship between the posi-
tion of a point P in a scene (expressed in world frame coordinates PW), and the
corresponding point p in pixel coordinates that gets projected onto the image
plane of the camera. This relationship was derived based on the pinhole cam-
era model, and required knowledge about the camera’s intrinsic and extrinsic
parameters. Nonetheless, even in the case where all of these camera parameters
are known it is still impossible to reconstruct the depth of P with a single image
(without additional information). However, in the context of robotics, recov-
ering 3D information about the structure of the robot’s environment through
computer vision is often a very important task (e.g. for obstacle avoidance). Two
approaches for using cameras to gather 3D information are therefore presented
in this chapter, namely stereo vision and structure from motion1,2. 1 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

2 D. A. Forsyth and J. Ponce. Computer
Vision: A Modern Approach. Prentice
Hall, 2011Stereo Vision and Structure From Motion

Recovering scene structure from images is extremely important for mobile
robots to safely operate in their environment and successfully perform tasks.
While a number of other sensors can also be used to recover 3D scene informa-
tion, such as ultrasonic sensors or laser rangefinders, cameras capture a broad
range of information that goes beyond depth sensing. Additionally, cameras are
a well developed technology and can be an attractive option for robotics based
on cost or size.

Unfortunately, unlike sensors that are specifically designed to measure depth
like laser rangefinders, the camera’s projection of 3D data onto a 2D image
makes it impossible to gather some information from a single image3. Tech- 3 Unless you are willing to make some

strong assumptions, for example that
you know the physical dimensions of
the objects in the environment.

niques for extracting 3D scene information from 2D images have therefore been
developed that leverage multiple images of a scene. Examples of such techniques
include depth-from-focus (uses images with different focuses), stereo vision (uses
images from different viewpoints), or structure from motion (uses images cap-
tured by a moving camera).

102 stereo vision and structure from motion

9.1 Stereo Vision

Stereopsis (from stereo meaning solidity, and opsis meaning vision or sight) is the
process in visual perception leading to the sensation of depth from two slightly
different projections of the world onto the retinas of the two eyes. The differ-
ence in the two retinal images is called horizontal disparity, retinal disparity, or
binocular disparity, and arise from the eyes’ different positions in the head. It
is the disparity that makes our brain fuse (perceive as a single image) the two
retinal images, making us perceive the object as one solid object. For example,
if you hold your finger vertically in front of you and alternate closing each eye
you will see that the finger jumps from left to right. The distance between the
left and right appearance of the finger is the disparity.

Computational stereopsis, or stereo vision, is the process of obtaining depth
information of a 3D scene via images from two cameras which look at the same
scene from different perspectives. This process consists of two major steps: fu-
sion and reconstruction. Fusion is a problem of correspondence, in other words
how do you correlate each point in the 3D environment to their corresponding
pixels in each camera. Reconstruction is then a problem of triangulation, which
uses the pixel correspondences to determine the full position of the source point
in the scene (including depth).

9.1.1 Epipolar Constraints

As previously mentioned, the first step in the stereo vision process is to fuse the
two (or more) images and generate point correspondences4. This task can be 4 This generally assumes that the

perspective of each image is only a
slight variation from the other, such
that the features appear similarly in
each.

quite challenging, and erroneously matching features can lead to large errors in
the reconstruction step. Therefore, several techniques are leveraged to make this
task simpler. The most important simplifying technique is to impose an epipolar
constraint.

Figure 9.1: The point P in the
scene, the optical centers O and
O′ of the two cameras, and the
two images p and p′ of P all lie
in the same plane, referred to
as the epipolar plane. The lines
l and l′ are the epipolar lines
of the points p and p′, respec-
tively. Note that if the point p is
observed in one image, the cor-
responding point in the second
image must lie on the epipolar
line l′!

Consider the images p and p′ of a point P observed by two cameras with
optical centers O and O′ (see Figure 9.1). These five points all belong to the
epipolar plane defined by the two intersecting rays OP and O′P. In particular, the
point p lies on the line l where the epipolar plane and the image plane intersect.
The line l is referred to as the epipolar line associated with the point p, and it

principles of robot autonomy 103

passes through the point e (referred to as the epipole). Based on this geometry, if
p and p′ are images of the same point P, then p must lie on the epipolar line l
and p′ must lie on the epipolar line l′.

Therefore, when searching for correspondences between p and p′ for a par-
ticular point P in the scene it makes sense to restrict the search to the corre-
sponding epipolar line. This is referred to as an epipolar constraint, and greatly
simplifies the correspondence problem by restricting the possible candidate
points to a line rather than the entire image (i.e. a one dimensional search rather
than a two dimensional search). Mathematically, the epipolar constraints can be
written as:

Op · [OO′ ×O′p′] = 0, (9.1)

since Op, O′p′, and OO′ are coplanar. Assuming the world reference frame
is co-located with camera 1 (with an origin at point O) this constraint can be
written as:

p⊤Fp′ = 0, (9.2)

where F, referred to as the fundamental matrix, has seven degrees of freedom
and is singular. For a derivation of the epipolar constraint see Section 7.1 from
Forsyth et al.5. Additionally, the matrix F is only dependent on the intrinsic 5 D. A. Forsyth and J. Ponce. Computer

Vision: A Modern Approach. Prentice
Hall, 2011

camera parameters for each camera and the geometry that defines their relative
positioning, and can be assumed to be constant. The expression for the funda-
mental matrix in terms of the camera intrinsic parameters is:

F = K−⊤EK′−1, E =

 0 −t3 t2

t3 0 −t1

−t2 t1 0

 R, (9.3)

where K and K′ are the intrinsic parameter matrices for cameras 1 and 2 respec-
tively, and R and t = [t1, t2, t3]

⊤ are the rotation matrix and translation vector
that map camera 2 frame coordinates into camera 1 frame coordinates. Note
that with the epipolar constraint defined by the fundamental matrix (9.2), the
epipolar lines l and l′ can be expressed by l = Fp′ and l′ = F⊤p. Additionally,
it can be shown that F⊤e = Fe′ = 0 where e and e′ are the epipoles in the image
frames of cameras 1 and 2, since by definition the translation vector t is paral-
lel to the coordinate vectors of the epipoles in the camera frames. This in turn
guarantees that the fundamental matrix F is singular.

If the parameters K, K′, R, and t are not already known, the fundamental
matrix F can be determined in a manner similar to the intrinsic parameter
matrix K in the previous chapter. Suppose a number of corresponding points
ph = [u, v, 1]⊤ and (ph)′ = [u′, v′, 1]⊤ are known and are expressed as homo-
geneous coordinates. Each pair of points has to satisfy the epipolar constraint
(9.2), which can be written as:

[
u v 1

] F11 F12 F13

F21 F22 F23

F31 F32 F33

u′

v′

1

 = 0

104 stereo vision and structure from motion

This expression can then be equivalently expressed by reparameterizing the
matrix F in vector form f as:[

uu′ uv′ u vu′ vv′ v u′ v′ 1
]

f = 0 (9.4)

where f = [F11, F12, F13, F21, F22, F23, F31, F32, F33]
⊤. For n known correspon-

dences (p, p′) these constraints can be stacked to give:

W f = 0, (9.5)

where W ∈ Rn×9. Given n ≥ 8 correspondences, an estimate F̃ of the fundamen-
tal matrix estimate is given by:

min
f
∥W f ∥2,

s.t. ∥ f ∥2 = 1.
(9.6)

Note that the estimate F̃ computed by (9.6) is not guaranteed to be singular. A
second step is therefore taken to enforce this additional condition. In particular
it is desirable to find the matrix F that is closest to the estimate F̃ that has a rank
of two:

min
F
∥F− F̃∥2,

s.t. det(F) = 0,
(9.7)

which can be accomplished by computing a singular value decomposition of the
matrix F̃.

9.1.2 Image Rectification

Given a pair of stereo images, epipolar rectification is a transformation of each
image plane such that all corresponding epipolar lines become colinear and par-
allel to one of the image axes, for convenience usually the horizontal axis. The
resulting rectified images can be thought of as acquired by a new stereo camera
obtained by rotating the original cameras about their optical centers. The great
advantage of the epipolar rectification is the correspondence search becomes
simpler and computationally less expensive because the search is done along
the horizontal lines of the rectified images. The steps of the epipolar rectification
algorithm are illustrated in Figure 9.2. Observe that after the rectification, all
the epipolar lines in the left and right image are colinear and horizontal. For an
in-depth discussion on algorithms for image rectification see 6,7. 6 A. Fusiello, E. Trucco, and A. Verri.

“A compact algorithm for rectification
of stereo pairs”. In: Machine Vision and
Applications 12.1 (2000), pp. 16–22

7 C. Loop and Z. Zhang. “Computing
rectifying homographies for stereo
vision”. In: IEEE Computer Society Con-
ference on Computer Vision and Pattern
Recognition. Vol. 1. 1999, pp. 125–131

9.1.3 Correspondence Problem

Epipolar constraints and image rectification are commonly used in stereo vision
to address the problem of correspondence, which is the problem of determin-
ing the pixels p and p′ from two different cameras with different perspectives

principles of robot autonomy 105

Figure 9.2: Epipolar rectifica-
tion example from Loop et al.
(1999).

that correspond to the same scene feature P. While these concepts make finding
correspondences easier, there are still several challenges that must be overcome.
These include challenges related to feature occlusions, repetitive patterns, dis-
tortions, and others.

9.1.4 Reconstruction Problem

Figure 9.3: Triangulation with
rectified images (horizontal
view on the left, top-down view
on the right).

In a stereo vision setup, once a correspondence between the two images is
identified it is possible to reconstruct the 3D scene point based on triangulation.
This process of triangulation has already been covered by the discussion on the
epipolar geometry. However if the images have also be rectified such that the
epipolar lines become parallel to the horizontal image axis the triangulation
problem becomes simpler. This occurs, for example, when the two cameras
have the same orientation, are placed with their optical axes parallel, and are

106 stereo vision and structure from motion

separated by some distance b called the baseline (see Figure 9.3).
In Figure 9.3, a point P on the object is described as being at coordinate

(x, y, z) with respect to the origin located in the left camera at point O. The
horizontal pixel coordinate in the left and right image are denoted by pu and p′u
respectively. Based on the geometry the depth of the point P can be computed
from the properties of similar triangles:

z
b
=

z− f
b− pu + p′u

, (9.8)

which can be algebraically simplified to:

z =
b f

pu − p′u
, (9.9)

where f is the focal length. Generally a small baseline b will lead to larger
depth errors, but a large baseline b may cause features to be visible from one
camera but not the other. The difference in the image coordinates, pu − p′u, is
referred to as disparity. This is an important term in stereo vision, because it is
only by measuring disparity that depth information can be recovered. The dis-
parity can also be visually represented in a disparity map (for example see Figure
9.4), which is simply a map of the disparity values for each pixel in an image.
The largest disparities occur from nearby objects (i.e. since disparity is inversely
proportional to z).

Figure 9.4: Disparity map from
a pair of stereo images. Notice
that the lighter values of the
disparity map represent larger
disparity, and correspond to
the point in the scene that are
closer to the cameras. The black
points represent points that
were occluded from one of the
images and therefore no cor-
respondence could be made.
Images from Scharstein et al.
(2003) .

9.2 Structure From Motion (SFM)

The structure from motion (SFM) method uses a similar principle as stereo vi-
sion, but uses one camera to capture multiple images from different perspectives
while moving within the scene. In this case, the intrinsic camera parameter ma-
trix K will be constant, but the extrinsic parameters (i.e. the rotation matrix R
and relative position vector t) will be different for each image. Consider a case
where m images of n fixed 3D points are taken from different perspectives. This
would involve m homography matrices Mk and n 3D points Pj that would need
to be determined by leveraging the relationships:

ph
j,k = MkPh

j , j = 1, . . . , n, k = 1, . . . , m.

However, SFM also has some unique disadvantages, such as an ambiguity in
the absolute scale of the scene that cannot be determined. For example a bigger

principles of robot autonomy 107

Figure 9.5: A depiction of the
structure from motion (SFM)
method. A single camera is
used to take multiple images
from different perspectives,
which provides enough infor-
mation to reconstruct the 3D
scene.

object at a longer distance and a smaller object at a closer distance may yield the
same projections.

One application of the SFM concept is known as visual odometry. Visual
odometry estimates the motion of a robot by using visual inputs (and possible
additional information). This approach is commonly used in practice, for ex-
ample by rovers on Mars, and is useful because it not only allows for 3D scene
reconstruction but also to recover the motion of the camera.

10
Image Processing

The previous chapters focused on using camera models to identify the relation-
ship between points in a 3D scene and their projections onto the camera image,
as well as how to leverage those models to reconstruct 3D scene structure from
2D images. Alternatively, this chapter begins to look at methods for extracting
other types of information through image processing, for example to answer the
question “what object am I seeing?” rather than “how far away is this object?”.
Extracting this type of visual content from raw images is important for mobile
robots to be able to intelligently interpret their surroundings. In fact, it can have
a major impact on the ability of the robot to perform several tasks including
localization and mapping or decision making. This chapter focuses on some of
the more commonly used tools in image processing including image filtering,
feature detection, and feature description1,2. 1 R. Siegwart, I. R. Nourbakhsh, and D.

Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

2 H. P. Moravec. “Towards automatic
visual obstacle avoidance”. In: 5th
International Joint Conference on Artificial
Intelligence. 1977

Image Processing

Image processing is a form of signal processing where the input signal is an
image (such as a photo or a video) and the output is either an image or a set
of parameters associated with the image. While a large number of image pro-
cessing techniques exist, this chapter focuses on some of the more fundamental
methods that are relevant for robotics. In particular, these methods will be re-
lated to image filtering, feature detection, and feature description3. 3 The software library OpenCV

implements a number of use-
ful image filtering algorithms:
https://docs.opencv.org.

In the following methods, grayscale images are treated as functions I: [a, b]×
[c, d] → [0, L], where I(x, y) represents the grayscale pixel intensity at (x, y). For
a color image, I is a vector valued function with three components, one each for
the red, green, and blue color channels of the image.

10.1 Image Filtering

Image filtering is one of the principal tasks in image processing. The terminol-
ogy “filter” comes from frequency domain signal processing and refers to the
process of accepting or rejecting certain frequency components of a signal (e.g.
eliminating high-frequency noise).

110 image processing

Perhaps the most common type of image filtering is spatial filtering. The basic
principle of spatial filtering is that a particular pixel is modified in the filtered
image based only on the pixels in the immediate spatial neighborhood (see
Figure 10.1). To be more specific, a spatial filter for an image I(x, y) consists of:

1. A neighborhood Sxy of pixels around a particular point (x, y) under exami-
nation, typically rectangular.

2. A predefined operation F that is performed on the image pixels encom-
passed by the neighborhood Sxy.

Once the operation F has been applied to all pixels (x, y) in the image I a new
image I′(x, y) is defined.

Figure 10.1: Illustration of the
concept of spatial filtering.
The spatial filter operates on a
neighborhood Sxy of each point
in the original image to pro-
duce a new pixel in the filtered
image.

In general filters can be linear or nonlinear, but many of the most fundamen-
tal filters are linear and can be expressed mathematically as:

I′(x, y) = F ◦ I =
N

∑
i=−N

M

∑
j=−M

F(i, j)I(x + i, y + j), (10.1)

where N and M are integers that define the width and height of a rectangular
neighborhood Sxy. Based on the size of this neighborhood, it is said that this fil-
ter is of size (2N + 1)× (2M + 1). Additionally, the filter operation F is usually
called a mask or kernel. Broadly speaking, filters expressed by (10.1) are referred
to as correlation filters.

Another type of linear filters that are commonly used are referred to as convo-
lution filters. Convolution filters are similar to correlation filters but use reverse
image indices (in fact correlation and convolution filters are identical when the
filter mask is symmetric in both the horizontal and vertical directions). In partic-
ular, these filters are expressed mathematically as:

I′(x, y) = F ∗ I =
N

∑
i=−N

M

∑
j=−M

F(i, j)I(x− i, y− j). (10.2)

Convolution filters are associative, meaning that for two different filter masks F
and G it is true that F ∗ (G ∗ I) = (F ∗G) ∗ I. One example of how the associative
property is useful is for smoothing an image before applying a differentiation

principles of robot autonomy 111

filter. Suppose the mask F implemented a derivative filter and G implemented a
smoothing filter, then sequentially applying these filters would result in F ∗ (G ∗
I). However, because of the associative property the masks can be convolved
together first such that only one filter needs to be applied to the image (i.e.
(F ∗ G) ∗ I).

Note that in both the correlation and convolution filters the boundaries of the
image need some special care because of the width and height of the mask. For
example, Figure 10.2 shows how the filtered image is smaller than the original
due to the width and height of the mask. Some possible options to handle this
include padding the image, cropping it, extending it, or wrapping it. However,
as images are generally quite large the exact approach likely won’t vary the final
result significantly.

Figure 10.2: Due to the width
and height of the mask, the
filtered image may be smaller
than the original. However
this can be fixed with several
techniques, such as padding.

Example 10.1.1 (Practical Considerations for Image Filtering). Implementa-
tion of correlation and convolution filters typically leverages some additional
“tricks” to make things easier to implement. In this example two such tricks will
be introduced: zero-padding and a change in indexing.

First, to more simply accommodate varying sizes of filters (including even
and odd sized filters) the indexing is often changed such that the coordinate of
interest is associated with the top-left element in the window rather than the
center. In particular, for a correlation filter this would correspond to:

I′(x, y) = F ◦ I =
K

∑
i=1

L

∑
j=1

F(x, y)I(x + i− 1, y + j− 1), (10.3)

where K and L are integers that define the width and height of the filter and the
pixel (x, y) is at row x and column y. However, note that with this formulation
the output image I′ will be shifted up and to the left. To see this consider the
pixel at x = 1 and y = 1 in the new image I′, which would correspond to the
top-left pixel I′. This new pixel value is generated by applying the filter F over
the pixels in the original image I at rows {1, . . . , K} and columns {1, . . . , L}
(which is not centered at (1, 1) in the original image I). Therefore it will appear
as if the image has been shifted! But in practice this isn’t an issue as long as you
always index with respect to the top-left corner. An example of top-left indexing
is shown in Figure 10.3

112 image processing

Figure 10.3: Top-left indexing
is typically easier to implement
than center indexing. Notice
that when top-left indexing, it
appears as if the filtered im-
age has shifted with respect to
when center indexing is used.

Zero-padding (also commonly referred to as same padding) is another simple
trick that can be used to ensure that the output filtered image I′ has the same
dimension as the input image I. In this approach the left and right boundaries
of the image are each padded by ⌊K/2⌋ columns of zeros, and the top and bot-
tom boundaries are padded by ⌊L/2⌋ rows of zeros (⌊·⌋ denotes the “floor”
operation). For example the image:

I =

1 2 3
4 5 6
7 8 9

 ,

would become

Ipadded =

0 0 0 0 0
0 1 2 3 0
0 4 5 6 0
0 7 8 9 0
0 0 0 0 0

 ,

for filters F ∈ R3×3, F ∈ R2×2, F ∈ R2×3 and F ∈ R3×2. When using this
padding rule with the correlation filter (10.3) and a filter F with K = 2, 3
and L = 2, 3, the new image I′ can be defined for values x ∈ {1, 2, 3} and
y ∈ {1, 2, 3}, resulting in I′ being the same dimension as the original image I.
The use of padding (along with top-left indexing) is also shown graphically in
Figure 10.4

Figure 10.4: Image padding is
a commonly used technique
to ensure that the size of the
filtered image is the same size
as the original.

principles of robot autonomy 113

10.1.1 Moving Average Filter

The moving average filter returns the average of pixels in the mask, which
achieves a smoothing effect (i.e. removes sharp features in the image). For ex-
ample, a moving average filter with a normalized 3× 3 mask is defined with the
operation F in (10.1) chosen as:

F =
1
9

1 1 1
1 1 1
1 1 1

 .

Note that due to symmetry of the mask, the correlation (10.1) and convolution
(10.2) filters will be identical. Additionally, the normalization is used to main-
tain the overall brightness of the image.

10.1.2 Gaussian Smoothing Filter

Gaussian smoothing filters are similar to the moving average filer, but instead of
weighting all of the pixels evenly they are weighted by the Gaussian function:

Gσ(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
.

This function is used to obtain the mask operation F by sampling the function
about the center pixel (i.e. for the center pixel with i = j = 0 in (10.1), sample
Gσ(0, 0)). For example, for a normalized 3× 3 mask with σ = 0.85 this filter is
approximately defined by:

F =
1

16

1 2 1
2 4 2
1 2 1

 .

Like the moving average filter, this filter mask is symmetric and therefore yields
identical results with respect to the correlation (10.1) or convolution (10.2) fil-
ters. The advantage of the Gaussian filter is that it provides more weight to the
neighboring pixels that are closer. An example of this filter is shown in Figure
10.5.

10.1.3 Separable Masks

A mask F is called separable if it can be broken down into the convolution of
two kernels F = F1 ∗ F2. If a mask is separable into “smaller” masks, then it is
often cheaper to apply F1 followed by F2, rather than by F directly. One special
case of this is when the mask can be represented as an outer product of two
vectors (meaning it is equivalent to the 2D convolution of those two vectors).
If the mask is of shape M × M, and the input image has size w × h, then the
computational complexity of directly performing the convolution is O(M2wh).
However, by separating the masks the computational cost is O(2Mwh), which is

114 image processing

Figure 10.5: Example of a Gaus-
sian smoothing filter, which
produces a smoothing (blur-
ring) effect on the filtered im-
age.

linear in M rather than quadratic. As an example, consider the moving average
filter mask from before:

F =
1
9

1 1 1
1 1 1
1 1 1

 =
1
9

1
1
1

 [1 1 1
]

.

As another example, note that the Gaussian smoothing filter mask is also sep-
arable. To see why this is, note that the Gaussian weighting function can be
decomposed as:

Gσ(x, y) =
1

2πσ2 exp
(
− x2 + y2

2σ2

)
,

=
1√
2πσ

exp
(
− x2

2σ2

)
1√
2πσ

exp
(
− y2

2σ2

)
,

= gσ(x) · gσ(y).

10.1.4 Image Differentiation Filters

Taking the derivative of an image can be used to identify certain features, such
as edges. On a basic level, the derivative of an image quantifies changes in pixel
intensity in both the vertical and horizontal direction. However, since images
are represented as functions defined over a discrete domain the traditional
method for differentiating continuous functions cannot be used. Instead it is
more common to just compute differences between pixels, such as using a cen-
tral difference method:

∂I
∂x

=
I(x + 1, y)− I(x− 1, y)

2
,

∂I
∂y

=
I(x, y + 1)− I(x, y− 1)

2
.

(10.4)

where ∂I/∂x is the derivative in the horizontal direction and ∂I/∂y is the
derivative in the vertical direction. It is of course also possible to define the
derivatives using just one side, for example ∂I

∂x = I(x + 1, y)− I(x, y).

principles of robot autonomy 115

It is also possible to differentiate an image using convolution filters. In par-
ticular, one common approach is to use a convolution filter (10.2) defined with a
mask F called a Sobel mask (also referred to as simply a Sobel operator). For the
x direction this mask is denoted as Sx and for the y direction as Sy:

Sx =

1 0 −1
2 0 −2
1 0 −1

 , Sy =

 1 2 1
0 0 0
−1 −2 −1

 (10.5)

Sobel masks are similar to the central difference method but use more neighbor-
ing pixels when calculating the derivative (i.e. they also consider the rows above
and below to compute the difference). Note that Sobel masks are also separable.

10.1.5 Similarity Measures

Filtering can also be used to find similar features in different images, which can
be useful for solving the correspondence problem in stereo vision or structure-
from-motion techniques. In particular, the similarity between the pixel (x, y) in
image I1 and pixel (x′, y′) in image I2 can be computed by:

SAD =
N

∑
i=−N

M

∑
j=−M

|I1(x + i, y + j)− I2(x′ + i, y′ + j)|,

SSD =
N

∑
i=−N

M

∑
j=−M

[I1(x + i, y + j)− I2(x′ + i, y′ + j)]2,

(10.6)

where SAD is an acronym for “sum of absolute differences”, SSD is an acronym
for “sum of squared differences”, and N and M define the size of the window
around the pixels that is considered.

10.2 Image Feature Detection

A local feature (also sometimes referred to as interest points, interest regions,
or keypoints) in an image is a pattern that differs from its immediate neigh-
borhood in terms of intensity, color, or texture. Local features can generally be
categorized in several ways, for example whether they provide semantic con-
tent or not. For example, features that may provide semantic content include
edges or other geometric shapes (e.g. lanes of a road or blobs corresponding to
blood cells in medical images). These types of features were some of the first
for which feature detectors were proposed in the image processing literature.
Features that do not provide semantic content may also be useful, for example
in feature tracking, camera calibration, 3D reconstruction, image mosaicing,
and panorama stitching. In these cases it may be more important that the fea-
ture be able to be located accurately and robustly over time. A third category
of features are those that may not have semantic interpretations individually,
but may have meaning as a collection. For instance, a scene could be recognized

116 image processing

by counting the number of feature matches between the observed scene and a
query image. In this case only the number of matches is relevant and not the
location or type of feature. Applications where these types of features are im-
portant include texture analysis, scene classification, video mining, and image
retrieval.

In this section several feature detection strategies will be discussed. While
many strategies exist for different types of features, the focus here will be on
two common features that are often useful in robotics: edges and corners.

10.2.1 Edge Detection

An edge in an image is a region where there is a significant change in intensity
values along one direction, and negligible change along the orthogonal direc-
tion. In one dimension an edge corresponds to a point where there is a sharp
change in intensity, which mathematically can be thought of as a point of a
function having a large first derivative and a small second derivative. Many
edge detectors rely on this concept by differentiating images and looking for
spikes in the derivative. An edge detector can be evaluated based on several
criteria for robustness and performance, including accuracy, localization, and
single response. Good accuracy implies few false positives or negatives (missed
edges), good localization implies that the detected edge should be exactly where
the true edge is in the image, and a single response implies only one edge is
detected for each real edge. In practice, noise and discretization can make edge
detection challenging.

Most edge detection methods rely on two key steps: smoothing and dif-
ferentiation. Differentiation is performed in both the vertical and horizontal
directions to find locations in the image with high intensity gradients. However,
differentiation alone is vulnerable to false positives due to image noise, which is
why many algorithms will first smooth the image.

Edge Detection in 1D: An example of how noise can corrupt image differenti-
ation is given in Figure 10.6. Notice that in this case it is impossible to identify
the jump in the signal due to the noise levels. Smoothing filters, such as the
Gaussian smoothing filter discussed earlier, can help remedy this problem. In
particular, suppose the original signal in Figure 10.6 is defined by I(x). Then a
smoothed version can be defined by applying a smoothing convolution filter:

s(x) = gσ(x) ∗ I(x),

where gσ(x) represents a Gaussian smoothing filter, and then by applying the
differentiation filter:

s′(x) =
d

dx
∗ s(x).

This process is shown in Figure 10.7. Note however that since these filters are
convolutions, the associativity property can be leveraged to actually combine

principles of robot autonomy 117

Figure 10.6: Differentiation of
signal (e.g. for edge detection)
with noise can be particularly
challenging, which can be ad-
dressed by first smoothing the
signal.

Figure 10.7: Edge detection
through convolution with a
Gaussian smoothing filter, fol-
lowed by a differentiation filter.

them into a single filter:

s′ = (
d

dx
∗ gσ) ∗ I.

118 image processing

Edge Detection in 2D: Edge detection in a two-dimensional image is quite sim-
ilar to the example previously discussed in 1D. Let the smoothing filter be the
Gaussian smoothing filter from before, and a differentiation filter such as the
Sobel filter. The gradient of the smoothed image in both the x and y directions
can be written as:

∇S =

[
∂

∂x ∗ Gσ ∗ I
∂

∂y ∗ Gσ ∗ I

]
=

[
Gσ,x ∗ I
Gσ,y ∗ I

]
=

[
Sx

Sy

]
,

where I is the original image and the associativity properties of the smoothing
and differentiation convolution filters is used to define the combined filters Gσ,x

and Gσ,y. The magnitude of the gradient can then be computed by:

|∇S| =
√

S2
x + S2

y,

which can be used to check against a predefined threshold value for edge de-
tection. To guarantee thin edges it is also possible to filter out points whose
gradient magnitude are above the threshold but are not local maxima. Examples
of this process are shown in Figures 10.8 and 10.9.

Figure 10.8: Edge detection
using the “Sobel” edge detector.

Figure 10.9: Edge detection us-
ing the “Canny” edge detector.

10.2.2 Corner Detection

A corner in an image is defined as an intersection of two or more edges, and
also sometimes as a point where there is a large intensity variation in every
direction. Important properties of corner detectors include repeatability and dis-
tinctiveness. Repeatability quantifies how well the same features can be found
in multiple images even under geometric and photometric transformations. Dis-
tinctiveness refers to whether the information carried by the patch surrounding

principles of robot autonomy 119

the feature is distinctive, which can be used to reliably produce correspon-
dences. Both of these properties are particularly important in applications such
as panorama stitching and 3D reconstruction.

Generally corner detection can be thought of in a similar way to edge detec-
tion, except that instead of looking for change along one direction there should
be changes in all directions. One well known corner detector is known as the
Harris detector 4, which has the useful property that the detection is invari- 4 C. Harris and M. Stephens. “A com-

bined corner and edge detector”. In:
4th Alvey Vision Conference. 1988

ant to rotations and linear intensity changes (i.e. geometric and photometric
invariance). However the Harris detector is not invariant to scale changes or
geometric affine changes, which has led to the development of scale-invariant
detectors such as the Harris-Laplacian detector or the scale-invariant feature
transform (SIFT) detector.

10.3 Image Descriptors

Image descriptors describe features so that they can be compared across images,
or used for object detection and matching. Similar to image detectors, it is also
desirable for image descriptors to be repeatable (i.e. invariant with respect to
pose, scale, illumination, etc.) and distinct. Perhaps the simplest example of a
descriptor is an n×m window of pixel intensities centered at the feature, which
can be normalized to be illumination invariant. However, such a descriptor is
not invariant to pose or scale and is not distinctive, and therefore is generally
not useful in practice. Alternative detectors/descriptors that have become popu-
lar include SIFT, SURF, FAST, BRIEF, ORB, and BRISK.

10.4 Exercises

10.4.1 Linear Filtering

Complete Problem 3: Linear Filtering located in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW3,

where you will explore the use of linear filters for image processing.

11
Information Extraction

The last chapter introduced some fundamental topics related to image process-
ing, namely filtering, feature detection, and feature description. While these
techniques are quite useful for a large number of computer vision applications,
they may not be sufficient to extract higher-level information from images. For
example, the features that were discussed are local features that describe impor-
tant keypoints of the image, but these may be too localized to discuss higher-
level features or semantic content. In some cases it may be possible to correlate
local features to extract higher-level information (e.g. image matching), but
in other cases higher-level algorithms may be useful (e.g. identifying a partic-
ular object in a scene, such as a person). In particular, object recognition is a
very important task in robotics and therefore some common methods for object
recognition will be discussed in this chapter.

This chapter will additionally focus on geometric feature extraction1, which 1 R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

is used to extract structure from data in the form of geometric primitives (e.g.
lines, circles, planes). This is very useful in robotics for localization and map-
ping, and these algorithms can generally be applied to different types of data,
such as data extracted from images or even data collected via laser rangefinders
or radar.

Information Extraction

This chapter will focus on common methods for extracting higher-level envi-
ronmental information from sensor data that is useful for robotics. In particular,
common algorithms for geometric feature extraction will be presented, as well as
methods for object recognition in images. Such information is crucial for robots
operating in real environments to enable intelligent decision making and task
planning, as well as to execute plans safely in unknown environments with
obstacles.

122 information extraction

11.1 Geometric Feature Extraction

It is very common in robotic localization and mapping to represent the envi-
ronment using simple geometric primitives (e.g. lines, circles, corners, planes)
that can be efficiently extracted from sensor data. In particular, in this section
techniques for line extraction from range data2 will be presented. Lines in par- 2 Range data can generally come from

a variety of sources, including laser
rangefinders, radar, or even computer
vision.

ticular are one of the most fundamental geometric primitives to be extracted,
and generally the techniques for extracting other primitives are conceptually
similar.

There are two main challenges with extracting lines from range data. The
first is called segmentation, which is the task of identifying which data points
belong to which line (and inherently also identifying how many lines there are).
The second is fitting, which is the task of estimating the parameters that define a
line given a set of points. For simplicity this chapter will consider line extraction
problems based on two-dimensional range data.

11.1.1 Line Segmentation

The line segmentation problem is to determine how many lines exist in a given
set of data and also which data points correspond to each line. Three popular
algorithms for line segmentation will be discussed, the split-and-merge algorithm,
the random sample consensus (RANSAC) algorithm, and the Hough-transform algo-
rithm.

Split-and-Merge: The split-and-merge algorithm is perhaps the most popular
line extraction algorithm and is arguably the fastest (but not as robust to out-
liers). The concept of this algorithm is quite simple: repeatedly fit lines to sets
of points and then split the set of points into two sets if any point lies more than
distance d from the line. By repeating this process until no more splits occur,
it is guaranteed that all points will lie less than distance d to a line. After this
“split” process is completed, a second step merges any of the newly formed
lines that are colinear. This algorithm is presented in more detail in Algorithm
2. A popular variant of the split-and-merge algorithm is known as the iterative-
end-point-fit algorithm. This algorithm is simply the split-and-merge algorithm
given in Algorithm 2 where the line is simply constructed by connecting the
first and the last points of the set. This approach is shown graphically in Figure
11.1.

Random Sample Consensus (RANSAC): Random Sample Consensus (RANSAC)
is an algorithm to estimate the parameters of a model from a set of data that
may contain outliers (i.e. robust model parameter estimation). Outliers are data
points that do not fit the model and may be the result of high noise in the data,
incorrect measurements, or simply points which come from objects that are un-
related to the current model. For example, a typical laser scan of an indoor en-

principles of robot autonomy 123

Algorithm 2: Split-and-Merge
Data: Set S of N points, distance threshold d > 0
Result: A list L of sets of points each resembling a line
L←− [S]
i←− 1
while i ≤ len(L) do

fit a line (α, r) to the set L[i]
detect the point P ∈ L[i] with maximum distance D to the line (α, r)
if D < d then

i←− i + 1
else

split L[i] at P into new sets S1 and S2

L[i]←− S1

L[i + 1]←− S2

Merge colinear sets in L

Figure 11.1: Iterative-end-point-
fit variation of the split-and-
merge algorithm for extracting
lines from data.

vironment may contain distinct lines from the surrounding walls but also points
from other static and dynamic objects (e.g. chairs or humans). In this case, if the
goal was to extract lines to represent the walls then any data point correspond-
ing to other objects would be an outlier. In general, RANSAC can be applied to
many parameter estimation problems, and typical applications in robotics in-
clude line extraction from 2D range data, plane extraction from 3D point clouds,
and structure-from-motion (where the goal is to identify image correspondences
which satisfy a rigid body transformation). However for simplicity this section
focuses on using RANSAC for line extraction from 2D data.

RANSAC is an iterative method and is non-deterministic (i.e. stochastic or
random). Given a dataset S of N points, the algorithm starts by randomly se-
lecting a sample of two points from S. Then a line is constructed from these two
points and the distance of all other points to this line is computed. A set of in-
liers comprised of all the points whose distance to the line is within a predefined
threshold d is then defined. By repeating this process k times, k inlier sets (and
their associated lines) are generated and the inlier set with the most points is
returned. This procedure is detailed in Algorithm 3 and is also illustrated in
Figure 11.2.

124 information extraction

Algorithm 3: Random Sample Consensus (RANSAC) for Line Extraction
Data: Set S of N points, distance threshold d
Result: Set with maximum number of inliers and corresponding line
while i ≤ k do

randomly select 2 points from S
fit line li through the 2 points
compute distance of all other points to li
construct set of points S̃i with distance less than d to li
store line li and set of points S̃i i←− i + 1

Choose set S̃i with maximum number of points

Figure 11.2: Example of the
RANSAC algorithm, showing
four iterations of the algorithm.
If the algorithm was terminated
after these four iterations, line
l3 would be returned since it
contains the maximum number
of points.

Due to the probabilistic nature of the algorithm, as the number of iterations
k increases the probability of finding a good solution increases. This approach
is used over a brute force search of all possible combinations of two points since
the total number of combinations is N(N − 1)/2, which can be extremely large.
In fact, a simple statistical analysis of RANSAC can be performed.

Let p be the desired probability of finding a set of points free of outliers and
let w be the probability of selecting an inlier from the dataset S of N points,
which can be expressed as:

w =
inliers

N
.

Assuming point samples are drawn independently from S, the probability of
drawing two inliers is w2 (and 1− w2 is the probability that at least one is an
outlier). Therefore, with k iterations the probability that RANSAC never selects
two points that are both inliers is (1− w2)k. Therefore the minimum number of
iterations k̄ needed to find an outlier-free set with probability p can be found by
solving:

1− p = (1− w2)k,

for k. In other words, k̄ can be computed as:

k̄ =
log(1− p)

log(1− w2)
.

While the value of w may not be known exactly3, this expression can still be 3 There also exist advanced versions
of RANSAC that can estimate w in an
adaptive online fashion.

used to get a good estimate of the number of iterations k that are needed for
good results. It is important to note that this probabilistic approach often leads

principles of robot autonomy 125

to a much smaller number of iterations than for brute force searching through
all combinations. This can be attributed to the fact that k̄ is only a function of w
and not the total number of samples N in the dataset.

Overall, the main advantage of RANSAC is that it is a generic extraction
method and can be used with many types of features given a feature model. It
is also simple to implement and is robust with respect to outliers in the data.
The main disadvantages are that the algorithm needs to be run multiple times
if multiple features are to be extracted, and there are no guarantees that the
solutions will be optimal.

Hough Transform: In the Hough transform algorithm, each point (xi, yi) of the
set S “votes” for a set of possible line parameters (m, b) (i.e. slope and intercept).
For any given point (xi, yi) the candidate set of line parameters (m, b) that could
pass through this point must satisfy yi = mxi + b, which can also be written as:

b = −mxi + yi.

Therefore it can be noted that each point in the original space space (x, y) maps
to a line in the Hough space (m, b) (see Figure 11.3). The Hough transform
algorithm exploits this fact by noting that two points on the same line in the
original space will yield two intersecting lines in Hough space. In particular, the
point where they intersect in the Hough space corresponds to the parameters
m∗ and b∗ that defines the line passing between the points in the original space
(see Figure 11.4).

Figure 11.3: Each point (xi, yi)

in the original space maps
to a line in the Hough space
which describes all possible
parameters m and b that would
generate a line passing through
the point (xi, yi).

Figure 11.4: All points on a
line in the original space yield
lines in the Hough space that
intersect at a common point.

This concept can be applied to line segmentation by searching in the Hough
space for intersections among the lines that correspond to each point (x, y) in
the set S. In practice, this can be done by discretizing the Hough space with a
grid and simply counting for each grid cell the number of lines corresponding

126 information extraction

to (xi, yi) points from S that pass through it. Local maxima among the cells then
can be chosen as lines that “fit” the data set S.

However, performing a discretization of the Hough space requires a trade-off
between range and resolution (in particular because m can range from −∞ to
∞. Alternatively, it is possible to use a polar coordinate representation of the
Hough space which defines a line as:

x cos α + y sin α = r,

where (α, r) are the new line parameters. With this representation, a point
(xi, yi) from the original space gets mapped to the polar Hough space (α, r)
as a sinusoidal curve (see Figure 11.5). An example of the Hough transform
using the polar representation is given in Figure 11.6.

Figure 11.5: Representation of
a point (xi, yi) in the Hough
space when using a polar coor-
dinate representation of a line
with parameters α and r.

Figure 11.6: Example of the
Hough transformation using a
polar coordinate representation
of lines.

11.1.2 Line Fitting

Line segmentation is the process of identifying which data points belong to a
line, and line fitting is the process of estimating parameters of a line for those
corresponding data points. For the line segmentation algorithms previously dis-
cussed (i.e. split-and-merge, RANSAC, and Hough-transform), a line associated
with the segmented data points was also implicitly defined. However, the lines
implicitly defined from the segmentation algorithms may not always be ideal
and so other techniques have been developed to specifically address the line
fitting task.

Line fitting algorithms search for lines that best fit a set of data points. In
almost all cases the problem is over-determined (i.e. there are more data points

principles of robot autonomy 127

than parameters to choose) and noise in the data means that there is not perfect
solution. Therefore one of the most common approaches to line fitting is based
on least-squares estimation, which tries to find a line that minimizes the overall er-
ror in the fit. For this approach it is useful to work in polar coordinates defined
by:

x = ρ cos θ, y = ρ sin θ,

where (x, y) is the 2D Cartesian coordinate of a data point and (ρ, θ) is the 2D
polar coordinate. In polar coordinates the equation of a line is given by

ρ cos(θ − α) = r, or x cos α + y sin α = r, (11.1)

where α and r are the parameters that define the line. For a visual representa-
tion of these definitions see Figure 11.7.

Figure 11.7: Representation
of a line in polar coordinates,
defined by the parameters r and
α which are the distance and
angle to the closest point on the
line to the origin.

For a collection S of N points (ρi, θi), the error di corresponding to the per-
pendicular distance from a point to a line defined by parameters α and r can be
computed by:

di = ρi cos(θi − α)− r. (11.2)

The line fitting task can then be formulated as an optimization problem over
the parameters α and r to minimize the combined errors di for i = 1, . . . , N.
In particular, the combined errors are aggregated using a sum of the squared
errors:

S(r, α) =
N

∑
i=1

d2
i =

N

∑
i=1

(ρi cos(θi − α)− r)2. (11.3)

This is a classic least squares optimization problem that can be efficiently
solved. However, this cost function generally assumes that each of the data
points is equally affected by noise (i.e. the uncertainty of each measurement is
the same). In some cases it might be beneficial to account for differences in data
quality for each point i, which could give preference to well known points.

Accounting for unique uncertainties in each data point leads to a weighted
least squares estimation problem. In particular, it is assumed that the variance
of each range measurement ρi is given by σi. The cost function (11.3) is then
modified to be:

Sw(r, α) =
N

∑
i=1

wid2
i =

N

∑
i=1

wi(ρi cos(θi − α)− r)2, (11.4)

where the weights wi are given by:

wi =
1
σ2

i
.

It can be shown that the solution to the optimization problem defined by the

128 information extraction

weighted cost function (11.4) is given by:

r = ∑N
i=1 wiρi cos(θi − α)

∑N
i=1 wi

,

α =
1
2

atan2

 ∑N
i=1 wiρ

2
i sin(2θi)− 2

∑N
i=1 wi

∑N
i=1 ∑N

j=1 wiwjρiρj cos θi sin θj

∑N
i=1 wiρ

2
i cos(2θi)− 1

∑N
i=1 wi

∑N
i=1 ∑N

j=1 wiwjρiρj cos(θi + θj)

+
π

2
.

(11.5)

11.2 Object Recognition

Another high-level information extraction task that is common in robotics is
object recognition. Object recognition is the task of classifying or naming discrete
objects in the world (usually based on images or video). This can be a partic-
ularly challenging task because real world scenes are commonly made up of
many varying types of objects which can appear at different poses and can oc-
clude each other. Additionally, objects within a specific class can have a large
amount of variability (e.g. breeds of dogs or car models). In this section three
common methods for object recognition will be introduced, namely template
matching, bag of visual words, and neural network methods.

11.2.1 Template Matching

Template matching4 is a machine vision technique for identifying parts of an 4 N. Perveen, D. Kumar, and I. Bhard-
waj. “An overview on template match-
ing methodologies and its applica-
tions”. In: International Journal of Re-
search in Computer and Communication
Technology 2.10 (2013), pp. 988–995

image that match a given image pattern5. This approach has seen success

5 Advanced template matching algo-
rithms allow finding pattern occur-
rences regardless of their orientation
and local brightness.

in a variety of applications, including manufacturing quality control, mobile
robotics, and more. The two primary components needed for template matching
are the source image I and a template image T

Given a source and template image, one approach to template matching is to
leverage the linear spatial correlation filters discussed in the previous chapter.
In particular, a naive approach would be to use the normalized template image
as a filter mask in a correlation filter. By applying this filter mask to every pixel
in the source image the resulting output would quantify the similarity of that
region of the source image to the template. This type of approach is sometimes
referred to as a cross-correlation. Another approach based on linear spatial filters
from the previous chapter would be to leverage the similarity filters that com-
pute the sum of absolute differences (SAD) metric for each pixel in the source
image. Regions of the source image similar to the template would correspond
to low SAD scores. The disadvantages of these approaches is that do not handle
rotations or scale changes, which are quite common in real world applications.

One solution to the scaling issue in correlation filter based template match-
ing is to simply re-scale the source image multiple times and perform template
matching on each. This concept, referred to as using image pyramids6, can also 6 R. Szeliski. Computer vision: algorithms

and applications. Springer Science &
Business Media, 2010

be used to accelerate object search by using a coarser resolution image first to
localize the object and then using finer resolution images for actual detection.

principles of robot autonomy 129

Building image pyramids can be accomplished in several ways. One naive ap-
proach is to simply eliminate some rows and columns of the image. Another
approach is to first use a Gaussian smoothing filter to remove high frequency
content form the image and then subsample the image. The sequence of images
resulting from this approach is referred to as a Gaussian pyramid.

Figure 11.8: A traditional image
pyramid: each level has half the
resolution (width and height),
and hence a quarter of the pix-
els, of its parent level. Figure
from Szeliski (2010) .

11.2.2 Bag of Visual Words

The key idea behind the bag of visual words7 approach is that object representa- 7 The model originated in natural lan-
guage processing, where we consider
texts such as documents, paragraphs,
and sentences as collections of words -
effectively “bags" of words.

tions can be simplified by considering them as a collection of their subparts (e.g.
a bike is an object with wheels, a frame, and handlebars), and the subparts are
referred to as visual words. In this approach a source image is searched for visual
words, and a distribution of visual words that are found in the image is created
(in the form of a histogram). Object detection can then be performed by com-
paring this distribution to a set of training images. For example, suppose the
source image contains a human face and the recognized features included eyes
and a nose. Then by comparing the distribution to training images, it would
likely be determined that training images that also have eyes and a nose are also
images of faces.

11.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) represent a relatively new and very
powerful paradigm in object recognition. These approaches were first intro-
duced in the field of computer vision for image recognition in 1989, and since
then have significantly boosted performance in image recognition and classifica-
tion tasks. Research in this field is also still very active.

11.3 Exercises

All exercises for this chapter can be found in the online repository:

130 information extraction

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW3.

11.3.1 Line Extraction

Complete Problem 2: Line Extraction, where you will implement a line extraction
algorithm (Split-and-Merge) to fit lines to simulated Lidar range data.

11.3.2 Template Matching

Complete Problem 4: Template Matching, where you will explore the use of the
classic template matching algorithm, implemented in the open-source OpenCV
library.

11.3.3 Image Pyramids

Complete Extra Problem: Image Pyramids, where you will learn about how tem-
plate matching algorithms can be enhanced through the use of image pyramids
(and image filtering).

12
Modern Computer Vision Techniques

Machine learning has become an extremely powerful tool in the realm of com-
puter vision, particularly through the use of convolutional neural networks
(CNNs) and the increased availability of data and computational resources. This
chapter introduces the fundamentals of CNNs, as well as their application to
computer vision and robotics.

Modern Computer Vision

Modern computer vision techniques1 rely heavily on deep learning and convo- 1 D. A. Forsyth and J. Ponce. Computer
Vision: A Modern Approach. Prentice
Hall, 2011

lutional neural network architectures2. A convolutional neural network is a type
2 I. Goodfellow, Y. Bengio, and A.
Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016

of neural network with additional structure that is beneficial for image process-
ing tasks. In fact, CNNs can be said to be “regularized” neural networks since
the additional structure reduces the ability of the network to overfit to data.
This chapter will introduce each component3 in the architecture of a CNN, and 3 Convolutional layers, nonlinear ac-

tivations, pooling layers, and fully-
connected layers.

then discuss how CNNs can be applied to problems in robotics.

Figure 12.1: Example con-
volutional neural network
architecture from LeCun et al.
(1998).

132 modern computer vision techniques

12.1 Convolutional Neural Networks

12.1.1 Convolution Layers

Figure 12.2: A convolution filter
being applied to a 3-channel
RGB image.

One of the main structural concepts that is unique to the architecture of a CNN
is the use of convolution layers. These layers exploit the underlying spatial local-
ity structure in images by using sliding “learned” filters, which are often much
smaller than the image itself. Mathematically these filters perform operations
in a similar way as other linear filters that have been used in image processing,
such as Gaussian smoothing filters, and can be expressed as affine functions:

f (x) = w⊤x + b,

where w is a vectorized representation of the weight parameters that define
the filter, x is a vectorized version of the image pixels covered by the filter, and
b is a scalar bias term. For example in Figure 12.2 a filter is applied over an
image with three color channels (red, green, blue). In this case the filter may
have dimension m× n× 3, which could be vectorized to a weight vector w with
3mn elements. Additionally, the stride of the filter describes how many positions
it shifts by when sliding over the input. The output of the filter is also passed
through a nonlinear activation, typically a ReLU function.

Once the filter has been applied to the entire image, the collection of outputs
from the activation function will create a new “filtered image” typically re-
ferred to as an activation map. In practice a number of different filters are usually

Figure 12.3: The outputs of a
convolution filter and activa-
tion function applied across an
image make up a new image,
called an activation map.

learned in each convolution layer, which would simply produce a corresponding
number of activation maps as the output4. This is crucial such that each filter 4 Besides the number of filters applied

to the input, the width and height of
the filter, the amount of padding on the
input, and the stride of the filter are
other hyperparameters.

can focus on learning one specific relevant feature. Examples of different filters
that might be learned in different convolution layers of a CNN are shown in
Figure 12.45. Notice that the low-level features which are learned in earlier con-

5 M. D. Zeiler and R. Fergus. “Visualiz-
ing and Understanding Convolutional
Networks”. In: European Conference on
Computer Vision (ECCV). Springer, 2014,
pp. 818–833

volution layers look a lot like edge detectors (i.e. are more basic/fundamental)
while later convolution layers have filters that look more like actual objects.

In general, the use of convolution layers to exploit the spatial locality of im-
ages provides several benefits including:

1. Parameter sharing: the (small) filter’s parameters are applied at all points on

principles of robot autonomy 133

Figure 12.4: Low-level, mid-
level, and high-level feature
visualizations in a convolu-
tional neural network from
Zeiler and Fergus (2014).

the image. Therefore the total number of learned parameters in the model is
much smaller than if a fully-connected layer was used.

2. Sparse interactions: having the filter be smaller than the image allows for bet-
ter detection of smaller, more meaningful features and improves computation
time by requiring fewer mathematical operations to evaluate.

3. Equivariant representation: the convolution layer is equivariant to translation,
meaning that the convolution of a shifted image is equivalent to the shifted
convolution of the original image6. 6 However, convolution is not equivari-

ant to changes in scale or rotation.
4. The ability to work with images of varying size if needed.

12.1.2 Pooling Layers

Pooling is the second major structural component in CNNs. Pooling layers typ-
ically come after convolution layers (and their nonlinear activation functions).
Their primary function is to replace the output of the convolution layer’s activa-
tion map at particular locations with a “summary statistic” from other spatially
local outputs. This helps make the network more robust against small transla-
tions in the input, helps improve computational efficiency by reducing the size
of the input (i.e. it lowers the resolution), and is useful in enabling the input
images to vary in size7. The most common type of pooling is max pooling, but

7 The size of the pooling can be modi-
fied to keep the size of the pooling layer
output constant.

other types also exist (such as mean pooling).

Figure 12.5: Max pooling exam-
ple with 2 × 2 filter and stride
of 2.

Computationally, both max and mean pooling layers operate with the same
filtering idea as in the convolution layers. Specifically, a filter of width m and
height n slides around the layer’s input with a particular stride. The difference
between the two comes from the mathematical operation performed by the
filter, which as their names suggest are either a maximum element or the mean
over the filter. If the output of the convolution layer has N activation maps, the
output of the pooling layer will also have N “images”, since the pooling filter is
only applied across the spatial dimensions.

12.1.3 Fully Connected Layers

Downstream of the convolution and pooling layers are fully connected layers.
These layers make up what is essentially just a standard neural network, which

134 modern computer vision techniques

is appended to the end of the network. The function of these layers is to take
the output of the convolution and pooling layers (which can be thought of as a
highly condensed representation of the image) and actually perform a classifi-
cation or regression. Generally the total number of fully connected layers at the
end of the CNN will only make up a fraction of the total number of layers.

12.1.4 CNN Performance

A CNN can be said to learn how to process images end-to-end because it essen-
tially learns how to perform two steps simultaneously: feature extraction and
classification or regression (i.e. it learns the entire process from image input to
the desired output). In contrast, classical approaches to image processing use
hand-engineered feature extractors. Since 2012, the performance of end-to-end
learning approaches to image processing have dominated and continue to im-
prove8. This continuous improvement has generally been realized with the use 8 Of course in some specific applications

hand-engineered features may still
be better! For example if engineering
insight can identify a structure to the
problem that a CNN could not.

of deeper networks.

12.2 CNNs for Object Detection and Localization

Modern computer vision techniques such as convolutional neural networks have
a large variety of applications in robotic perception, including object localization
and detection.

In object localization problems, the goal is to identify the position of an object
in the image. This is usually accomplished by specifying four numbers that
define a bounding box for the object in the image9 (see Figure 12.6). To solve 9 Box coordinates are usually the (x, y)

position of the top-left corner and the
width w and height h of the box.

object localization problems with a CNN, the standard approach is to have the
output of the network be both the bounding box coordinates and an object class.
This can be accomplished by reusing the convolution and pooling layers of the
CNN but then have two separate branches of the fully connected layers: one
trained for classification and the other for localization10. To train a network to 10 Since the output of the localization

branch is four real numbers (x, y, w, h),
this would be considered a regression
problem and it is common to use and l2
loss function.

simultaneously perform classification and localization, a multi-task loss function
can be defined by adding together the loss functions of each branch.

Figure 12.6: Bounding box pre-
diction for several objects in
an image from Ren, He, et al.
(2017)

principles of robot autonomy 135

If multiple objects exist within a single image the object localization and
classification problem becomes more difficult. First, the number of outputs of
the network may change! For example, outputting a bounding box for n ob-
jects would require 4n outputs. A practical solution to handling the problem of
varying outputs is to simply apply the CNN to a series of cropped images pro-
duced from the original image, where the network can also classify the image
as “background” (i.e. not an object)11. However, a naive implementation of this 11 This could be thought of as applying

the entire CNN as a filter that slides
across the image.

idea would likely result in an excessive number of CNN evaluations. Instead,
different approaches have been developed for making this idea efficient by re-
ducing the number of areas in the image that need to be evaluated. For example
this has been accomplished by identifying “regions of interest” in the image
through some other approach, or even partitioning the image into a grid.

Part III

Robot Localization

13
Introduction to Localization and Filtering

Previous chapters introduced some of the fundamental concepts related to
robotic perception, and specifically techniques for sensing the environment and
extracting useful semantic information. While these techniques provide local
information that is crucial for robots to navigate autonomously, additional global
information is often required. For example, distance measurements from a laser
rangefinder might be useful for detecting objects in an environment, but they
only provide information relative to the robot’s current position. Alternatively,
object detection via computer vision only provides information about what is
in the robot’s current view. Robotic autonomy, in particular autonomous deci-
sion making and planning, generally requires more than just local information
to answer questions such as “have I seen this object before?” and “have I been
here before?”. These new challenges, associated with building a global under-
standing of the environment from local measurements, are often referred to as
localization and mapping1. 1 Localization and mapping is the

component of the “think” part of the
“see, think, act” cycle that connects
with robotic perception.Introduction to Localization and Filtering

The problem of localization is to endow the robot with the ability to understand
its current position with respect to its environment in a global sense2,3. One of 2 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005

3 R. Siegwart, I. R. Nourbakhsh, and D.
Scaramuzza. Introduction to Autonomous
Mobile Robots. MIT Press, 2011

the main classes of techniques for robot localization are map-based, where the
robot explicitly localizes its position with respect to a map of the environment.
For example, consider the floor plan (the environment map) in Figure 13.1:
before a robot can navigate to a particular room it must know where in the
building it is currently located.4 4 Other approaches to navigate in envi-

ronments include behavioral approaches,
which rely on a specified set of behav-
iors that will result in a desired global
behavior without the need for explicit
mapping or localization. An example of
this approach would be to have a left-
wall following behavior for movement
about a building.

There are two primary components to map-based localization: map represen-
tation and belief representation. This chapter focuses on belief representation,
which addresses the problem of how to best represent the robot’s belief of its
current position with respect to the map. One simple approach would be to
simply store a best guess of the robot’s position (in some map-based coordinate
system). However in practice localization information is often uncertain, and
representing the belief by only a best guess does not capture this important fact.
Therefore one common approach is to use a probabilistic representation of the

140 introduction to localization and filtering

Figure 13.1: An example envi-
ronment where localization is
crucial for robotic autonomy.
For a robot to move from lo-
cation A to location B it must
first understand which room
it is in, and that the only path
to B is through the hallway.
Extracting such global infor-
mation about the environment
from local measurements (e.g.
from a range sensor) requires
specialized algorithms.

robot’s belief since probability distributions can be used to model uncertainty
(and extract best guesses, for example by finding the mean of a unimodal dis-
tribution). A variety of probabilistic representations can be used, for example
singe-hypothesis or multiple-hypothesis representations as well as continuous
or discrete representations. A few examples showing the differences between
these types of representations are given in Figure 13.2. Some representations are
more expressive than others, but there is usually a trade-off with computational
complexity of the resulting algorithms that support the representation. Algo-
rithms based on these different probabilistic representations will be presented in
this chapter and in subsequent chapters.

13.1 Basic Concepts in Probability

Before discussing different types of robot localization algorithms it is useful to
provide a review of some of the fundamental concepts from probability.

13.1.1 Random Variables

Uncertain quantities such as sensor measurements, robot state, and environment
variables can be modeled as discrete or continuous random variables.

Definition 13.1.1 (Discrete Random Variable). A discrete random variable X is a
random variable that can only take on values from a countable set. Discrete random
variables are characterized by a probability mass function p(x) (which can be read as
p(X = x), “the probability that X takes on value x”) that satisfies:

∑
x

p(x) = 1,

where the summation is over all possible values of X.

Definition 13.1.2 (Continuous Random Variable). A continuous random variable
X is a random variable that can take on values from a continuous range. Continuous
random variables are characterized by a probability density function p(x) that satisfies:∫ ∞

−∞
p(x)dx = 1.

principles of robot autonomy 141

Figure 13.2: A graphical repre-
sentation of different types of
probabilistic representations: (a)
a continuous single-hypothesis
belief (e.g. from a single Gaus-
sian distribution), (b) a contin-
uous multiple-hypothesis belief
(e.g. a mixture of Gaussians),
(c) discrete representation with
a finite number of possible
values.

The probability of the random variable taking on a value in the interval [a, b] is similarly
defined as:

P(a ≤ X ≤ b) =
∫ b

a
p(x)dx = 1.

A common example of a discrete random variable is the result of a coin flip,
which can only take on two values: heads or tails. In robotics, a common ex-
ample of a continuous random variable may be the position of the robot, which
could take on an infinite number of values.

13.1.2 Joint Distributions, Independence, and Conditioning

Many applications of probability theory rely on more than one random variable.
In these instances it is useful to be able to quantify probabilities associated with
multiple random variables at the same time. One of the most fundamental tools
when dealing with multiple variables is the joint distribution.

Definition 13.1.3 (Joint Distribution). The joint distribution of two random variables

142 introduction to localization and filtering

X and Y defines the probability associated with both taking on specific values at the
same time. This is denoted mathematically as p(x, y), which can be read as p(X =

x and Y = y).

It is also useful to determine whether different random variables have any
relationship to each other. In particular, two random variables that do not have
any influence on each other in a probabilistic sense are considered to be proba-
bilistically independent.

Definition 13.1.4 (Independence). Two random variables X and Y are independent if
and only if:

p(x, y) = p(x)p(y). (13.1)

Independence holds when the occurrence of one value of a random variable does not
affect the probability of another random variable taking on a specific value.

Another useful tool that relates two random variables is the conditional prob-
ability, which defines the probability of a random variable when the value of a
second random variable is known or fixed.

Definition 13.1.5 (Conditional Probability). The conditional probability of a random
variable X taking on a value given that a second random variable Y has a specific value
is defined as:

p(x | y) :=
p(x, y)
p(y)

. (13.2)

This can be read as “the probability of X taking on value x conditioned on the fact that
Y has taken on value y”.

Notice that if the random variables X and Y are independent, then the con-
ditional probability definition simplifies to p(x | y) = p(x), which suggests that
knowing that Y has taken on value y has provided no new information about
the random variable X (which of course is in line with the definition of indepen-
dence). Additionally, another notion of independence can be defined based on
whether or not two random variables are independent when conditioned a third
random variable.

Definition 13.1.6 (Conditional Independence). Two random variables X and Y are
conditionally independent given the value of a third random variable Z if and only if:

p(x, y | z) = p(x | z)p(y | z). (13.3)

It is important to note however that conditional independence does not imply
independence, and vice versa.

13.1.3 Law of Total Probability

The law of total probability defines a relationship between probabilities, joint
probabilities, and conditional probabilities.

principles of robot autonomy 143

Definition 13.1.7 (Law of Total Probability). For discrete random variables X and Y
the law of total probability states that:

p(x) = ∑
y

p(x, y) = ∑
y

p(x | y)p(y).

Similarly, for continuous random variables this law is given by:

p(x) =
∫

p(x, y)dy =
∫

p(x | y)p(y)dy.

In words, this law says that the probability of a random variable X taking
on a value x can be found by looking at the joint probabilities between X and
Y and accounting for all possible values of Y. The second part of the law is a
direct result of applying the definition of conditional probabilities.

13.1.4 Bayes’ Rule

The joint probability p(x, y) between two random variables X and Y can be
related to the conditional probabilities p(x | y) and p(y | x) via the definition of
conditional probabilities (13.2). In particular, since the joint probability can be
equivalently expressed in two ways it can be seen that:

p(x, y) = p(x | y)p(y) = p(y | x)p(x).

This relationship is commonly referred to as Bayes’ rule:

Definition 13.1.8 (Bayes’ Rule). For discrete random variables X and Y, Bayes’ rule
states that:

p(x | y) = p(y | x)p(x)
p(y)

. (13.4)

Bayes’ rule is useful as it provides a relationship between the “inverse” con-
ditional probabilities p(x | y) and p(y | x). This is particularly important for
probabilistic inference, which is the problem of inferring the value of a random
variable from another.

For example, suppose you had a good initial guess of the probability distri-
bution p(x) for a random variable X (the distribution p(x) in this case is often
called the prior, because it is the guess that comes before any new information is
taken into account). Then, suppose some new information regarding the value
of a random variable Y is obtained. Using Bayes’ rule it is possible to update
your belief about the probability distribution of X based on this new informa-
tion. In particular, the new belief is the conditional probability p(x | y) (which is
often called the posterior because it comes after new information is introduced).
These two distributions are related by Bayes’ rule!

Bayes’ rule can also be extended to cases with additional random variables.
For example with three random variables X, Y, and Z, Bayes’ rule is:

p(x | y, z) =
p(y | x, z)p(x | z)

p(y | z) .

144 introduction to localization and filtering

13.1.5 Expectation and Covariance

Probability distributions define in a very precise way the probability associated
with any particular value of a random variable. However, sometimes it is useful
to aggregate this information into more practically useful metrics. Two of the
most commonly used metrics are the expected value and the covariance.

Definition 13.1.9 (Expected Value). The expected value for a random variable X is
denoted as E[X]. For discrete random variables the expected value can be computed by:

E[X] = ∑
x

xp(x).

Similarly, the expected value for a continuous random variable can be computed by:

E[X] =
∫

xp(x)dx.

The expected value can be thought of as the average result of an experiment
over an infinite number of trials, and is also sometimes referred to as the first
moment of the distribution. Additionally, expectation is a linear operator, such
that:

E[aX + b] = aE[X] + b,

for any values a and b. In the case that the random variable X is a vector-valued
random variable, the expectation of the random vector is simply the vector of
expectations of each element.

Definition 13.1.10 (Covariance). The covariance between two random variables X
and Y is denoted cov(x, y) and is computed by:

cov(x, y) = E[(X− E[X])(Y− E[Y])⊤] = E[XY⊤]− E[X]E[Y]⊤

Covariance is a metric used to describe the relationship between random vari-
ables and is positive if greater values of one variable generally corresponds to
greater values of the other (and same for lesser values). Similarly, it is negative
if the variables tend to show opposite behavior of each other. If there is no gen-
eral relationship between the two then their covariance is zero (e.g. independent
random variables have zero covariance).

13.2 Markov Models

Recall from previous chapters the kinematic and dynamic models that were de-
veloped to describe the physical behavior of a robot. These models consisted of
a robot state x, and a set of equations that described how x varied in time given
some control inputs u. In this section another type of model will be developed
that is based on these same core ideas. These new models, referred to as Markov
models, are commonly used in robotics for localization tasks as well as higher
level planning tasks.

principles of robot autonomy 145

13.2.1 States, Measurements, and Controls

Similar to previous chapters, the state x is a collection of variables that contains
information required to define the physical state of the robot. However unlike
previous chapters, the state might also include information about the environ-
ment (this state has a higher-level perspective). In the context of robotics, the
state may include the robot pose (i.e. location and orientation information),
velocity, as well as locations and features of surrounding objects in the environ-
ment. Note that in general the state discussed in this section might be different
from the state defined for robot kinematics and dynamics (even if the robot is
the same). This is because the choice of model is usually specific to the task at
hand, and while the kinematic and dynamic models are useful for control, they
may not strictly be necessary (or sufficient) for use in localization and planning
tasks.

A discrete time formulation is also used in this context, where the state is
specified for discrete time instances and denoted by xt (rather than x(t), as was
done in previous chapters). The models developed in this section then describe
the changes in the state between time steps, for example between xt and xt+1.
It is also useful to define the notation xt1 :tn := xt1 , xt2 , ..., xtn for describing a
sequence of states between times t1 and tn.

The robot interacts with the environment through control actions and by
gathering information through measurements5. In this context, the measure- 5 In the context of robot localization,

measurements increase the robot’s
knowledge and control actions tend to
result in a loss of knowledge.

ment data collected at a time t will be denoted as zt, and the control data is
denoted as ut. Similar to the state, a useful notation for representing a se-
quence of measurements or controls is given by zt1 :tn := zt1 , zt2 , ..., ztn and
ut1 :tn := ut1 , ut2 , ..., utn . In general, the measurements can come from any number
of the sensors discussed in previous sections on robotic perception, including
cameras and laser rangefinders.

13.2.2 Model

The kinematic and dynamic models from previous chapters (expressed as a
set of ordinary differential equations) were deterministic models. However, to
leverage a probabilistic framework for robot localization it is typically required
that the model also be probabilistic. In the most general sense a probabilistic
model can be defined by:

p(xt | x0:t−1, z1:t−1, u1:t), (13.5)

which defines a probability distribution over the possible current state xt given
the state, measurement, and control histories. Note that here the convention
that will be used is that the robot executes control ut first, and then the mea-
surement zt can be made based on the resulting state xt. A general probabilistic
measurement model can also be defined as:

p(zt | x0:t, z1:t−1, u1:t). (13.6)

146 introduction to localization and filtering

In many cases however, the state is defined such that it is complete. A state xt

is complete if no variables prior to xt can influence the future states. In other
words, x contains a sufficient amount of information that the history is not
important. This is also known as the Markov property. If the Markov property
holds, the probabilistic model (13.5) can be simplified to:

p(xt | xt−1, ut), (13.7)

and the measurement model (13.6) can be simplified to:

p(zt | xt). (13.8)

The resulting overall model with the Markov property, consisting of the state
transition probability (13.7) and the measurement model (13.7) is referred to as
a Bayes network model or a hidden Markov model. Graphically this model can
be represented as shown in Figure 13.3, where the sequencing of the control and
measurements are more clearly shown (first control, then measurement).

Figure 13.3: Graphical repre-
sentation of the Bayes network
model (hidden Markov model).
Note that the sequencing as-
sumes that the control is ap-
plied, and then a measurement
is taken.

13.3 Bayes Filter

Given a Bayes network model defined by a state transition model (13.7) and
a measurement model (13.8), the next task is to determine a way to use this
information for robot localization. In particular, the desired task is to estimate
the current robot state xt given the measurement and control information that
is available. In the probabilistic framework this estimate is referred to as a belief
distribution, which is a probability distribution over x. This distribution assigns a
probability to each hypothesis with respect to the true state. Mathematically the
belief distribution is denoted as bel(xt) and is defined as:

bel(xt) := p(xt | z1:t, u1:t). (13.9)

In other words, the belief bel(xt) is a posterior probability distribution over the
state variables conditioned on the available data. A similar distribution, known
as the prediction distribution, can also be defined as:

bel(xt) := p(xt | z1:t−1, u1:t), (13.10)

principles of robot autonomy 147

which is does not include the most recent measurement zt. The process of com-
puting a belief from a predicted belief (i.e. the process of accounting for the new
measurement zt) is called a correction or measurement update.

The most general algorithm for computing beliefs bel(xt) (which leverages
Bayes network models that satisfy the Markov property) is known as the Bayes
filter. This filter is a recursive algorithm that consists of a prediction step for
computing bel(xt) and a correction step for computing bel(xt) given a new
measurement zt.

13.3.1 Algorithm

The Bayes filter algorithm is given in Algorithm 4. In this algorithm, the prob-
ability associated with each potential state xt is updated via a prediction and
a correction. The term η in the correction step is simply a normalization con-
stant that ensures the resulting posterior bel(xt) satisfies the requirements of a
probability density function6. This algorithm is typically initialized with a prior 6 In fact this normalization constant

comes from the denominator in Bayes’
rule.

distribution bel(x0) that may come from a best guess or simply a uniform distri-
bution. Note that the prediction step is essentially just using the state transition

Algorithm 4: Bayes Filter Algorithm

Data: bel(xt−1), ut, zt

Result: bel(xt)

foreach xt do
bel(xt) =

∫
p(xt | ut, xt−1)bel(xt−1)dxt−1

bel(xt) = ηp(zt | xt)bel(xt)

return bel(xt)

model (13.7) to guess what might happen to each state for the given control
ut. The correction step is then modifying the prediction to actually account for
what was observed in the real world.

13.3.2 Derivation

Recall that the belief distribution is defined as (13.9), which can be expanded
using Bayes’ rule to yield:

bel(xt) := p(xt | z1:t, u1:t),

= ηp(zt | xt, z1:t−1, u1:t)p(xt | z1:t−1, u1:t),

where
η =

1
p(zt | z1:t−1, u1:t)

.

The Markov property can then be leveraged to simplify p(zt | xt, z1:t−1, u1:t) =

p(zt | xt) and the definition of the prediction belief can be used to give:

bel(xt) = ηp(zt | xt)bel(xt),

148 introduction to localization and filtering

which is precisely the second step of the Bayes filter algorithm. Now the deriva-
tion of the prediction can be given by again starting from its definition and
leveraging the law of total probability:

bel(xt) = p(xt | z1:t−1, u1:t),

=
∫

p(xt | xt−1, z1:t−1, u1:t)p(xt−1 | z1:t−1, u1:t)dxt−1.

Again the Markov property can now be used to simplify p(xt | xt−1, z1:t−1, u1:t) =

p(xt | xt−1, ut), and additionally the structure of the model makes it possible to
remove the ut term from the prior distribution p(xt−1 | z1:t−1, u1:t) since the
control ut has no impact on the state xt−1 (see Figure 13.3). Therefore the ex-
pression above can be simplified to:

bel(xt) =
∫

p(xt | xt−1, ut)bel(xt−1)dxt−1,

since by definition bel(xt−1) = p(xt−1 | z1:t−1, u1:t−1). This result is precisely the
prediction step from the Bayes filter algorithm.

13.3.3 Practical Considerations

The Bayes filter is a great starting point to derive many useful algorithms, but
is itself often not practical to implement. In particular it is generally not reason-
able to assume that the integrals in Algorithm 4 can be computed, and if they
could be approximated via a numerical scheme this may computationally still
be challenging.

13.4 Discrete Bayes Filter

The discrete Bayes filter is a discrete version of the Bayes filter previously in-
troduced. This filter can be applied to problems where the state space is finite
(i.e. only a finite number of values of x are possible). This makes the Bayes filter
approach more tractable because the integrals do not need to be computed over
an infinite set.

In the discrete Bayes filter the belief bel(xt) is represented using a probability
mass function rather than a probability density function (as is the case with the
continuous Bayes filter). In particular, this probability mass function is simply
a finite collection of probabilities {pk,t} where pk,t is the probability associated
with state k at timestep t. The algorithm generally follows the exact procedure
as the Bayes filter in Algorithm 4, but with summations replacing the integrals.
In particular, the discrete Bayes filter algorithm is provided in Algorithm 5.

principles of robot autonomy 149

Algorithm 5: Discrete Bayes Filter Algorithm

Data: {pk,t−1}, ut, zt

Result: {pk,t}
foreach k do

pk,t = ∑i p(xt | ut, xi)pi,t−1

pk,t = ηp(zt | xk)pk,t
return pk,t

14
Parametric Filters

The previous chapter introduced a probabilistic framework that can be used
to design algorithms for robot localization and state estimation. The chapter
concluded with the introduction of the Bayes filter, which is a fundamental algo-
rithm for maintaining and updating a belief distribution (a probability distribu-
tion over possible states). While the Bayes filter is generally intractable to imple-
ment in practice, it lays a mathematical foundation for the development of algo-
rithms that can exploit structure or other approximations to generate tractable
approaches. One such example is the discrete Bayes filter, which assumes that
the number of possible states is finite such that the belief distribution can be
represented by simply storing the probability of each state individually. This
type of distribution is referred to as non-parametric since the belief distribution is
not required to have a particular structure.

Alternatively, it is possible to develop tractable algorithms for probabilis-
tic localization and state estimation by leveraging parametric belief distribu-
tions. Parametric distributions are distributions that are fully specified by a
fixed number of parameters, for example Gaussian distributions are defined
by the mean and covariance parameters. These parametric filters can generally
be viewed as practical implementations of Bayes filter that exploit structure for
efficiency, and include the Kalman filter family of algorithms.

Parametric Filters

Parametric filters1 are a family of algorithms for robot localization and state es- 1 S. Thrun, W. Burgard, and D. Fox.
Probabilistic Robotics. MIT Press, 2005timation that model the robot’s belief with parametric distributions. Therefore,

as the robot’s state evolves and new measurement information arrives, updat-
ing the belief distribution is accomplished by simply updating the parameters
that define the distribution. This can lead to practically implementable algo-
rithms since the number of parameters is generally not too large. For example,
a Gaussian distribution in one dimension only requires the specification of two
parameters: the mean and standard deviation. Yet with these two parameters a
probability distribution is defined over an infinite number of values! This is an
example of how parametric filters exploit structure for efficiency.

152 parametric filters

14.1 Gaussian Distribution

The Gaussian distribution (also referred to as a normal distribution) is likely
the most commonly used parametric distribution in many disciplines, including
robotics. The probability density function for a one-dimensional (univariate)
Gaussian distribution is given by:

p(x) =
1√

2πσ2
e−

1
2
(x−µ)2

σ2 , (14.1)

where the parameters are the mean µ and standard deviation σ (the quantity σ2

is referred to as the variance). A shorthand notation for saying that a random
variable X is distributed according to a Gaussian (normal) distribution is X ∼
N (µ, σ2). For the multi-dimensional case, the multivariate Gaussian distribution
is defined by the probability density function:

p(x) =
1√

det(2πΣ)
exp

(
− 1

2
(x− µ)⊤Σ−1(x− µ)

)
, (14.2)

where x ∈ Rn and the parameters are the mean µ ∈ Rn and the covariance
matrix Σ ∈ Rn×n. Again, a shorthand to say a random variable X is distributed
according to the multivariate Gaussian distribution is X ∼ N (µ, Σ). These
distributions are represented graphically for the univariate and bivariate case
in Figure 14.1. These distributions exhibit several important properties which

Figure 14.1: Univariate and
multivariate Gaussian distribu-
tions.

make them particularly attractive for algorithm development:

1. The affine transformation of a Gaussian random variable is also a Gaus-
sian random variable. In particular, suppose the random variable X has a
multivariate Gaussian distribution with mean µ and covariance Σ. Then the
random variable Y resulting from an affine transformation:

Y = AX + b,

also has a multivariate Gaussian distribution with expected value Aµ + b
and covariance AΣA⊤. In other words, if X ∼ N (µ, Σ) then Y ∼ N (Aµ +

b, AΣA⊤).

principles of robot autonomy 153

2. The sum of two independent Gaussian random variables is also a Gaussian
random variable. In particular, suppose X1 and X2 have multivariate Gaus-
sian distributions with means µ1 and µ2 and covariances Σ1 and Σ2. Then the
random variable Y given by the sum:

Y = X1 + X2,

also has a multivariate Gaussian distribution with expected value µ1 + µ2 and
covariance Σ1 + Σ2. In other words, if X1 ∼ N (µ1, Σ1) and X2 ∼ N (µ2, Σ2)

then Y ∼ N (µ1 + µ2, Σ1 + Σ2).

3. The product of two Gaussian random variables is also a Gaussian random
variable.

14.2 Kalman Filter

The Kalman filter is an extremely well known algorithm for state estimation that
leverages the Gaussian distribution for efficiency. Unlike the discrete Bayes
filter from the previous chapter, this filter can be applied to problems with
continuous states. In particular, a multivariate Gaussian distribution is used
to parameterize the belief distribution over possible states, in other words the
state xt ∼ N (µt, Σt), and in long form this can be expressed as:

bel(xt) = p(xt) =
1√

det(2πΣt)
exp

(
− 1

2
(xt − µt)

⊤Σ−1
t (xt − µt)

)
.

14.2.1 Assumptions

To ensure that the belief remains Gaussian after the prediction and measure-
ment update steps of the filtering algorithm, several additional assumptions
are required. First, it is assumed that the initial belief bel(x0) is Gaussian with
x0 ∼ N (µ0, Σ0) and that the state transition model is linear and is given by:

xt = Atxt−1 + Btut + ϵt, (14.3)

where xt−1 is the previous state, ut is the most recent control input, and ϵt is
an independent process noise that is normally distributed with ϵt ∼ N (0, Rt).
Because of the properties of the Gaussian distribution presented earlier, this
affine model preserves the Gaussian structure. In particular, the state transition
model can be explicitly written as:

p(xt | xt−1, ut) =
1√

det(2πRt)
exp

(
− 1

2
(xt−Atxt−1− Btut)

⊤R−1
t (xt−Atxt−1− Btut)

)
.

In other words, this can be expressed in shorthand as xt ∼ N (Atxt−1 + Btut, Rt).
Second, the measurement model is also assumed to be linear, which again

preserves the Gaussian structure:

zt = Ctxt + δt, (14.4)

154 parametric filters

where δt is an independent measurement noise that is normally distributed
with N (0, Qt). Again, this implies the measurement model can be expressed
probabilistically as:

p(zt | xt) =
1√

det(2πQt)
exp

(
− 1

2
(zt − Ctxt)

⊤Q−1
t (zt − Ctxt)

)
,

and in shorthand as zt ∼ N (Ctxt, Qt).
To summarize, if the belief is modeled as a Gaussian distribution and the

state transition and measurement models are both linear with Gaussian noise,
then the Bayes filter updates can be applied and the belief will always remain
Gaussian (i.e. the prediction and measurement correction steps will not warp
or alter the structure of the belief distribution)! This results in a very practically
efficient algorithm since now only the parameters µ and Σ need to be updated
by the algorithm.

14.2.2 Algorithm

The Kalman filter algorithm is a recursive Bayes filter whose prediction and
measurement correction steps take on a special form due to the structure of the
Gaussian belief distributions and the assumptions listed above. In particular, the
Kalman filter algorithm is given in Algorithm 6.

Algorithm 6: Kalman Filter Algorithm
Data: µt−1, Σt−1, ut, zt

Result: µt, Σt

µ̄t = Atµt−1 + Btut

Σ̄t = AtΣt−1 AT
t + Rt

Kt = Σ̄tCT
t (CtΣ̄tCT

t + Qt)−1

µt = µ̄t + Kt(zt − Ctµ̄t)

Σt = (I − KtCt)Σ̄t

return µt, Σt

In this algorithm, the first two steps define the predicted mean µ̄t and co-
variance Σ̄t, and the remaining steps perform the measurement correction. The
matrix Kt that is computed for the measurement correction is typically referred
to as the Kalman gain.

14.2.3 Practical Considerations

Due to the exploitation of the Gaussian distribution, the Kalman filter is a com-
putationally efficient algorithm that can handle continuous state values. How-
ever, the consideration of Gaussian beliefs also restricts the flexibility of the
probabilistic model. In particular, the belief is forced to be unimodal which may
limit performance. Additionally, the assumption about the linearity of the state
transition and measurement models may not be very accurate for some robots

principles of robot autonomy 155

and certain sensors, which can make the Kalman filter not perform well for
some robotics applications.

14.2.4 Derivation

While it is possible to derive the Kalman filter algorithm by evaluating the
Bayes filter updates from the previous chapter (i.e. computing the integral of
p(xt | xt−1, ut)p(xt−1, etc.), it is more intuitive to directly leverage the proper-
ties of Gaussians presented in the preceding section. First, from the prior belief
distribution bel(xt−1) ∼ N (µt−1, Σt−1) the predicted belief bel(xt−1) can be com-
puted by using the affine transformation property of Gaussian random variables
and the sum of two independent Gaussian random variables property. Specif-
ically, these properties can be applied to the assumed linear state transition
model (14.3) to give:

µ̄t = Atµt−1 + Btut + 0,

where the 0 is the mean of the independent noise ϵt ∼ N (0, Rt). The covariance
properties can similarly be used to give:

Σ̄t = AtΣt−1 A⊤t + Rt.

For the measurement update it is possible to again use the properties of
Gaussians to simplify the derivation of the Kalman filter measurement correc-
tion step. In particular, that the product of two Gaussians is also Gaussian. In
fact, the product of the two Gaussians:

bel(xt) = p(zt | xt)bel(xt) = N (Ctxt, Qt)N (µ̄t, Σ̄t),

can be expressed as:

bel(xt) = η exp
(
− 1

2
Jt
)
,

where η is a normalization constant and:

Jt = (zt − Ctxt)
⊤Q−1

t (zt − Ctxt) + (xt − µ̄t)
⊤Σ̄−1

t (xt − µ̄t).

To determine the mean µt and covariance Σt of this new Gaussian, one simple
approach is just take the first and second derivative of Jt with respect to xt.
The mean is found where the first derivative is zero, and the covariance is the
(inverse) of the constant second derivative:

0 = −C⊤t Q−1
t (zt − Ctµt) + Σ̄−1

t (µt − µ̄t),

Σ−1
t = C⊤t Q−1

t Ct + Σ̄−1
t .

Through some algebraic manipulation the mean can be written in terms of the
covariance Σt:

µt = µ̄t + ΣtC⊤t Q−1
t (zt − Ctµ̄t),

156 parametric filters

and of course the covariance can be written as:

Σt = (C⊤t Q−1
t Ct + Σ̄−1

t)−1.

While it is technically possible to stop here, this is not quite the form of the
Kalman filter equations. In particular a few more algebraic steps are needed,
based on the matrix inversion lemma result:

(C⊤t Q−1
t Ct + Σ̄−1

t)−1 = Σ̄t − Σ̄tC⊤t (CtΣ̄tC⊤t + Qt)
−1CtΣ̄t.

By choosing to define the Kalman gain as Kt = Σ̄tCT
t (CtΣ̄tCT

t + Qt)−1 it can be
seen that the covariance can be expressed as:

Σt = Σ̄t − KtCtΣ̄t,

Through some additional algebra, the expression for the mean can also be ex-
pressed in terms of the Kalman gain and simplified to its final form:

µt = µ̄t + Kt(zt − Ctµ̄t).

For more details on the algebraic steps see Thrun et al.2. 2 S. Thrun, W. Burgard, and D. Fox.
Probabilistic Robotics. MIT Press, 2005

14.3 Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is a modified version of the Kalman filter that
revisits the assumption of linearity for the state transition and measurement
models. This extension still exploits the Gaussian distribution to represent the
belief in a computationally efficient parametric way, but by generalizing to more
complex models the EKF can be applied to a wider variety of robotics state
estimation and localization problems. In particular, the EKF considers general
nonlinear state transition and measurement models defined as:

xt = g(ut, xt−1) + ϵt,

zt = h(xt) + δt,
(14.5)

where again ϵt ∼ N (0, Rt) and δt ∼ N (0, Qt) are normally distributed noise
terms.

The EKF handles these nonlinear functions by taking advantage of their
first order Taylor series expansions (which are linear functions, similar to those
used in the Kalman filter). In particular the Taylor series expansion of the state
transition model g is performed about the most likely state from the current belief
distribution, which is the expected value µt−1:

g(ut, xt−1) ≈ g(ut, µt−1) + Gt(xt−1 − µt−1),

where Gt = ∇xg(ut, µt−1) is the Jacobian of g evaluated at µt−1. From this linear
approximation the state transition model can be expressed as:

p(xt | xt−1, ut) =
1√

det(2πRt)
exp

(
− 1

2
∆x⊤t R−1

t ∆xt
)
,

principles of robot autonomy 157

where
∆xt = xt − g(ut, µt−1)− Gt(xt−1 − µt−1).

From this result, the linear predictions that are used in the Kalman filter algo-
rithm can be replaced by the nonlinear generalizations:

µ̄t = g(ut, µt−1),

Σ̄t = GtΣt−1GT
t + Rt.

As can be seen the prediction of the new mean is simply an evaluation of the
nonlinear function g, and the updated covariance is very similar to the Kalman
filter but leverages the Jacobian Gt.

A very similar procedure is used for the measurement corrections. The mea-
surement model is also Taylor series expanded to yield (this time about the
predicted point µ̄t):

h(xt) ≈ h(µ̄t) + Ht(xt − µ̄t),

where Ht = ∇xh(µ̄t) is the Jacobian of h evaluated at µ̄t. The measurement
model can then be expressed using this approximation as:

p(zt | xt) =
1√

det(2πQt)
exp

(
− 1

2
∆z⊤t Q−1

t ∆zt
)
,

where ∆zt = zt − h(µ̄t) − Ht(xt − µ̄t). From this result the measurement cor-
rection in the EKF can be shown to be similar to the Kalman filter, but where the
Jacobians Ht are used:

µt = µ̄t + Kt(zt − h(µ̄t)),

Σt = (I − KtHt)Σ̄t,

where the Kalman gain is Kt = Σ̄tHT
t (HtΣ̄tHT

t + Qt)−1.

14.3.1 Algorithm

The extended Kalman filter algorithm is quite similar to the Kalman filter algo-
rithm outlined in Algorithm 6. In particular the main differences are that the
updates use the nonlinear functions and their Jacobians rather than assuming
strictly linear models. The EKF algorithm is outlined in Algorithm 7.

14.3.2 Practical Considerations

The extended Kalman filter can provide more accurate results than the Kalman
filter in many applications due to its ability to consider more general nonlinear
models. However, the approximation of the nonlinear models by a Taylor series
expansion can lead to the filter to diverge if the approximation is not accurate
enough. Additionally, the EKF still suffers from the same unimodal modeling
assumption as the Kalman filter since the beliefs are still represented by a single
Gaussian distribution.

158 parametric filters

Algorithm 7: Extended Kalman Filter Algorithm
Data: µt−1, Σt−1, ut, zt

Result: µt, Σt

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

Kt = Σ̄tHT
t (HtΣ̄tHT

t + Qt)−1

µt = µ̄t + Kt(zt − h(µ̄t))

Σt = (I − KtHt)Σ̄t

return µt, Σt

14.4 Unscented Kalman Filter

The unscented Kalman filter (UKF) is another variation of the Kalman filter (still
uses Gaussian distribution to parameterize the belief). This filter is also simi-
lar to the EKF in that it can handle nonlinear state transition and measurement
models. However, this filter improves upon the EKF by not relying on Taylor se-
ries expansions, which can cause filter divergence due to approximation errors.
This is accomplished by representing the Gaussian through a set of sigma-points
that are transformed through the nonlinear functions. Once each sigma-point
has been updated, a new Gaussian distribution is computed to represent the
updated belief.

14.5 Exercises

14.5.1 EKF Localization

Complete Problem 1: EKF Localization located in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW4,

where you will implement an EKF for robot localization based on linear
feature extraction and a map of known features.

15
Nonparametric Filters

Previous chapters introduced several algorithms for robot localization and state
estimation that are based on a probabilistic framework. In particular, the Bayes
filter was first introduced as a fundamental approach to the problem, which
uses a probabilistic state transition model and a measurement model to recur-
sively update a belief distribution over possible states. A set of tractable imple-
mentations of the Bayes filter that model the belief distribution in a parametric
way, for example using Gaussian distributions, was then presented (in particular
the Kalman and extended Kalman filters). These filters leverage the structure
of the parametric belief distribution to provide a computationally efficient ap-
proach to dealing with continuous state spaces (which have an infinite number
of states). For example the Gaussian distribution represents a continuous dis-
tribution through a finite set of parameters: the mean and covariance. However
there are also other implementations of Bayes filter that can be efficiently used
in continuous state spaces that are non-parametric.

Nonparametric Filters

1 In contrast to parametric filters, non-parametric filters do not make assumptions 1 S. Thrun, W. Burgard, and D. Fox.
Probabilistic Robotics. MIT Press, 2005on the structure of the belief distribution. This can be a desirable property for

applications in robotics where rigid structures in the belief distribution may re-
sult in poor performance. A classic example is that the Gaussian distributions
used in the Kalman filter and EKF are unimodal, which cannot express the pos-
sibility that two distinct “high probability” states might exist at the same time.
Non-parametric filters on the other hand generally represent the belief distri-
bution in an unstructured way, for example through a finite number of samples
drawn from the distribution, which allows for more expressive distributions.
This chapter introduces two main approaches for non-parametric filtering: the
histogram filter and the particle filter.

160 nonparametric filters

15.1 Histogram Filter

The histogram filter is essentially a modification of the discrete Bayes filter pre-
sented earlier to work in continuous state spaces. In particular, the continuous
state space is decomposed into a finite number of regions and the belief is repre-
sented over the discretized space by collecting the finite number of probabilities
of the state being in each discretized region.

In particular for the random state variable Xt, the continuous state space
dom(Xt) is decomposed into a finite set of regions (often called bins in the con-
text of histogram filters):

dom(Xt) = x1,t ∪ x2,t ∪ ...∪ xK,t, (15.1)

where xk,t is the k-th “bin”. For example, if the one-dimensional random vari-
able X could take on values in the interval [a, b] then one possible decompo-
sition would be to split the interval into a finite number of sub-intervals with
equal width. The belief distribution is then defined in non-parametric way by
simply specifying a probability pk,t to each bin xk,t. A probability density func-
tion can then be defined in a piecewise manner:

p(xt) =
pk,t

|xk,t|
, xt ∈ xk,t, (15.2)

where |xk,t| denotes the “area” or “volume” of the bin. This definition implies
that the probability that the random variable Xt takes on any value in the bin
xk,t is equal to pk,t.

The prediction and measurement update steps of the Bayes filter are then
accomplished by also discretizing the state transition and measurement models
by computing a representative “mean” state for each bin:

x̂k,t = |xk,t|−1
∫

xk,t

xtdxt. (15.3)

The state transition model p(xk,t | ut, xi,t−1) that defines the probability of
transitioning from one bin to another is then approximated in terms of the mean
bin states by:

p(xk,t | ut, xi,t−1) ≈ η|xk,t|p(x̂k,t | ut, x̂i,t−1), (15.4)

where p(x̂k,t | ut, x̂i,t−1) is the original (non-discretized) state transition model
evaluated at the mean bin states x̂ and η is a normalization constant2. 2 In the case that the bin areas |xk,t| are

equal, these terms can be absorbed into
the normalization constant.

The discretization of the measurement model is accomplished in a similar
manner, with the discretized model given by:

p(zt | xk,t) ≈ p(zt | x̂k,t). (15.5)

In other words, the measurement probability associated with a bin is approxi-
mated by the measurement probability associated with the mean bin state x̂k,t.

After the discretization has been performed, the discrete Bayes filter algo-
rithm from before can be directly applied by iterating over each bin and updat-
ing the probability pk,t.

principles of robot autonomy 161

15.2 Particle Filter

The particle filter is another non-parametric filter that provides a computation-
ally tractable implementation of the Bayes filter for continuous state spaces. This
filter represents the belief distribution by a finite set of random samples called
particles, which are denoted by:

Xt := {x[1]t , x[2]t , ..., x[M]
t }. (15.6)

Each particle x[m]
t represents a hypothesis about the true state xt, and therefore

regions of the state space with more particles correspond to regions of high
probability. Ideally, the particles are distributed according to the current belief:

x[m]
t ∼ p(xt | z1:t, u1:t) = bel(xt), (15.7)

but theoretically this only occurs as M → ∞. Instead the set of particles ap-
proximately represents the belief distribution, and in practice around M ≈ 1000
samples tends to be sufficient (but of course this depends on the application).

The particle filter updates the belief (via a prediction and measurement cor-
rection step) by manipulating the prior set of particles Xt−1 to yield a new set
of particles Xt. The prediction step is implemented by considering each particle
x[m]

t−1 in the prior set Xt−1 and sampling from the state transition model a new

“predicted” sample x̄[m]
t ∼ p(xt | ut, x[m]

t−1). An importance factor w[m]
t is then

defined for the predicted sample x̄[m]
t based on how well the observed measure-

ment matches the prediction. Specifically, the importance factor is computed as
w[m]

t = p(zt | x̄[m]
t). The predicted particles x̄[m]

t and their associated weights

w[m]
t can then be collected in a new particle set X̄t, which represents the pre-

dicted belief distribution bel(xt). The correction step is then accomplished by
simply resampling (with replacement) a new set of M particles from the pre-
dicted set X̄t with a probability proportional to the weights w[m]

t . This procedure
performs the measurement correction by giving preference in the new sample
set to those predicted particles that showed higher correlation to the measure-
ment zt. The resampled points are then collected in a new set Xt that defines
the posterior belief distribution. This algorithm is also outlined in Algorithm 8

and a few iterations of the algorithm for a simple robot localization problem are
shown in Figure 15.1.

Note that the concept of resampling in the correction step can be quite impor-
tant for reasons beyond just updating the belief for the measurement correction.
In particular, without the resampling step over time some of the particles would
drift to regions of low probability and there would be fewer particles to rep-
resent the regions of high probability. The resampling step can therefore be
viewed as a probabilistic implementation of the Darwinian idea of survival of
the fittest: it refocuses the particle set to regions in state space with high poste-
rior probability. This helps from a computational efficiency standpoint because
it reduces the number of particles that are needed by focusing them on the re-
gions of the state space that matter (i.e. regions of high probability).

162 nonparametric filters

Algorithm 8: Particle Filter Algorithm
Data: Xt−1, ut, zt

Result: Xt

X̄t = Xt = ∅
for m = 1 to M do

Sample x̄[m]
t ∼ p(xt | ut, x[m]

t−1)

w[m]
t = p(zt | x̄[m]

t)

X̄t = X̄t ∪
(

x̄[m]
t , w[m]

t
)

for m = 1 to M do

Draw i with probability ∝ w[i]
t

Add x̄[i]t to Xt

return Xt

15.3 Exercises

15.3.1 Monte Carlo Localization

Complete Extra Credit: Monte Carlo Localization located in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW4,

where you will implement a particle filter for localizing a robot with line
feature extraction, similar to the exercise on EKF localization from the previous
chapter.

principles of robot autonomy 163

Figure 15.1: Particle filter used
for robot localization. The ini-
tial set of particles are first
updated according to the transi-
tion model, and then weighted
according to the observation.
Finally, a new set of particles
is generated through weighted
resampling.

16
Robot Localization

The last few chapters introduced some of the most widely used algorithms
based on Bayes’ filter for probabilistic robot localization and state estimation.
However these fundamental algorithms still need further enhancements before
application to many robot localization tasks, since in their standard form they
don’t incorporate a notion of a local map. For example, a particle filter could be
applied in its original form to a problem of global localization based on Global
Navigation Satellite System (GNSS) measurements, but localizing based on
range measurements requires knowledge about what object is being ranged, and
where that object is with respect to the local environment (i.e. the map). In this
chapter a more specific definition of mobile robot localization is considered1, 1 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005namely the problem of determining the pose of a robot relative to a given map of
the environment.

Robot Localization

Localization with respect to a map can be interpreted as a problem of coordi-
nate transformation. Maps are described in a global coordinate system, which
is independent of a robot’s pose. Localization can then be viewed as the process
of establishing a correspondence between the map coordinate system and the
robot’s local coordinate system. Knowing this coordinate transformation then
enables the robot to express the location of objects of interest within its own
coordinate frame (a necessary prerequisite for robot autonomy).

In 2D problems, knowing the pose xt = [x, y, θ]⊤ of a robot is sufficient to
establish this correspondence, and an ideal sensor would directly be able to
measure this pose. However in practice no such sensor exists, and therefore
indirect (often noisy) measurements zt of the pose are used. Since it is almost
impossible to be able to reliably estimate xt from a single measurement zt, local-
ization algorithms typically integrate additional data over time to build reliable
localization estimates. For example, consider a robot located inside a building
where many corridors look alike. In this case a single sensor measurement (e.g.
a range scan) is usually insufficient to disambiguate the identity of the corridor
from the others.

166 robot localization

In this chapter it will be seen how this map-based localization problem can
be cast in the Bayesian filtering framework, such that the algorithms from previ-
ous chapters can be leveraged.

16.1 A Taxonomy of Localization Problems

To understand the broad scope of challenges related to robot localization, it is
useful to develop a brief taxonomy of localization problems. This categorization
will divide localization problems along a number of important dimensions
pertaining to the nature of the environment (e.g. static versus dynamic), the
initial knowledge that a robot may possess, and how information about the
environment is gathered (e.g. passive or active, with one robot or collaboratively
with several robots).

16.1.1 Local vs. Global

Localization problems can be characterized by the type of knowledge that is
available initially, which has a significant impact on what type of localization
algorithm is most appropriate for the problem.

• Position tracking problems assume that the initial pose of the robot is known.
In these types of problems only incremental updates are required (i.e. the lo-
calization error is generally always small), and therefore unimodal Gaussian
filters (e.g. Kalman filters) can be efficiently applied.

• Global localization problems assume that the initial pose of the robot is un-
known. In these scenarios the use of a unimodal parametric belief distribu-
tion cannot adequately capture the global uncertainty. Therefore it is more
appropriate to use non-parametric, multi-hypothesis filters, such as the parti-
cle filter.

• The kidnapped robot problem is a variant of the global localization problem (i.e.
unknown initial pose) where the robot can get “kidnapped” and “teleported”
to some other location. This problem is more difficult than the global local-
ization problem since the localization algorithm needs to have an awareness
that sudden drastic to the robot’s pose are possible. While robots are typi-
cally not “kidnapped” in practice, the consideration of this type of problem
is useful for ensuring the localization algorithm is robust, since the ability to
recover from failure is essential for truly autonomous robots. Similar to the
global localization problem, these problems are often best addressed using
non-parametric, multi-hypothesis filters.

16.1.2 Static vs. Dynamic

Environmental changes are another important consideration in mobile robot
localization, specifically whether they are static or dynamic.

principles of robot autonomy 167

• In static environments the robot is the only object that moves. Static environ-
ments are generally much easier to perform localization in.

• Dynamic environments possess objects other than the robot whose locations
or configurations change over time. This problem is usually addressed by
augmenting the state vector to include the movement of dynamic entities, or
by filtering the sensor data to remove the effects of environment dynamics.

16.1.3 Passive vs. Active

Information collected via measurements is crucial for robot localization. There-
fore it is reasonable to consider localization problems where the robot can ex-
plicitly choose its actions to gather more (or more specific) information from the
environment.

• Passive localization problems assume that the robot’s motion is unrelated to its
localization process.

• Active localization problems consider the ability of the robot to choose its
actions (at least partially) to improve its understanding of the environment.
For example, a robot in the corner of a room might choose to reorient itself
to face the rest of the room, so it can collect environmental information as it
moves along the wall. Hybrid approaches are also possible, since it may be
inefficient to use active localization all of the time.

16.1.4 Single Robot vs. Multi-Robot

It is of course also possible to consider problems where several robots all gather
independent information and then share that information with each other.

• Single-robot localization problems are the most commonly studied and uti-
lized approach, and are often simpler because all data is collected on a single
platform.

• Multi-robot localization problems consider teams of robots that share informa-
tion in such a way that one robot’s belief can be used to influence another
robot’s belief if the relative location between robots is known.

16.2 Robot Localization via Bayesian Filtering

The parametric (e.g. EKF) and non-parametric (e.g. particle) filters from the pre-
vious chapters are all variations of the Bayes filter. In particular they rely on a
Markov process assumption and the identification of probabilistic measurement
models. In this section it is shown how map-based robot localization can be
cast into this framework, such that the previously discussed algorithms can be
applied.

168 robot localization

Similar to the general filtering context from the previous chapters, at time t
the state is denoted by xt, the control input is denoted by ut, and the measure-
ments are denoted by zt. For example, a differential drive robot equipped with
a laser range-finder (returning a set of range measurements ri and bearings ϕi),
the state, control, and measurements would be:

xt =

x
y
θ

 , ut =

[
v
ω

]
, zt =

r1

ϕ1
...

 . (16.1)

However, the critical new component is the concept of a map (denoted as m),
which is a list of objects in the environment along with their properties:

m = {m1, m2, . . . , mN}, (16.2)

where mi represents the properties of a specific object. Generally there are two
types of maps that will be considered, location-based maps and feature-based
maps, which typically have differences in both computational efficiency and
expressiveness.

For location-based maps, the index i associated with object mi corresponds
to a specific location (i.e. mi are volumetric objects). For example, objects mi

in a location-based map might represent cells in a cell decomposition or grid
representation of a map (see Figure 16.1). One potential disadvantage of the

Figure 16.1: Two examples
of location-based maps, both
represent the map as a set of
volumetric objects (i.e. cells in
these cases).

cell-based maps is that their resolution is dependent on the size of the cells, but
their advantage is that they can explicitly encode information about presence (or
absence) of objects in specific locations.

For feature-based maps, an index i is a feature index, and mi contains in-
formation about the properties of that feature, including its Cartesian location.
These types of maps can typically be thought of as a collection of landmarks.
Figure 16.2 gives two examples of feature-based maps, one which is represented
by a set of lines, and another which is represented by nodes and edges like a
graph (i.e. a topological map). Feature-based maps can be more finely tuned to
specific environments, for example the line-based map might make sense to use
in highly structured environments such as buildings. While feature-based maps
can be computationally efficient, their main disadvantage is that they typically
do not capture spatial information about all potential obstacles.

principles of robot autonomy 169

Figure 16.2: Two examples of
feature-based maps.16.2.1 State Transition Model

In the previous chapters on Bayesian filtering the probabilistic state transition
model p(xt | ut, xt−1) describes the posterior distribution over the states that the
robot could transition to when executing control ut from xt−1. However in robot
localization problems it might be important to take into account how the map m
could affect the state transition since in general:

p(xt | ut, xt−1) ̸= p(xt | ut, xt−1, m).

For example, p(xt | ut, xt−1) cannot account for the fact that a robot cannot
move through walls since it doesn’t know that walls exist!

However, a common approximation is to make the assumption that:

p(xt | ut, xt−1, m) ≈ η
p(xt | ut, xt−1)p(xt | m)

p(xt)
, (16.3)

where η is a normalization constant. This approximation can be derived from
Bayes’ rule by assuming that p(m | xt, xt−1, ut) ≈ p(m | xt) (which is a tight
approximation under high update rates). More specifically:

p(xt | ut, xt−1, m) =
p(m|xt, xt−1, ut)p(xt | xt−1, ut)

p(m | xt−1, ut)
,

= η′p(m|xt, xt−1, ut)p(xt | xt−1, ut),

≈ η′p(m|xt)p(xt | xt−1, ut),

= η
p(xt | ut, xt−1)p(xt | m)

p(xt)
,

where η′ and η are normalization constants (such that the total probability
density integrates to one).

In this approximation the term p(xt | m) is the state probability conditioned
on the map which can be thought of as describing the “consistency” of state
with respect to the map. The approximation (16.3) can therefore be viewed as
making a probabilistic guess using the original state transition model (without
map knowledge), and then using the consistency term p(xt | m) to check the
plausibility of the new state xt given the map.

170 robot localization

16.2.2 Measurement Model

The probabilistic measurement model p(zt | xt) from previous chapters also
needs to be modified to take map information into account. This new measure-
ment model can simply be expressed as p(zt | xt, m) (i.e. measurement is also
conditioned on the map). This is obviously important because the local mea-
surements can have significant influence from the environment. For example a
range measurement is dependent on what object is currently in the line of sight.

Additionally, since the suite of sensors on a robot may generate more than
one measurement when queried, it is also common to make another measure-
ment model assumption for simplicity. Suppose K measurements are taken at
time t, such that:

zt =

z1

t
...

zK
t

 .

Then it can often be assumed that each of the K measurements are conditionally
independent from each other (i.e. when conditioned on xt and m the probabil-
ity of measuring zk

t is independent from the other measurements). With this
assumption the probabilistic measurement model can be expressed as:

p(zt | xt, m) =
K

∏
k=1

p(zk
t | xt, m). (16.4)

16.3 Markov Localization

With the probabilistic state transition and measurement models that include the
map, the Bayes’ filter can be directly modified as shown in Algorithm 9. As can

Algorithm 9: Markov Localization Algorithm

Data: bel(xt−1), ut, zt, m
Result: bel(xt)

foreach xt do
bel(xt) =

∫
p(xt | ut, xt−1, m)bel(xt−1)dxt−1

bel(xt) = ηp(zt | xt, m)bel(xt)

return bel(xt)

be seen, this algorithm is conceptually identical to the Bayes’ filter except for the
inclusion of the model m. This algorithm is referred to as the Markov localization
algorithm, and the localization problem it is trying to solve is generally referred
to as simply Markov localization2. 2 Recall the use of the Markov property

assumption in the derivation of the
Bayes’ filter.

The Markov localization algorithm can be used to address global localization,
position tracking, and kidnapped robot problems, but generally some imple-
mentation details might be different. The choice for the initial (prior) belief

principles of robot autonomy 171

distribution bel(x0) is one such parameter that may be different depending on
the type of localization problem.

Specifically, since the initial belief encodes any prior knowledge about the
robot pose, the best choice of distribution depends on what (if any) knowledge
is available. For example, in the position tracking problem it is assumed that
an initial pose of the robot is known. Therefore choosing a (unimodal) Gaus-
sian distribution bel(x0) ∼ N (x̄0, Σ0) with a small covariance might be a good
choice. Alternatively, for a global localization problem the initial pose is not
known. In this case an appropriate choice for the initial belief would be a uni-
form distribution bel(x0) = 1/|X| over all possible states x.

Similarly to the original Bayes’ filter from previous chapters, the Markov lo-
calization algorithm 9 is generally not possible to implement in a computation-
ally tractable way. However, practical implementations can still be developed
by again leveraging some sort of structure to the belief distribution bel(xt) (e.g.
through Gaussian or particle representations). Two commonly used implemen-
tations based on specific structured beliefs will now be discussed: extended
Kalman filter localization and Monte Carlo localization.

16.4 Extended Kalman Filter (EKF) Localization

The extended Kalman filter (EKF) localization algorithm is essentially equivalent
to the EKF algorithm presented in previous chapters, except that it also takes
the map m into account. In particular, it still makes a Gaussian belief assump-
tion, bel(xt) ∼ N (µt, Σt), to add structure to the filtering problem. As a brief
review, the assumed state transition model is given by:

xt = g(ut, xt−1) + ϵt,

where ϵt ∼ N (0, Rt) is Gaussian zero-mean noise. The Jacobian Gt is again
defined by Gt = ∇xg(ut, µt−1), where µt−1 is the expected value of the previous
belief distribution bel(xt−1).

The main difference in EKF localization is the assumption that a feature-
based map is available, consisting of point landmarks given by:

m = {m1, m2, . . . , mN}, mj = (mj,x, mj,y),

where N is the total number of landmarks, and each landmark mj encapsulates
the location (mj,x, mj,y) of the landmark in the global coordinate frame. Mea-
surements zt associated with these point landmarks at a time t are denoted by:

zt = {z1
t , z2

t , . . . },

where zi
t is associated with a particular landmark and is assumed to be gener-

ated by the measurement model:

zi
t = h(xt, j, m) + δt,

172 robot localization

where δt ∼ N (0, Qt) is Gaussian zero-mean noise and j is the index of the map
feature mj ∈ m that measurement i is associated with.

One fundamental problem that now needs to be addressed is the data as-
sociation problem, which arises due to uncertainty in which measurements are
associated with which landmark. To begin addressing this problem, the corre-
spondences are modeled through a variable ci

t ∈ {1, . . . , N + 1}, which take on
the values ci

t = j if measurement i corresponds to landmark j, and ci
t = N + 1 if

measurement i has no corresponding landmark. Then, given a correspondence
ci

t of measurement i (associated with a specific landmark), the Jacobian Hi
t used

in the EKF measurement correction step can be determined. Specifically, for the
i-th measurement the Jacobian of the new measurement model can be computed

by Hci
t

t = ∇xh(µ̄t, ci
t, m), where µ̄t is the predicted mean (that results from the

EKF prediction step).

16.4.1 EKF Localization with Known Correspondences

In practice the correspondences between measurements zi
t and landmarks mj

are generally unknown. However, it is useful from a pedagogical standpoint to
first consider the case where these correspondences ct = [c1

t , . . .]⊤ are assumed
to be known.

In the EKF localization algorithm given in Algorithm 10, the main differ-
ence from the original EKF filter algorithm is that multiple measurements are
processed at the same time. Crucially, this is accomplished in a computation-
ally efficient way by exploiting the conditional independence assumption (16.4)
for the measurements. In fact, by exploiting this assumption and some special
properties of Gaussians, the multi-measurement update can be implemented
by just looping over each measurement individually and applying the standard
EKF correction.

Algorithm 10: Extended Kalman Filter Localization Algorithm
Data: µt−1, Σt−1, ut, zt, ct, m
Result: µt, Σt

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

j = ci
t

Si
t = H j

t Σ̄t[H
j
t]

T + Qt

Ki
t = Σ̄t[H

j
t]

T [Si
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − h(µ̄t, j, m))

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

principles of robot autonomy 173

16.4.2 EKF Localization with Unknown Correspondences

For EKF localization with unknown correspondences, the correspondence vari-
ables must also be estimated! The simplest way to determine the correspon-
dences online is to use maximum likelihood estimation, in which the most likely
value of the correspondences ct is determined by maximizing the data likeli-
hood:

ĉt = arg max
ct

p(zt | c1:t, m, z1:t−1, u1:t)

In other words, the set of correspondence variables is chosen to maximize the
probability of getting the current measurement given the history of correspon-
dence variables, the map, the history of measurements, and the history of con-
trols. By marginalizing over the current pose xt this distribution can be written
as:

p(zt | c1:t, m, z1:t−1, u1:t) =
∫

p(zt | c1:t, xt, m, z1:t−1, u1:t)p(xt | c1:t, m, z1:t−1, u1:t)dxt,

=
∫

p(zt | ct, xt, m)bel(xt)dxt.

Note that the term p(zt | c1:t, xt, m) is essentially the assumed measurement
model given known correspondences. Then, by again leveraging the conditional
independence assumption for the measurements zi

t from (16.4), this can be
written as:

p(zt | c1:t, m, z1:t−1, u1:t) =
∫

∏
i

p(zi
t | ci

t, xt, m)bel(xt)dxt.

Importantly, each decision variable ci
t in the maximization of this quantity

shows up in separate terms of the product! Therefore it is possible to maximize
each parameter independently by solving the optimization problems:

ĉi
t = arg max

ci
t

∫
p(zi

t | ci
t, xt, m)bel(xt)dxt.

This problem can be solved quite efficiently since it is assumed that the mea-
surement models and belief distributions are Gaussian3. In particular, the prob- 3 Similar to the previous chapters, in

this case the product of terms inside
the integral will be Gaussian since both
terms are Gaussian.

ability distribution resulting from the integral is a Gaussian with mean and
covariance:∫

p(zi
t | ci

t, xt, m)bel(xt)dxt ∼ N (h(µ̄t, ci
t, m), Hci

t
t Σ̄t[H

ci
t

t]
⊤ + Qt).

The maximum likelihood optimization problem can therefore be expressed as:

ĉi
t = arg max

ci
t

N (zi
t | ẑci

t
t , Sci

t
t),

where ẑj
t = h(µ̄t, j, m) and Sj

t = H j
t Σ̄t[H

j
t]
⊤ + Qt. To solve this maximization

problem, recall the definition of the Gaussian distribution:

N (zi
t | ẑj

t, Sj
t) = η exp

(
− 1

2
(zi

t − ẑj
t)
⊤[Sj

t]
−1(zi

t − ẑj
t)
)
,

174 robot localization

where η is a normalization constant. Since the exponential function is mono-
tonically increasing and since η is a positive constant, the maximum likelihood
estimation problem can be equivalently expressed as:

ĉi
t = arg min

ci
t

di,ci
t

t , (16.5)

where
dij

t = (zi
t − ẑj

t)
⊤[Sj

t]
−1(zi

t − ẑj
t), (16.6)

is referred to as the Mahalanobis distance.
The EKF localization algorithm with unknown correspondences is very sim-

ilar to Algorithm 10, except with the addition of this maximum likelihood esti-
mation step. This new algorithm is given in Algorithm 11.

Algorithm 11: EKF Localization Algorithm, Unknown Correspondences
Data: µt−1, Σt−1, ut, zt, m
Result: µt, Σt

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

foreach landmark k in the map do
ẑk

t = h(µ̄t, k, m)

Sk
t = Hk

t Σ̄t[Hk
t]

T + Qt

j = arg mink (zi
t − ẑk

t)
⊤[Sk

t]
−1(zi

t − ẑk
t)

Ki
t = Σ̄t[H

j
t]

T [Sj
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − ẑj

t)

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

One of the disadvantages of using the maximum likelihood estimation is that
it can be brittle with respect to outliers and in cases where there are equally
likely hypothesis for the correspondence. An alternative approach to estimating
correspondences that is more robust to outliers is to use a validation gate. In this
approach the Mahalanobis smallest distance dij

t must also pass a thresholding
test:

(zi
t − ẑj

t)
⊤[Sj

t]
−1(zi

t − ẑj
t) ≤ γ,

in order for a correspondence to be created.

Example 16.4.1 (Differential Drive Robot with Range and Bearing Measure-
ments). Consider a differential drive robot with state x = [x, y, θ]⊤, and suppose
a sensor is available on the robot which measures the range r and bearing ϕ of
landmarks mj ∈ m relative to the robot’s local coordinate frame. Additionally,

principles of robot autonomy 175

multiple measurements corresponding to different features can be collected at
each time step:

zt = {[r1
t , ϕ1

t]
⊤, [r2

t , ϕ2
t]
⊤, . . . },

where each measurement zi
t contains the range ri

t and bearing ϕi
t.

Assuming the correspondences are known, the measurement model for the
range and bearing is:

h(xt, j, m) =

[√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y, mj,x − x)− θ

]
. (16.7)

The measurement Jacobian H j
t corresponding to a measurement from landmark

j is then given by:

H j
t =

− mj,x−µ̄t,x√
(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 − mj,y−µ̄t,y√

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 0
mj,y−µ̄t,y

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 − mj,x−µ̄t,x

(mj,x−µ̄t,x)2+(mj,y−µ̄t,y)2 −1

 . (16.8)

It is also common to assume that the covariance of the measurement noise is
given by:

Qt =

[
σ2

r 0
0 σ2

ϕ

]
,

where σr is the standard deviation of the range measurement noise and σϕ is the
standard deviation of the bearing measurement noise. This diagonal covariance
matrix is typically used since these two measurements can be assumed to be
uncorrelated.

16.5 Monte Carlo Localization (MCL)

Another approach to Markov localization is the Monte Carlo localization (MCL)
algorithm. This algorithm leverages the non-parametric particle filter algorithm
from the previous chapter, and is therefore much better suited to solving global
localization problems (unlike EKF localization which only solves position track-
ing problems). MCL can also be used to solve the kidnapped robot problem
through some small modifications, such as injecting new random particles at
each step to ensure that a “particle collapse” problem does not occur.

As a brief review, the particle filter represents the belief bel(xt) by a set of M
particles:

Xt := {x[1]t , x[2]t , ..., x[M]
t },

where each particle x[m]
t represents a hypothesis about the true state xt. At each

step of the algorithm the state transition model is used to propagate forward the
particles, and then the measurement model is used to resample particles based
on the measurement likelihood. This algorithm is shown in Algorithm 12, and is
nearly identical to the particle filter algorithm except that the map m is used in
the probabilistic state transition and measurement models.

176 robot localization

Algorithm 12: Monte Carlo Localization Algorithm
Data: Xt−1, ut, zt, m
Result: Xt

X̄t = Xt = ∅
for m = 1 to M do

Sample x̄[m]
t ∼ p(xt | ut, x[m]

t−1, m)

w[m]
t = p(zt | x̄[m]

t , m)

X̄t = X̄t ∪
(

x̄[m]
t , w[m]

t
)

for m = 1 to M do

Draw i with probability ∝ w[i]
t

Add x̄[i]t to Xt

return Xt

17
Simultaneous Localization and Mapping (SLAM)

The previous chapter introduced the robot localization problem, but assumed
that the map m was given. However, in many real-world robotics applications a
map might not be known ahead of time, and therefore it would need to be built
on-the-fly. This problem, which involves using information about measurements
z and controls u to simultaneously localize the robot in the world and build a
map, is known as simultaneous localization and mapping (SLAM)1. 1 S. Thrun, W. Burgard, and D. Fox.

Probabilistic Robotics. MIT Press, 2005

Simultaneous Localization and Mapping (SLAM)

Many real-world settings are challenging for robotic autonomy because both
the map and the relative pose of the robot are unknown. For example, such a
situation would occur in autonomous search-and-rescue operations where a
robot needs to explore an unknown environment. The SLAM problem addresses
this challenge by estimating the robot pose and constructing a map of the en-
vironment at the same time, based only on measurement z1:t and control u1:t

data.
Generally speaking there are two types of SLAM problems that can be con-

sidered. The online SLAM problem aims to estimate the posterior p(xt, m |
z1:t, u1:t) over the robot’s current pose xt and the map m. Alternatively, the full
SLAM problem estimates the entire path of the robot instead of just the current
position, namely p(x1:t, m | z1:t, u1:t). The difference between these two SLAM
problems is demonstrated graphically in Figure 17.1. Both SLAM problems ex-
perience the same challenge: error in the pose causes error in map estimation
and error in map estimation causes error in the pose estimate. In this chapter,
algorithms for both the online and full SLAM problems are studied.

17.1 EKF SLAM Algorithm

One of the earliest approaches to the online SLAM problem leverages the ex-
tended Kalman filter, and is essentially an extension of the EKF localization
algorithm discussed in the previous chapter. Again, the key aspects to the ap-
proach are the exploitation of Gaussian distributions to model the robot’s belief

178 simultaneous localization and mapping (slam)

Figure 17.1: Difference between
online and full SLAM, where
online SLAM only estimates the
current robot pose while full
SLAM also estimates the robot’s
history.

distribution bel(xt), and state transition and measurement models. It will also
be assumed that the map is feature-based:

m = {m1, m2, . . . , mN},

where mi is the i-th landmark with coordinates (mi,x, mi,y). As in the EKF local-
ization problem, the measurement correspondences can either be assumed to be
known or unknown (more common in practice).

The main idea behind EKF SLAM is that the coordinates (mi,x, mi,y) of each
landmark mi are added, along with the robot pose xt, to an augmented state
vector:

yt =

xt

m1
...

mN

 , (17.1)

where mi = [mi,x, mi,y]
⊤. With the new state vector y the online SLAM problem

is to compute the posterior:

bel(yt) = p(yt | z1:t, u1:t).

EKF SLAM approaches have the advantage of being computationally efficient
such that they can be run online, and are also well understood from a theoreti-
cal perspective. They can also provide good performance when the uncertainty
is low. However, their main disadvantages are that they are restricted by the
Gaussian assumption to unimodal estimates, and that performance can degrade
in settings with high uncertainty or when the states are not well approximated
by normal distributions.

17.1.1 State Transition and Measurement Models

Assuming that the landmarks mi ∈ m are static, the state transition model for
the augmented state vector y is assumed to be given by:

yt = g(ut, yt−1) + ϵt, ϵt ∼ N (0, Rt),

principles of robot autonomy 179

where the nonlinear vector function g is defined by:

g(ut, yt−1) =

g̃(ut, xt−1)

m1,t−1
...

mN,t−1

 ,

and g̃ is the original robot motion model (e.g. differential drive robot model).
The noise covariance is also defined as:

Rt =

[
R̃t 0
0 0

]
,

where R̃t is the noise covariance associated with the original robot motion
model and the rest of the matrix are zeros. The Jacobian of the augmented mo-
tion model is defined as Gt := ∇yg(ut, µt−1) where µt−1 is the expected value of
the belief distribution bel(yt−1) at the previous time.

The measurement model is defined in the same way as the previous chapter:

zi
t = h(yt, j) + δt,

where δt ∼ N (0, Qt) is Gaussian zero-mean noise and j is the index of the
map feature mj ∈ m that measurement i is associated with. The Jacobian is also

defined in the same way with H j
t = ∇yh(µ̄t, j), where µ̄t is the predicted mean

(that results from the EKF prediction step) of the distribution bel(yt).

17.1.2 EKF SLAM with Known Correspondences

As was the case in EKF localization, it is important to specify whether the cor-
respondences ci

t between the i-th measurement zi
t and the associated landmark

in the map is known. In this section an EKF SLAM algorithm will be developed
which assumes the correspondences ct = [c1

t , . . .]⊤ are known.
Algorithm 13 presents the EKF SLAM algorithm with known correspon-

dences. It is almost identical to the EKF localization algorithm from last chapter,
except that the state vector is augmented with the landmark positions and the
positions of these landmarks are initialized when they are first seen. For this
algorithm a general initialization of the belief distribution bel(y0) is with:

µ0 =

x0

0
...
0

 , Σ0 =

Σ̃0 0 · · · 0
0 ∞ · · · 0
...

...
. . .

...
0 0 · · · ∞

 ,

where:

x0 =

0
...
0

 , Σ̃0 =

0 · · · 0
...

. . .
...

0 · · · 0

 ,

180 simultaneous localization and mapping (slam)

Algorithm 13: Extended Kalman Filter Online SLAM Algorithm
Data: µt−1, Σt−1, ut, zt, ct

Result: µt, Σt

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

j = ci
t

if landmark j never seen before then

Initialize

[
µ̄j,x

µ̄j,y

]
as expected position based on zi

t

Si
t = H j

t Σ̄t[H
j
t]

T + Qt

Ki
t = Σ̄t[H

j
t]

T [Si
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − h(µ̄t, j))

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

and x0 and Σ̃ are the initial robot state and associated covariance (which is
set to zero). Since the reference frame for the map can be defined arbitrarily,
this initialization is used to say that the initial robot pose is known to be at
the origin with certainty (and the map is built with respect to that origin). The
covariance of the map positions is set to infinity to reflect that there is initially
no knowledge of their position.

17.2 EKF SLAM with Unknown Correspondences

Performing EKF SLAM when the correspondences between measurements and
landmarks are unknown poses a more challenging problem. In the EKF local-
ization case (when the map was known), a maximum likelihood method was
used to determine correspondence. A similar approach is taken for EKF SLAM,
which uses a maximum likelihood approach based on the estimated landmark
positions. The main difference is that now a mechanism for hypothesizing that a
new landmark has been found is also required. The EKF SLAM with unknown
correspondences algorithm is given in Algorithm 14.

As can be seen there are a couple differences between Algorithm 13 and Al-
gorithm 14. First, the measurements zi

k are used to hypothesize the position of a
new landmark. The Mahalanobis distance dik

t is then computed for all currently
tracked landmarks, and the hypothesized landmark is added if the distance
exceeds a threshold α (i.e. dik

t > α for all k = 1, . . . , Nt).
While this EKF-based algorithm can be used to solve the online SLAM prob-

lem without correspondences, it is not necessarily the most robust approach.

principles of robot autonomy 181

Algorithm 14: EKF Online SLAM Algorithm, Unknown Correspon-
dences

Data: µt−1, Σt−1, ut, zt, Nt−1

Result: µt, Σt

Nt = Nt−1

µ̄t = g(ut, µt−1)

Σ̄t = GtΣt−1GT
t + Rt

foreach zi
t do

Hypothesize position

[
µ̄Nt+1,x

µ̄Nt+1,y

]
from zi

t

foreach k = 1 to Nt + 1 do
ẑk

t = h(µ̄t, k)
Sk

t = Hk
t Σ̄t[Hk

t]
T + Qt

dik
t = (zi

t − ẑk
t)
⊤[Sk

t]
−1(zi

t − ẑk
t)

di(Nt+1)
t = α

j = arg mink dik
t

Nt = max{Nt, j}
Ki

t = Σ̄t[H
j
t]

T [Sj
t]
−1

µ̄t = µ̄t + Ki
t(z

i
t − ẑj

t)

Σ̄t = (I − Ki
tH j

t)Σ̄t
µt = µ̄t

Σt = Σ̄t

return µt, Σt

In particular, extraneous measurements can result in the creation of fake land-
marks, which will then propagate forward to future steps and cannot be cor-
rected! There are several techniques to mitigate these issues, such as using out-
lier rejection schemes or strategies to enhance the distinctiveness of landmarks
(which may require prior knowledge or assumptions). Another important dis-
advantage of EKF SLAM is that its computational complexity is quadratic with
the number of landmarks N, but generally a large number of landmarks is re-
quired for good localization accuracy!

Example 17.2.1 (Differential Drive Robot with Range and Bearing Measure-
ments). Consider a differential drive robot with state x = [x, y, θ]⊤, and suppose
a sensor is available on the robot which measures the range r and bearing ϕ of
landmarks mj ∈ m relative to the robot’s local coordinate frame. Additionally,
multiple measurements corresponding to different features can be collected at
each time step:

zt = {[r1
t , ϕ1

t]
⊤, [r2

t , ϕ2
t]
⊤, . . . },

where each measurement zi
t contains the range ri

t and bearing ϕi
t.

182 simultaneous localization and mapping (slam)

For the SLAM problem, the augmented state yt is defined as:

yt =

xt

m1
...

mN

 =
[

x y θ m1,x m1,y . . . mN,x mN,y

]⊤
.

Assuming the correspondences are known, the measurement model for the
range and bearing is:

h(yt, j) =

[√
(mj,x − x)2 + (mj,y − y)2

atan2(mj,y − y, mj,x − x)− θ

]
. (17.2)

The measurement Jacobian H j
t corresponding to a measurement from landmark

j is then given by:

H j
t =

− µ̄j,x−µ̄t,x√qt,j
− µ̄j,y−µ̄t,y√qt,j

0 0 . . . 0
µ̄j,x−µ̄t,x√qt,j

µ̄j,y−µ̄t,y√qt,j
0 . . .

µ̄j,y−µ̄t,y
qt,j

− µ̄j,x−µ̄t,x
qt,j

−1 0 . . . 0 − µ̄j,y−µ̄t,y
qt,j

µ̄j,x−µ̄t,x
qt,j

0 . . .

 ,

(17.3)
where:

qt,j := (µ̄j,x − µ̄t,x)
2 + (µ̄j,y − µ̄t,y)

2,

and µ̄j,x and µ̄j,y are the estimate of the x and y coordinates of landmark mj

from µ̄t.
With both a range and bearing measurement, the expected position of land-

mark mj is given by: [
µ̄j,x

µ̄j,y

]
=

[
µ̄t,x

µ̄j,y

]
+

[
ri

tcos(ϕi
t + µ̄t,θ)

ri
tsin(ϕi

t + µ̄t,θ)

]
.

This can be used in the known-correspondence EKF SLAM algorithm (Algo-
rithm 13) to initialize the landmark position and can be used in the unknown-
correspondence case (Algorithm 14) to hypothesize the position of new land-
marks.

17.3 Particle SLAM Algorithm

Another approach to the robot SLAM problem is to leverage the non-parametric
particle filter. In fact, particle SLAM can be used to solve the full SLAM prob-
lem, unlike EKF SLAM which only solves the online SLAM problem. Specifi-
cally, the full SLAM problem is to estimate the posterior distribution p(x1:t, m |
z1:t, u1:t), which includes the full robot path x1:t up to time t and the map m.
Similar to the EKF SLAM case, the robot state x1:t and map feature positions m
are combined into an augmented state vector y1:t as in (17.1).

A naïve implementation of the particle filter in the context of full SLAM
would be computationally intractable, since the number of particles required

principles of robot autonomy 183

to belief distribution would be extremely large. However, the key insight that
makes this approach tractable is that the posterior over the map elements is con-
ditionally independent given the true path of the robot. Therefore the mapping
component to the problem can be split up into separate problems, correspond-
ing to each feature in the map! Splitting the problem in this way makes the
overall problem much easier to solve.

Overall, particle filter SLAM approaches can be used with any noise dis-
tribution and can express multimodal beliefs since they are non-parametric.
Additionally, in practice they can be relatively easy to implement and can also
be more robust to data association errors. Their main disadvantages are that
they typically do not scale well to large scale problems (too many particles are
needed), and that without enough particles convergence may not occur.

17.3.1 Factoring the Posterior

The key insight of particle SLAM that makes it a computationally tractable
algorithm is that the posterior p(y1:t | z1:t, u1:t, c1:t) can be factored as:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)
N

∏
n=1

p(mn | x1:t, z1:t, c1:t), (17.4)

where mn is the n-th feature in the map m, the term p(x1:t | z1:t, u1:t, c1:t) is
referred to as the path posterior, and the terms p(mn | x1:t, z1:t, c1:t) are referred to
as the feature posteriors.

This factorization can be derived by first using Bayes’ rule

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)p(m | x1:t, z1:t, u1:t, c1:t),

and then noting that since the feature posterior is conditioned on x1:t, the de-
pendence on u1:t is redundant:

p(y1:t | z1:t, u1:t, c1:t) = p(x1:t | z1:t, u1:t, c1:t)p(m | x1:t, z1:t, c1:t).

Now the feature posterior p(m | x1:t, z1:t, c1:t) can be explored in more detail.
In particular two cases can be considered for each landmark mn: the case when
the measurement at time t is not associated with n and the case when it is:

p(mn | x1:t, z1:t, c1:t) =

p(mn | x1:t−1, z1:t−1, c1:t−1), ct ̸= n,
p(zt |mn ,xt ,ct)p(mn |x1:t−1,z1:t−1,c1:t−1)

p(zt |x1:t ,z1:t−1,c1:t)
, ct = n,

where in the second case Bayes’ rule was applied. It is now possible to show the
result (17.4) by induction. First, suppose that:

p(m | x1:t−1, z1:t−1, c1:t−1) =
N

∏
n=1

p(mn | x1:t−1, z1:t−1, c1:t−1).

184 simultaneous localization and mapping (slam)

Then, using Bayes’ rule at time t:

p(m | x1:t, z1:t, c1:t) =
p(zt | m, xt, ct)p(m | x1:t−1, z1:t−1, c1:t−1)

p(zt | x1:t, z1:t−1, c1:t)
,

=
p(zt | m, xt, ct)

p(zt | x1:t, z1:t−1, c1:t)

N

∏
n=1

p(mn | x1:t−1, z1:t−1, c1:t−1).

Next, applying the analysis above for the cases where ct ̸= n and ct = n:

p(m | x1:t, z1:t, c1:t) = p(mct | x1:t, z1:t, c1:t) ∏
n ̸=ct

p(mn | x1:t, z1:t, c1:t),

=
N

∏
n=1

p(mn | x1:t, z1:t, c1:t).

17.3.2 Fast SLAM with Known Correspondences

The particle SLAM algorithm referred to as Fast SLAM uses the factorization
of the posterior p(y1:t | z1:t, u1:t, c1:t) in (17.4) to decompose the full SLAM
problem into more manageable sub-problems. Specifically, the path posterior
p(x1:t | z1:t, u1:t, c1:t) is estimated using a particle filter and the feature posteriors
p(mn | x1:t, z1:t, c1:t) are estimated by EKFs conditioned on the robot path x1:t

(i.e. there is a separate EKF for each feature mn).
Accordingly, the set of particles is given as:

Yt := {Y[1]
t , Y[2]

t , ..., Y[M]
t },

where the k-th particle is defined by:

Y[k]
t = {x[k]t , µ

[k]
1,t, Σ

[k]
1,t, . . . , µ

[k]
N,t, Σ

[k]
N,t},

where x[k]t is a hypothesis of the robot state at time t, (µ[k]
n,t, Σ

[k]
n,t) are the mean

and covariance of the EKF associated with landmark mn, and where it is as-
sumed that there are N total landmarks in the map m. As can be seen, with a
total of M particles there are a total of NM EKFs! To summarize, the Fast SLAM
algorithm is a particle based algorithm where each particle keeps track of a
hypothesis of the robot state as well as the location (and uncertainty) of each
landmark in the map! The algorithm is defined in Algorithm 15.

Note the blending of the classical particle filter algorithm with the EKF lo-
calization algorithm. In particular, the particle filter steps can be seen with the
sampling of the new pose xt from the state transition model and the use of the
weights w for resampling a new set of particles (i.e. the measurement correc-
tion step). The EKF portions of the algorithm correspond to how the features
are tracked, and in particular how the mean and covariance of the Gaussian
corresponding to each landmark are updated based on new measurements.

principles of robot autonomy 185

Algorithm 15: Fast SLAM Algorithm
Data: Yt−1, ut, zt, ct

Result: Yt

for k = 1 to M do

Sample x[k]t ∼ p(xt | ut, x[k]t−1)

j = ct

if landmark j never seen before then

Initialize feature: (µ[k]
j,t−1, Σ

[k]
j,t−1)

else

ẑ[k] = h(µ[k]
j,t−1, x[k]t)

S = H jΣ
[k]
j,t−1[H

j]T + Qt

K = Σ
[k]
j,t−1[H

j]T [S]−1

µ
[k]
j,t = µ

[k]
j,t−1 + K(zt − ẑ[k])

Σ
[k]
j,t = (I − KH j)Σ

[k]
j,t−1

w[k] = det(2πS)−1/2exp
(
− 1

2 (zt − ẑ[k])Q−1(zt − ẑ[k])
)

for n ∈ {1, . . . , N}, n ̸= ct do

µ
[k]
n,t = µ

[k]
n,t−1

Σ
[k]
n,t = Σ

[k]
n,t−1

Yt = ∅
for m = 1 to M do

Draw k with probability ∝ w[k]
t

Yt = Yt ∪ (x̄[k]t , µ
[k]
1,t, Σ

[k]
1,t, . . . , µ

[k]
N,t, Σ

[k]
N,t)

return Yt

17.4 Exercises

17.4.1 EKF SLAM

Complete Problem 2: EKF SLAM located in the online repository:

https://github.com/PrinciplesofRobotAutonomy/AA274A_HW4,

where you will implement an EKF SLAM algorithm. Note that the EKF lo-
calization exercise from the chapter on parametric filters should be completed
first.

18
Sensor Fusion

Almost every robot will rely on multiple sensors (including multiple types of
sensors) for perception and localization tasks. This allows the robot to take
advantage of the different strengths of each sensor for a more well-rounded
sensing capability. For example a self-driving car may use both laser rangefind-
ers and radar for measuring distances, since in some cases one sensor may work
better than the other. As another example, a wheeled robot may use GNSS sen-
sors as well as wheel encoders to estimate position. However, while each sensor
may provide data toward a similar goal (e.g. estimating position or orientation)
their sensing modalities may be drastically different. This chapter covers the
topic of sensor fusion1,2, and provides a discussion on algorithms for effectively 1 F. Gustafsson. Statistical Sensor Fusion.

Studentlitteratur, 2013, p. 554

2 D. Simon. Optimal State Estimation:
Kalman, H∞, and Nonlinear Approaches.
John Wiley & Sons, 2006

leveraging multiple sensing modalities toward a common objective.

Sensor Fusion

Using measurements from multiple sensors (potentially different types of sen-
sors) is an effective technique for reducing the uncertainty in downstream per-
ception and estimation tasks (see Figure 18.1). This is generally the case because

Figure 18.1: Sensor fusion can
reduce uncertainty by provid-
ing more well-rounded data.
For example in this scenario the
radar sensor may have good
accuracy longitudinally but less
accuracy laterally. Contrarily, a
camera may provide poor range
estimation but good lateral
position estimation. By fusing
these two sensor measurements
the resulting estimate can be
accurate both longitudinally
and laterally.

individual sensors typically suffer from limited range, limited field of view, or
performance degradation under certain environmental conditions. Additionally,
in single-sensor systems measurement accuracy degradation and sensor failure
can be catastrophic. Alternatively, multi-sensor systems can address these chal-
lenges through redundancy of individual sensors (e.g. to provide full field of
view measurements or multiple measurements of the same quantity) or through

188 sensor fusion

sensor diversity (e.g. using sensors with different characteristics to offset limita-
tions of others).

18.1 A Taxonomy of Sensor Fusion

To put the sensor fusion problem into a broader perspective, a taxonomy of
sensor fusion related challenges will now be presented. This includes challenges
associated with both fusion algorithms as well as the measurement data.

18.1.1 Data-related Taxonomy

One of the primary challenges with data fusion is the inherent imperfection in
the measurement data, including uncertainty (i.e. resulting from sensor noise),
imprecision (i.e. resulting from sensor bias), and granularity (i.e. resulting from
sensor resolution). Other important data-related aspects to sensor fusion in-
clude data correlation, disparity, and inconsistency (e.g. data conflicts, outliers,
disorder). Broadly speaking sensor data can experience multiple types of im-
perfection at the same time, and so data fusion algorithms should be developed
with robustness in mind.

18.1.2 Fusion-related Taxonomy

At the data-fusion level, it is useful to classify the problem based on the type
of data that is being fused. Low-level fusion problems typically fuse low-level
signal data (i.e. time-series data), intermediate-level problems fuse features and
characteristics, and high-level fusion problems consider decisions. Fusion prob-
lems can also be categorized based on the relationship among different sensors
used in the fusion process. Competitive fusion problems consider redundant
sensors that directly measure the same quantity. Complementary fusion is used
when different sensors provide complementary information about the environ-
ment (e.g. lidar for short distance ranging and radar for long distance ranging).
Finally, cooperative fusion considers problems where the required information
cannot be inferred from a single sensor (e.g. GNSS localization and stereo vi-
sion can be cooperatively used because they measure fundamentally different
environmental quantities). Generally speaking competitive fusion increases re-
liability and accuracy of fused information, complementary fusion increases
the completeness of information, and cooperative fusion broadens the types of
information that can be gathered.

18.1.3 Architectural Taxonomy

Fusion algorithms can also be classified based on their type of architecture,
namely whether they are centralized, decentralized, or distributed. Centralized
architectures collect all sensor data first, and then perform computations on the
entire set of data. This approach is theoretically optimal since all information is

principles of robot autonomy 189

gathered and operated on at once, but the need for high levels of communica-
tion and processing can be challenging in practice. Decentralized architectures
are essentially collections of centralized systems, and generally still suffer from
the same high demands for communication and processing. On the other hand,
distributed architectures do not collect all sensor information ahead of time but
rather perform computations on local sensor data first, before potentially pass-
ing information on for further fusion tasks. These architectures scale better, but
can lead to suboptimal performance because each sensor is performing local
processing (i.e. without having all information).

18.2 Bayesian Approach to Sensor Fusion

Previous chapters presented several algorithms for robot state estimation and
localization based on Bayes’ filter. In fact, these algorithms can be viewed as ap-
proaches to solve the sensor fusion problem. This section explores the Bayesian
approach to sensor fusion in more detail to show exactly how these approaches
can blend measurement data to reduce uncertainty.

Recall that the Bayesian approach is a probabilistic approach that models
unknowns as random variables and quantifies knowledge in the form of prob-
ability distributions over the unknowns. This principled approach is useful for
sensors fusion for several reasons. First, it provides a unified framework for rep-
resenting knowledge that is compatible with any quantity and type of sensors
and is interpretable. Second, probability distributions implicitly provide infor-
mation about uncertainty (e.g. the variance of a Gaussian). Third, Bayes’ rule
provides a principled approach for updating distributions. Finally, they can be
used to deal with missing information and classification of new observations.

Example 18.2.1 (Competitive Fusion Example). As an example to show how a
probabilistic approach can be used to reduce uncertainty through sensor fusion,
consider a case where two sensors are fused to estimate a single quantity x ∈ R.
Specifically, suppose the two measurements y1 and y2 are normally distributed
random variables:

p(y1 | x) =
1√

2πσ2
1

e
− 1

2
(x−y1)

2

σ2
1 ,

p(y2 | x) =
1√

2πσ2
2

e
− 1

2
(x−y2)

2

σ2
2 ,

where the first sensor has a higher precision than the second sensor such that
σ2

1 < σ2
2 . Then the combined measurement probability is given by:

p(y1, y2 | x) = p(y1 | x)p(y2 | x),

by assuming conditional independence. By exploiting the product of two Gaus-

190 sensor fusion

sian property this joint probability distribution is:

p(y1, y2 | x) =
1√

2πσ2
e−

1
2
(x−µ)2

σ2 ,

where:

µ =
y1σ2

2 + y2σ2
1

σ2
1 + σ2

2
, σ =

σ2
1 σ2

2
σ2

1 + σ2
2

.

Therefore, given two measurements y1 and y2 the best estimate of the quantity x
is given by µ, which is a weighted average of the two measurements. In particu-
lar, more weight is given to the measurement with higher precision (i.e. higher
variance σ2

i) and the overall uncertainty will decrease!

18.2.1 Kalman Filter Sensor Fusion

The Kalman filter from the previous chapter on parametric state estimation
techniques is a common tool for sensor fusion problems. Recall that the Kalman
filter assumes a linear state transition (dynamics) model:

xt = Atxt−1 + Btut + ϵt, (18.1)

and a linear measurement model:

zt = Ctxt + δt, (18.2)

where x is the state of the system and z are the measurements. Additionally, the
Kalman filter assumes the belief distribution of x and the noise terms ϵ, δ are all
Gaussian:

bel(xt) ∼ N (µt, Σt), ϵt ∼ N (0, Rt), δt ∼ N (0, Qt),

where Rt and Qt are the covariances of the state transition and measurement
noise models, respectively. With these assumptions the Kalman filter algorithm
uses a recursive “predict then correct” approach and the belief will always re-
main normally distributed.

This algorithm can be used for sensor fusion since the measurement vector
z can include measurements from any type of sensor, as long as a linear rela-
tionship exists between the measurement and the underlying state x that is to
be estimated. At each step of the Kalman filter algorithm, every measurement at
time t is simultaneously used to update or “correct” the state predicted from the
state transition model. Additionally, the Kalman filter takes into account the co-
variance Rt, which includes the covariance of each individual sensor. In fact, the
Kalman filter will implicitly favor measurements with lower covariance when
performing the correction step3. 3 Specifically, this occurs during the

computation of the Kalman gain.A useful trick for applying the Kalman filter to sensor fusion problems is to
also note that the state x can contain any type of information, it is not strictly
limited to the state usually associated with the robot’s dynamics or kinematics.
For example, the state could be augmented with auxiliary states such as sensor
bias or offsets, or variables to define sensor and actuator health.

principles of robot autonomy 191

Example 18.2.2 (Kalman Filter Multi-Sensor Fusion Example). Consider a self-
driving car that has an inertial measurement unit (IMU), a GNSS receiver, and
a Lidar unit and where the goal is to leverage all of these sensors to estimate
the position, velocity, and acceleration of the vehicle. This suite of sensors can
provide noisy position estimates (Lidar and GNSS) as well as noisy acceleration
measurements (IMU). For this application, sensor fusion can be accomplished
through a Kalman filter.

First, consider a very simple kinematics model that only models longitudinal
motion:

ṗ = v, v̇ = a,

where p is the longitudinal position, v is the longitudinal velocity, and a is the
longitudinal acceleration. This model is then discretized in time by choosing a
sampling time Ts, yielding the linear difference equation:pt+1

vt+1

at+1

 =

1 Ts
T2

s
2

0 1 Ts

0 0 1

pt

vt

at

+ ϵt,

where the state is defined as x = [p, v, a]⊤, and ϵ is Gaussian process noise.
It is assumed that the lidar and GNSS sensors directly measure the position

p, and that the IMU directly measures the acceleration a, such that the measure-
ment model is: zlidar,t

zgnss,t

zimu,t

 =

1 0 0
1 0 0
0 0 1

pt

vt

at

+ δt,

where δ is Gaussian measurement noise with zero mean and covariance:

Qt =

σ2
lidar 0 0
0 σ2

gnss 0
0 0 σ2

imu

 ,

with σlidar = 0.5, σgnss = 0.1, and σimu = 0.2
Figure 18.2 shows results of the application of the Kalman filter algorithm

for fusing these sensor measurements into position estimates. The top plot
presents a case where the GNSS sensor is not used, and as can be seen the noisy
high-variance lidar measurements result in a noisy estimate of the ground truth
position of the car. However, with the addition of the lower-variance GNSS
sensor in the bottom figure, the estimate of the position is much more accurate.
Generally speaking the estimate would also be more accurate even with the
addition of a sensor that was even more noisy than the lidar, but the impact
would not be as significant.

18.3 Challenges in Sensor Fusion

Sensor fusion problems can generally be quite challenging, and can vary signif-
icantly from application to application. Some of the more common problems in

192 sensor fusion

Figure 18.2: Kalman filter sen-
sor fusion for Example 18.2.2.
The position of a vehicle is esti-
mated using noisy lidar, GNSS,
and IMU data, and the result-
ing estimate tracks the ground
truth. As can be seen, the addi-
tion of the lower-variance GNSS
results in a better estimate
through sensor fusion.

sensor fusion include registration, bias, correlation, data association, and out-
of-sequence measurements. The registration problem is that coordinates (both
time and space) of different sensors may not always be aligned, which is nec-
essary to ensure they can be appropriately combined. Biases can also arise due
to transformations of the data into the unified set of coordinates. Correlation
between sensors can also occur, even if they are independently collecting data,
and the knowledge of correlation between sensors can have an impact on the
best way to fuse the information. In some robotics applications, data association
can also be a challenge. One simple example is in multi-target tracking prob-
lems, which is similar to the correspondence problem in SLAM problems. Fi-
nally, out-of-sequence measurements also pose a logistical challenge in practical
sensor fusion applications. These issues often arise due to communication lim-
itations among agents in multi-agent settings. Out-of-sequence measurements
might lead to an incorrect temporal order, which in turn causes a negative time
measurement update during data fusion fusion. As a consequence, robot local-
ization is biased or a wrong representation of the environment is created. There
are a couple of methods to avoid that including external triggering, centralized
(time-stamping of data at arrival), or distributed (time-stamping at the time of
data acquisition) approaches.

principles of robot autonomy 193

Object Tracking

Autonomous systems, such as self-driving cars or robots, rely critically on an
accurate perception of their dynamic environment. Consequently, tracking of
other objects, i.e. predicting the state of remote objects given measurement un-
certainties, ambiguous measurements, occluded objects, or sensor false alarms,
is of great importance for autonomous systems. While single-object tracking
(single hypothesis tracking) is well-understood and typically easy to implement
(one moving target is tracked by one EKF), the tracking of multiple targets is
much more challenging.

18.4 Multi-Object Tracking

Multi-object tracking (MOT) runs a set of estimation filters, one filter for each
object to be tracked. While single-model Kalman filters are predominantly in
use, a bunch of different approaches exists in the literature such as the interact-
ing multiple model (IMM) filter. Challenges of MOT to be faced are

• inherent uncertainties in prediction (state propagation)

• the data association problem (association of observations and targets)

• track maintenance (creating and deleting tracks)

• multiple reflections from a single object

18.5 Gating

In general, we need to look at every single observation and consider how likely
it is to be assigned to a track. To keep the computational efforts low, a screening
algorithm (gating) is applied. During this step, observations outside of a specific
region for each track are ignored, i.e. the data for assignment is significantly
reduced. A rectangular gate is the simplest approach while an ellipsoidal gate is
much more intuitive (normal distribution).

18.6 Data Association

Data association or data assignment is the process of linking an observation to a
tracked object, i.e. to a track. This can be particularly difficult if we have a large
number of targets, many detections, or conflicting hypotheses. Depending on
the dimension, we distinguish between 2-D assignment problems (assigning n
targets to m observations) and S-D assignment problems (assigning n targets to
a set of observations). Within this class, we discuss two typically applied 2-D
techniques:

194 sensor fusion

• Global Nearest Neighbor (GNN): is a single hypothesis approach that as-
signs the global nearest observations to existing tracks and creates new track
hypotheses for unassigned observations.

• Joint Probabilistic Data Association (JPDA): is a Bayes-based technique that
fuses measurements weighted by the probability of the observation-to-track
association. Clustering is usually applied if too many hypotheses are present.

18.7 Track Maintenance

Consists of two steps: deleting a track and creating a track. If a track has not
been assigned to a detection at least M times during the last N updates, where
N and M are tuning parameters, the track will be deleted. If there is a single
unassigned observation, a new tentative track is created. This track is confirmed
when detected M times over the last N updates and rejected otherwise.

18.8 Extended Object Tracking

If one moving target generated multiple reflections leading to multiple de-
tections, standard MOT algorithms might fail. This might occur if emerging
high-resolution radar sensors are used. These extended objects present new
challenges to conventional trackers since those assume a single detection per
object per sensor. Extended object tracking (EOT) algorithms are able to deal
with this situation. EOT estimate position and velocity, but also the dimensions
and the orientation of the moving object. Prominent algorithms are, among
others, the Gamma-Gaussian inverse Wishart probability hypothesis density
(PHD) tracker and the Gaussian-mixture PHD tracker. Basically, there exist two
different but intuitive approaches in MOT:

• Estimating where each individual target is. Each target gets an identity label
and targets are tracked while trying to maintain the identities. In situations
of targets being closely spaced, that may not be solvable. GNN, JPDA, or
multiple hypotheses tracking (MHT) are typically applied along with state
estimators.

• Estimating where there are targets. In this case, target identities are not rele-
vant. Typically, a random finite set (RFS) description of the targets is used.

Part IV

Robot Decision Making

19
Finite State Machines

So far a number of algorithms for control, trajectory optimization, motion plan-
ning, perception, and localization/state estimation have been presented. Almost
all of these instances share a common characteristic: they involve manipula-
tion or observation of continuous variables. For example, motion planning and
control algorithms manipulate the robot’s physical state (i.e. position, velocity,
orientation, configuration) which can take on a continuous range of values, and
perception and localization tasks try to take (continuously valued) information
from the environment and try to estimate the robot’s physical state.

However, for higher-level tasks it is often useful to represent the state of the
robot or environment in terms of a discrete set of variables. For example, con-
sider a robot whose task is to go from point A to point B, pick up a package,
and then deliver it to point C. While the robot’s physical (continuous) state is
crucial for tasks such as controlling the robot to drive from A to B, it is also
important to keep track of what portion of the overall plan that the robot is cur-
rently performing (is the robot currently traversing to B or C, has the package
been successfully picked up, etc.). Additionally, it might be useful to keep track
of other discrete valued states of the robot, such as if a sensor is functioning or
not, or whether or not the robot is in the presence of a human (i.e. for safety).
Similar to dynamics/kinematics models for the robot’s (continuous) physical
state, finite state machines1 are a useful framework for modeling discrete higher- 1 L. Kaelbling et al. 6.01SC: Introduction

to Electrical Engineering and Computer
Science I. MIT OpenCourseWare. 2011

level states of the robot and its environment.

Finite State Machines

Finite state machines (FSMs) define a computational modeling framework for
systems whose output depends on the entire history of their inputs, and where
the number of possible states of the system is finite. This framework has been
used in a wide variety of disciplines, including electrical engineering, linguis-
tics, computer science, philosophy, biology, and more. FSMs can also be used in
several different ways, including:

198 finite state machines

1. to specify a desired program or behavior, such as how a vending machine or
ATM should function,

2. to model behavior, for example to analyze the behavior of a control system
interacting with the environment,

3. or for predicting behavior, for example to predict what will happen in the fu-
ture given some set of inputs to the system.

Generally speaking, designing finite state machines for practical robotic sys-
tems can be extremely time consuming and challenging. In particular, choosing
the appropriate set of states for a particular problem is required to ensure that
the model is not overly complex, but the interactions and transitions between
states can also be very hard to specify and can still lead to complex models. For
example, consider the graphical representation of an example FSM for the pop-
ular open source flight software PX4 in Figure 19.1. Specifying the full behavior
of the system can lead to a complex FSM, even if there are not very many states.
In fact, this FSM is still under continuous development to improve the overall
system behavior!

Figure 19.1: A graphical rep-
resentation of a finite state
machine example for the open
source flight software PX4,
https://px4.io/. As can be
seen, even for a relatively small
number of states the FSM can
become quite complex in order
to model the full behavior of
the system. Image retrieved
from diydrones.com.

Mathematically, a finite state machine consists of:

1. a finite set of states S,

2. a set of inputs I,

3. a set of outputs O,

4. a next-state function n(it, st) −→ st+1 that maps the input it at time t and
current state st to the next state st+1,

5. an output function o(it, st) −→ ot,

6. and an initial state s0.

principles of robot autonomy 199

While FSMs can be defined through the mathematical notation above, it is often
also useful to represent them graphically to get a more intuitive understanding
of how the system will behave. In particular, the graph representation is defined
with nodes of the graph representing each state in the set S. Each (directed)
edge of the graph corresponds to a possible transition between states that is
defined by a particular input. In other words, each directed edge is associated
with a particular pair (s, i). The outputs for a particular pair (s, i) are also typi-
cally included along each directed edge. This is shown in more detail in Figure
19.2.

Figure 19.2: A graphical
representation of a finite
state machine with states
S = {s0, s1, s2}, inputs
I = {i0, i1, i2} and outputs
O = {o0, o1}. The directed
edges correspond to the next-
state functions and the output
associated with each edge is
defined by the output function.
For example, in this FSM it can
be seen that n(i1, s0) −→ s1 and
o(i1, s0) −→ o1.

Example 19.0.1 (Parking Gate Control). Consider a parking gate control finite
state machine where the goal is to raise the gate when a car arrives and then
lower the gate when the car has passed. Assume sensors are available to tell if
a car is at the gate and when the car has passed through the gate, and also the
position of the gate. The control actions the gate can take are simply raising,
lowering, or holding the gate position fixed. Technically, the position of the gate
can vary continuously between the “down” and “up” positions, and the velocity
can also vary continuously. However, in designing a finite state machine to
define the overall logic/behavior for the parking gate, a higher-level abstraction
of the set of gate states can be chosen as:

S = {down, raising, up, lowering}.

The set of inputs to the finite state machine come from the sensors, and can be
chosen as:

I = {car waiting, no car waiting, car passed, car not passed,

gate up, gate not up, gate down, gate not down}.

Finally, the output of the finite state machine (defining the actions for the gate)
are simply:

O = {lower, raise, hold}.

The next-state function then defines the desired behavior for the parking
gate. For example, suppose the current state st = down and the sensor mea-
sures that a car is waiting (it = car waiting). Then, the desired behavior is to
output the command ot = raise, and the next-state function would be:

n(car waiting, down) −→ raising.

200 finite state machines

Similarly, suppose the gate was just raised for the car to pass such that st = up,
but that the sensor is giving input it = car not passed. In this case the output
would be ot = hold, and the next-state function would be:

n(up, car not passed) −→ up.

A graphical representation of the full car parking gate FSM is given in Figure
19.3.

Figure 19.3: A graphical rep-
resentation of the finite state
machine for the parking gate
controller discussed in Example
19.0.1.

19.1 FSM Architectures

Finite state machines can become quite complex since for every new state added
it is possible to define an exponentially increasing number of new transitions.
Strategies for keeping the complexity of FSMs in check include analyzing for
(and removing) redundant states, using hierarchical FSMs, and using composi-
tions based on common patterns.

19.1.1 Reducing Number of States

There exist algorithms that can be used to identify and combine states in FSMs
that would yield the same overall behavior. In particular, two states are equiva-
lent if they have the same output and for all input combinations transition to the
same or equivalent states.

One possible algorithm for reducing states in an FSM is as follows:

1. Place all states into one set.

2. Create a single partition based on the output behavior.

3. Repeatedly partition further based on next state transitions until no further
partitions is possible.

principles of robot autonomy 201

To see this procedure in action, consider the following example:

Example 19.1.1 (FSM State Reduction). Consider a finite state machine that is
used to detect the sequences 010 or 110. The FSM is shown in Table 19.1, where
it can be seen that the states are the partial sequences S = {0, 1, 00, 01, 10, 11}
and a reset state, the inputs are I = {0, 1}, and the outputs are booleans
O = {True, False} for whether the sequence 010 or 110 has been created. For
example, it can be seen that if the current partial sequence is 01 (s4) and a 0 is
input, the next state will be the reset state and the output will be True.

State, s n(0, s) n(1, s) o(0, s) o(1, s)
Reset 0 1 False False
0 00 01 False False
1 10 11 False False
00 Reset Reset False False
01 Reset Reset True False
10 Reset Reset False False
11 Reset Reset True False

Table 19.1: Finite state machine
for a sequence detector that ac-
cepts digits 0 and 1 and outputs
True if the sequences 010 or 110

is generated.

Now, the FSM in Table 19.1 can be simplified by removing redundant states!
This is accomplished by first placing all of the states into a single set {Reset, 0, 1, 00, 01, 10, 11}
and creating a partition based on the output behavior. In particular this will
generate two sets:

{Reset, 0, 1, 00, 10} : always leads to False output,

{01, 11} : does not always lead to False output.

These sets are then further partitioned based on the next-state function until
no further partitions can be made. In the first step the set {Reset, 0, 1, 00, 10} is
partitioned into:

{Reset, 00, 10} : cannot transition to {01,11},

{0, 1} : can transition to {01,11}.

and then {Reset, 00, 10} is partitioned as:

{Reset} : can transition to {0, 1},

{00, 10} : cannot transition to {0, 1}.

Therefore, instead of the original seven states (Reset, 0, 1, 00, 01, 10, 11) there
are now only four ({01, 11}, {0, 1}, Reset, {00, 10}). An equivalent (same in-
put/output behavior) but reduced finite state machine can now be defined, and
is shown in Table 19.2.

19.1.2 Hierarchical FSMs

In some cases there might be states that are not truly equivalent, but that might
still be beneficial to group closely together. With this idea, the concepts of super-

202 finite state machines

State, s n(0, s) n(1, s) o(0, s) o(1, s)
Reset {0,1} {0,1} False False
{0,1} {00,10} {01,11} False False
{00,10} Reset Reset False False
{01,11} Reset Reset True False

Table 19.2: Reduced finite state
machine for a sequence detector
that accepts digits 0 and 1 and
outputs True if the sequences
010 or 110 is generated.

states (i.e. groups of closely related states) and generalized transitions (i.e. transi-
tions between super-states) can be useful. This idea of creating super-states is
analogous to graph clustering.

19.1.3 Compositions

Individual state machines can also be composed in a variety of ways depending
on their input/output behavior, including cascade compositions, parallel compo-
sitions, and feedback compositions. Cascade compositions combine two FSMs in
sequence where the output vocabulary of one matches the input vocabulary of
the other. The new state of the combined machine is the concatenation of the
states of the individual FSMs (see Figure 19.4). Parallel compositions run two
FSMs side by side, using the same input. Both the state and output is then the
concatenation of the two individual FSMs’ state and output. Finally, feedback
compositions use only a single FSM but only require a partial input and also
reuse the output as input (requires the input and output vocabularies to be the
same).

Figure 19.4: Cascade, parallel,
and feedback compositions of
finite state machines.

19.2 Implementation Details

There are numerous ways that finite state machines could be implemented in
practice. However, one common approach is to exploit Object Oriented Pro-
gramming (OOP) by building the finite state machine as a class. In particular,
the class would keep track of the state of the FSM in a class variable. The state
update process could then occur through the use of if/else statements in an
update class method, as well as the definition of the FSM output. An example
implementation in Python of the parking gate controller FSM from Example
19.0.1 is given below:

import rospy as rp

from std_msgs.msg import String

class ParkingGateFSM():

"""Simple FSM f o r parking gate contro l """
def __init__(self):

rp.init_node(’parking_gate’, anonymous=True)

self.state = ’down’

self.cmd = rp.Publisher(’/gate_cmd’, String)

rp.Subscriber(’/car_sensor’, String, self.car_clbk)

principles of robot autonomy 203

rp.Subscriber(’/gate_sensor’, String, self.gate_clbk)

def car_clbk(self, data):

self.car_input = data

def gate_clbk(self, data):

self.gate_input = data

def run(self):

rate = rp.Rate(10) # 10 Hz
while not rp.is_shutdown():

if self.state == ’down’:

if self.car_input == ’no_car_waiting’:

output = ’hold’

elif self.car_input == ’car_waiting’:

self.state = ’raising’

output = ’raise’

elif self.state == ’raising’:

if self.gate_input == ’gate_not_up’:

output = ’raise’

elif self.gate_input == ’gate_up’:

self.state = ’up’

output = ’hold’

elif self.state == ’up’:

if self.car_input == ’car_not_passed’:

output = ’hold’

elif self.car_input == ’car_passed’:

self.state = ’lowering’

output = ’lower’

elif self.state == ’lowering’:

if self.gate_input == ’gate_not_down’:

output = ’lower’

elif self.gate_input == ’gate_down’:

self.state = ’down’

output = ’hold’

self.cmd.publish(output)

rate.sleep()

19.3 Other Useful Tools

A useful tool for visualizing finite state machines in ROS is SMACH, which can
be though of as an analogue to RViz. More information about SMACH and how
it is used can be found on the ROS Wiki2. 2 http://wiki.ros.org/smach

20
Sequential Decision Making

This chapter provides an introduction to fundamental topics in decision making,
including for problems where there is some uncertainty (e.g. uncertainty about
the robot’s state or about the environment).

Sequential Decision Making

Two of the fundamental challenges associated with robotic decision making are
that sequences of decisions must be made (which requires reasoning about future
actions and observations) and that uncertainty may exist in the operating envi-
ronment. This chapter presents a modeling framework for addressing decision
making problems and will also introduce dynamic programming, a fundamental
approach for solving these problems.

20.1 Deterministic Decision Making Problem

The standard mathematical formulation for decision making problems includes
several components: a model of the robot’s behavior, a set of admissible con-
trols, and a cost function. This set of components is quite similar to the com-
ponents used in trajectory optimization problems, however decision making
problems are generally represented in discrete-time rather than in continuous-
time1. 1 There is a continuous-time for-

mulation, known as the Hamil-
ton–Jacobi–Bellman formulation.

In the deterministic decision making problem, the model of the robot is ex-
pressed in discrete-time as:

xk+1 = fk(xk, uk), k = 0, . . . , N − 1, (20.1)

where x is the robot’s state, u is the control, fk defines how the robot’s state
changes at time step k, and N is an integer that defines a finite planning horizon
for the decision making problem. There are generally no restrictions on how the
functions fk are defined, they could come from a physics-based dynamics/kine-
matics model or even a higher-level state transition model.

It is also generally assumed that only some control actions are admissible at
a given state, which denoted by the set U (xk). For example a car may only have

206 sequential decision making

an option to turn left or right when it is at an intersection. Therefore the control
constraints for the robot at time step k are given by:

uk ∈ U (xk). (20.2)

Again, there are generally no restrictions on how the set of admissible control is
defined. For example U (xk) could be a finite set of actions, it could be a convex
region of allowable inputs, etc.

The cost function is assumed to be additive, and is defined as:

J(x0, u0, . . . , uN−1) = gN(xN) +
N−1

∑
k=0

gk(xk, uk), (20.3)

where gN is a terminal state cost function and gk for k = 0, . . . , N − 1 are stage
cost functions. These individual cost functions are also not restricted to a partic-
ular form (e.g. convex, differentiable, etc.).

Definition 20.1.1 (Deterministic Decision Making Problem). The deterministic de-
cision making problem can be expressed for the system model (20.1), control constraints
(20.2), and cost function (20.3) as:

J∗(x0) = min
uk∈U (xk), k=0,...,N−1

J(x0, u0, . . . , uN−1). (20.4)

Notice that this problem is used to compute an open-loop control sequence
{u0, . . . , uN−1} given an initial condition x0. However, this problem is generally
quite hard to solve since there is no guarantee that the model (20.1) and cost
function (20.3) have any particular structure that can be leveraged to make the
optimization problem amenable to numerical optimization algorithms. While it
is theoretically possible to solve the problem through a brute force search over
all possible combinations of sequences {u0, . . . , uN−1}, this leads to a combi-
natorial explosion of options and is therefore not possible in practical settings
(except of course for very small problems).

20.1.1 Principle of Optimality (Deterministic)

Fortunately, there is in fact an underlying structure to the deterministic decision
making problem that can be leveraged to make the problem easier to solve. This
structure is commonly referred to as the principle of optimality.

The principle of optimality for deterministic systems is that for a sequence
of optimal decisions, the tail of the optimal sequence is also optimal for a tail
subproblem. For a concrete example see Figure 20.1. This can greatly simplify
the overall problem, since you can “reuse” optimal paths for different scenarios.
More formally, the principle of optimality is given by the following theorem:

Theorem 20.1.2 (Principle of Optimality (Deterministic)). Let {u∗0 , u∗1 . . . , u∗N−1}
be an optimal control sequence to the deterministic decision making problem (20.4)
with a given initial condition x∗0 , such that the resulting optimal state sequence is

principles of robot autonomy 207

Figure 20.1: Starting from point
a, let the red path a − b − e
be the optimal path from
a to e, with a total cost of
J∗ae = Jab + Jbe. The principle
of optimality in this case says
that the path b − e must there-
fore be the optimal path when
starting from point b. This can
be proven by contradiction,
since if the path b − c − e had
a lower cost than path b − e
(i.e. Jbce < Jbe), then the orig-
inal path a − b − e cannot be
optimal!

{x∗0 , x∗1 . . . , x∗N}. Then, the tail sequence {u∗k , . . . , u∗N−1} is an optimal control sequence
when starting from x∗k and minimizing the cost from time k to time N

Jtail(xk, uk, . . . , uN−1) = gN(xN) +
N−1

∑
m=k

gm(xm, um).

To see how the principle of optimality can be applied to simplify the decision
making problem, consider the scenario in Figure 20.2. In this case it is desired
to find an optimal path from point b to point f , and it is assumed that optimal
paths from c, d, and e to f are already known. A brute force search over all
possible paths in this problem would require nine paths to be evaluated:

{b− c− f , b− c− d− f , b− c− d− e− f , b− d− c− f , b− d− f ,

b− d− e− f , b− e− d− c− f , b− e− d− f , b− e− f }.

However, by leveraging the principle of optimality the number of candidate
paths is reduced to three:

b− c− f , b− d− f , b− e− f .

In other words, the principle of optimality allows the search to be performed
over immediate decisions by also concatenating the optimal tail decisions! This
procedure is generally implemented backward in time, for example in Figure
20.2 the point f (the goal) is first evaluated, then the points c, d, and e, and then
finally the point b.

20.1.2 Dynamic Programming (Deterministic)

The dynamic programming (DP) algorithm globally solves the deterministic
decision making problem (20.4) by leveraging the principle of optimality2. The

2 Note that the principle of optimality is
a fundamental property that is actually
utilized in almost all decision making
algorithms, including reinforcement
learning.

dynamic programming algorithm is given in Algorithm 16, where it can be seen
that a backward-in-time recursion is used and at each step a local optimization
is performed (this local optimization is referred to as the Bellman equation),
leveraging the optimal tail costs from the previous iteration.

The output of the dynamic programming algorithm is a set of costs J∗k (xk) for
each time step k = 0, . . . , N and states xk, which provide the optimal tail cost for
the tail subproblem.

208 sequential decision making

Figure 20.2: Suppose the op-
timal paths from points c, d
and e to f are known (shown
in red). By using the princi-
ple of optimality, an optimal
path from point b to f can
be found by only searching
over paths from b to c, d, and
e, and determining the low-
est cost from the candidates
{Jbc + J∗c f , Jbd + J∗d f , Jbe + J∗e f }.
In other words, the optimal tails
can be leveraged to reduce the
total number of paths that need
to be considered when finding
an optimal path from b to f !

Algorithm 16: Dynamic Programming (Deterministic)

J∗N(xN) = gn(xN), for all xN

for k = N − 1 to 0 do
J∗k (xk) = min

uk∈U (xk)
gk(xk, uk) + J∗k+1(fk(xk, uk)), for all xk

return J∗0 (·), . . . , J∗N(·)

Given an initial condition x0, the optimal control sequence {u∗0 , . . . , u∗N−1}
that solves the deterministic decision making problem can be computed with a
“forward pass”, where:

u∗0 = arg min
u0∈U (x0)

g0(x0, u0) + J∗1 (f0(x0, u0)).

The next state is then computed as x∗1 = f0(x0, u∗0), and the process is repeated:

u∗1 = arg min
u1∈U (x∗1)

g1(x∗1 , u1) + J∗2 (f1(x∗1 , u1)),

until the full trajectory and optimal control is specified.
Note that in practice the DP algorithm is not practical for continuously val-

ues states x, since an infinite number of states would have to be iterated over.
Therefore one possible modification to handle continuously valued states is to
quantize the state space into a finite set of states (other approaches, such as in-
terpolation, are also possible). Also, it is interesting to note that the addition
of control constraints can actually simplify the procedure, since it restricts the
number of possible options that need to be considered!

Example 20.1.1 (Deterministic Dynamic Programming). Consider the environ-
ment shown in Figure 20.3, where the goal is to start at point a and reach point
h while incurring the smallest cost. In this problem the state is represented as
the current location (i.e. a, b, etc.), and the control constraints are encoded by
the arrows indicating possible directions of travel (e.g. at point c it is possible to
either go right or up, but not down or left). The cost of traversing between two
points is also denoted in Figure 20.3.

principles of robot autonomy 209

Figure 20.3: A deterministic de-
cision making problem where
the goal is to move from point
a to point h while incurring the
minimal amount of cost. The
red path indicates the optimal
path. This problem is solved
by dynamic programming in
Example 20.1.1.

To implement the DP algorithm, the final point h is chosen as xN , and the DP
recursion begins with:

J∗N(h) = 0,

since there is no cost to stay at point h. Moving backward in time, it can be seen
that the possible states xN−1 that can transition to xN = h are the points h, e,
and g (assuming it is possible to stay at h with no cost). Therefore in the first
step of the DP recursion:

J∗N−1(h) = 0 + J∗N(h) = 0, u∗N−1(h) = stay.

J∗N−1(e) = 8 + J∗N(h) = 8, u∗N−1(e) = right,

J∗N−1(g) = 2 + J∗N(h) = 2, u∗N−1(g) = up,

Note that J∗k (h) = 0 for all k ≤ N, and therefore it will not be explicitly included
in the following steps. In the next step:

J∗N−2(e) = 8 + J∗N−1(h) = 8, u∗N−2(e) = right,

J∗N−2(g) = 2, u∗N−2(g) = up,

J∗N−2(d) = 3 + J∗N−1(e) = 11, u∗N−2(d) = right,

J∗N−2(f) = 3 + J∗N−1(g) = 5, u∗N−2(f) = right,

At this point, these optimal tail costs can be considered to be the optimal costs
associated with control actions that lead from e, g, d, or f to the end point h in
two steps! Continuing on:

J∗N−3(e) = min{8 + J∗N−2(h), 2 + J∗N−2(f)} = 7, u∗N−3(e) = down,

J∗N−3(g) = 2, u∗N−3(g) = up,

J∗N−3(d) = 3 + J∗N−2(e) = 11, u∗N−3(d) = right,

J∗N−3(f) = 5, u∗N−3(f) = right,

J∗N−3(a) = 8 + J∗N−2(d) = 19, u∗N−3(a) = right,

J∗N−3(c) = min{5 + J∗N−2(d), 3 + J∗N−2(f)} = 8, u∗N−3(c) = right.

210 sequential decision making

Interestingly, it can be seen that it is now possible to accomplish the objective
(i.e. go from point a to h) in 3 time steps (i.e. on path a− d− e− h) and incur an
optimal cost of 19. However it turns out that an even lower cost is achievable if
the number of time steps is increased further! Continuing the DP recursion:

J∗N−4(e) = 7, u∗N−4(e) = down,

J∗N−4(g) = 2, u∗N−4(g) = up,

J∗N−4(d) = 3 + J∗N−3(e) = 10, u∗N−4(d) = right,

J∗N−4(f) = 5, u∗N−4(f) = right,

J∗N−4(a) = 8 + J∗N−3(d) = 19, u∗N−4(a) = right

J∗N−4(c) = min{5 + J∗N−3(d), 3 + J∗N−3(f)} = 8, u∗N−4(c) = right,

J∗N−4(b) = 9 + J∗N−3(c) = 17, u∗N−4(b) = right,

and finally with one more iteration:

J∗N−5(e) = 7, u∗N−5(e) = down,

J∗N−5(g) = 2, u∗N−5(g) = up,

J∗N−5(d) = 10, u∗N−5(d) = right,

J∗N−5(f) = 5, u∗N−5(f) = right,

J∗N−5(a) = min{8 + J∗N−4(d), 5 + J∗N−4(b)} = 18, u∗N−5(a) = right

J∗N−5(c) = min{5 + J∗N−4(d), 3 + J∗N−4(f)} = 8, u∗N−5(c) = right,

J∗N−5(b) = 9 + J∗N−4(c) = 17, u∗N−5(b) = right.

Additional iterations are not included in this example because the costs and
optimal decisions will no longer change with longer horizons (see for yourself!).
Therefore it can be seen that with a sufficiently long horizon (N ≥ 5), the opti-
mal path from a to h is a− d− e− f − g− h and incurs a cost of 18. Note that
this process has actually given a lot more information than what was originally
asked for. In particular, given any starting point and any horizon it is straight-
forward to generate an optimal control sequence! For example, if you wanted to
start at point c and get to h in N = 3 steps you could immediately see that the
optimal path is c− f − g− h and the optimal cost is 8.

20.2 Stochastic Decision Making Problem

In the stochastic decision making problem it is assumed that there is some un-
certainty in the robot’s behavior or in the environment. This uncertainty is cap-
tured in the stochastic discrete-time robot model:

xk+1 = fk(xk, uk, wk), k = 0, . . . , N − 1, (20.5)

where wk represents a stochastic disturbance term. Additionally, it is assumed
that this disturbance has a known conditional probability distribution Pk(wk |

principles of robot autonomy 211

xk, uk). Note that it is assumed that the disturbance is only dependent on the
current state xk and control uk, and not states from earlier in the robot’s history.

Another main difference between the stochastic decision making problem
and the deterministic problem is that a control policy is computed in the stochas-
tic case. A control policy, usually denoted u = π(x), is a function that maps the
state x to a control u, and therefore defines a closed-loop controller (whereas
in the deterministic setting an open-loop sequence was computed). Generally
speaking, the search for control policies makes the problem more difficult to
solve, but is typically required in stochastic settings because uncertainty would
lead to undesirable behavior under open-loop control plans. Specifically, in the
stochastic decision making problem the policies π = {π0, . . . , πN−1} are com-
puted, which define the controls by uk = πk(xk).

Of course the cost function is also modified to handle the uncertainty. In
particular, a risk-neutral formulation is used (i.e. minimize the cost on average),
where the cost is defined by the expected value:

Jπ(x0) = Ew
[
gN(xN) +

N−1

∑
k=0

gk(xk, πk(xk), wk)
]
, (20.6)

where the expectation is over the stochastic variables w. The stochastic decision
making problem can now be stated as:

Definition 20.2.1 (Stochastic Decision Making Problem). The stochastic decision
making problem can be expressed for the system model (20.5), control constraints (20.2),
and cost function (20.6) as:

J∗(x0) = min
π

Jπ(x0). (20.7)

20.2.1 Principle of Optimality (Stochastic)

The principle of optimality can again be applied in the stochastic setting, and
the intuition is identical to the deterministic case (however the proof is slightly
different because the reasoning is in terms of probability distributions). The
principle of optimality in the stochastic setting is stated formally as:

Theorem 20.2.2 (Principle of Optimality (Stochastic)). Let π∗ = {π∗0 , π∗1 . . . , π∗N−1}
be an optimal policy for the stochastic decision making problem (20.7), and assume the
state xk is reachable. Then, the tail policy sequence {π∗k , . . . , π∗N−1} is an optimal policy
sequence when starting from xk to minimize the cost from time k to time N.

Again, by leveraging the principle of optimality the decision making problem
can be simplified to making immediate decisions by concatenating optimal tail
policies.

20.2.2 Dynamic Programming (Stochastic)

The dynamic programming algorithm for the stochastic setting is also quite
similar to DP for deterministic problems, and is given in Algorithm 17. Once

212 sequential decision making

Algorithm 17: Dynamic Programming (Stochastic)

JN(xN) = gn(xN), for all xN

for k = N − 1 to 0 do
Jk(xk) = min

uk∈U (xk)
Ewk

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]
, for all xk

return J0(·), . . . , JN(·)

Algorithm 17 is run, the optimal policy is defined by:

π∗k (xk) = arg min
uk∈U (xk)

Ewk

[
gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]
.

Example 20.2.1 (Stochastic Dynamic Programming). Consider an inventory
control problem, where the available stock of a particular item is the state xk ∈
N, the ability to add to the inventory is the control uk ∈ N, and the demand for
the item is a stochastic variable wk ∈ N. The dynamics of the available stock is
modeled as:

xk+1 = max{0, xk + uk − wk},

which models the fact that demand reduces available stock but can also never
be negative. Additionally, consider the control constraints:

xk + uk ≤ 2,

which limits the amount of additional inventory that can be added based on the
current available stock to ensure that xk ≤ 2. The demand wk is assumed to be
modeled probabilistically with a distribution:

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2.

Finally, the cost is given for a horizon of N = 3 as:

E
[2

∑
k=0

uk + (xk + uk − wk)
2],

which penalizes ordering new stock at each time step and also having available
stock at the next time step (i.e. having to store stock).

The dynamic programming algorithm can then be applied, starting with the
end costs:

J3(x3) = 0,

and then recursively computing:

J2(0) = min
u2∈{0,1,2}

E
[
u2 + (u2 − w2)

2] = min
u2∈{0,1,2}

u2 + 0.1u2
2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2 = 1.3,

J2(1) = min
u2∈{0,1}

E
[
u2 + (1 + u2 − w2)

2] = 0.3,

J2(2) = E
[
(2− w2)

2] = 1.1,

principles of robot autonomy 213

where the last cost is easily evaluated since the constraint makes u2 = 0 the only
feasible choice. The optimal stage policies associated with this step are:

π∗2 (0) = 1,

π∗2 (1) = 0,

π∗2 (2) = 0.

In the next step:

J1(0) = min
u1∈{0,1,2}

E
[
u1 + (u1 − w1)

2 + J2(max{0, u1 − w1})
]
= 2.5,

J1(1) = min
u1∈{0,1,}

E
[
u1 + (1 + u1 − w1)

2 + J2(max{0, 1 + u1 − w1})
]
= 1.5,

J1(2) = E
[
(2− w1)

2 + J2(max{0, 2− w1})
]
= 1.68,

with optimal stage policies:

π∗1 (0) = 1,

π∗1 (1) = 0,

π∗1 (2) = 0.

Finally, in the last step:

J0(0) = min
u0∈{0,1,2}

E
[
u0 + (u0 − w0)

2 + J1(max{0, u0 − w0})
]
= 3.7,

J0(1) = min
u0∈{0,1,}

E
[
u0 + (1 + u0 − w0)

2 + J1(max{0, 1 + u0 − w0})
]
= 2.7,

J0(2) = E
[
(2− w0)

2 + J1(max{0, 2− w0})
]
= 2.818,

with optimal stage policies:

π∗0 (0) = 1,

π∗0 (1) = 0,

π∗0 (2) = 0.

Interestingly, the best scenario occurs with an initial stock of one, rather than
have no stock or too much stock. Also, the policy ends up being the same at all
time steps: if you have no stock you add one item, otherwise you do nothing.

20.3 Challenges and Extensions of Dynamic Programming

Dynamic programming is a powerful algorithm, but suffers from several practi-
cal considerations: the “curse of dimensionality”, the “curse of modeling”, and
the “curse of time”. The curse of dimensionality arises because of an exponen-
tial growth of the computational and storage requirements based on the dimen-
sion of the state. For example if the state has dimension one (i.e. x ∈ R) and
can take on 100 different values, then at each step of the algorithm the Bellman
equation must be solved 100 times. While this may be possible from a practical

214 sequential decision making

perspective, if x ∈ R3 this would lead to 1003 solves of the Bellman equation!
Additionally, extensions to the problems presented in this chapter where the full
state is not known (e.g., because you can only measure some parts of the state),
the problem also become intractable. The curse of modeling results from the
complexity of modeling stochastic systems. In particular, it can be very hard to
obtain expressions for transition probabilities for real world systems! Lastly, the
curse of time is that the data of the problem may not be known ahead of time
(such that the DP algorithm can be run offline). Therefore it may be required
to solve the DP algorithm online when the data becomes available, or when the
data changes and the problem needs to be resolved.

20.3.1 Reinforcement Learning

The practical challenges related to dynamic programming motivated the de-
velopment of suboptimal dynamic programming approaches, which more com-
monly are referred to as reinforcement learning approaches. The goal of these
approaches is to make approximations to the original problem that make it more
practical for specific settings, such as with high-dimensional states, when the
model is not known, and more. Broadly speaking, there are two main cate-
gories of approximations. The first category includes approximations in the
value space (i.e. where the optimal cost function is approximated). The second
category includes approximations in the policy space (i.e. where the policy is
approximated by a neural network whose weights are optimized over).

21
Reinforcement Learning

The previous chapter introduced the deterministic and stochastic sequential de-
cision making problems, and demonstrated how these problems can be solved
by dynamic programming. While dynamic programming is a powerful algo-
rithm, it also suffers from several practical challenges. This chapter briefly in-
troduces some of the key ideas in reinforcement learning1,2, a set of ideas which 1 D. Bertsekas. Reinforcement learning and

optimal control. Athena Scientific, 2019

2 R. Sutton and A. Barto. Reinforcement
learning: An introduction. MIT Press,
2018

aims to solve a more general problem of behaving in an optimal way within a
given unknown environment. That is, the reinforcement learning setting assumes
only the ability to (1) interact with an unknown environment and (2) receive a
reward signal from it. How the actions affect the future state evolution or the
future reward is not known a priori. Reinforcement learning includes a class
of approximation algorithms which can be much more practical than dynamic
programming in real world applications.

Reinforcement Learning

Reinforcement learning (RL) is a broad field that studies autonomous sequen-
tial decision making, but extends to more general and challenging problems
than have been considered in previous chapters. The standard RL problem is
to determine closed-loop control policies that drive an agent to maximize an
accumulated reward3. However, in the general case it is not required that a sys- 3 Note that the maximization of “re-

ward” in the context of reinforcement
learning is essentially equivalent to
minimization of “cost” in optimal
control formulations.

tem model be known! This paradigm can be represented by Figure 21.1, where it
can be seen that given a control input the environment specifies the next state
and reward, and the environment can be considered to be a black box (it is not
necessarily known how the state is generated, nor the reward computed).

Figure 21.1: In reinforcement
learning problems, the robot
(agent) learns how to make de-
cisions by interacting with the
environment.

216 reinforcement learning

To account for this model uncertainty (which is notably distinct from the
state transition uncertainty inherent in a stochastic but known system model,
as considered in the previous chapter), an agent must instead learn from its
experience to produce good policies. Concisely, RL deals with the problem
of how to learn to act optimally in the long term, from interactions with an
unknown environment which provides only a momentary reward signal.

RL is a highly active field of research, and has seen successes in several appli-
cations including acrobatic control of helicopters, games, finance, and robotics.
In this chapter the fundamentals of reinforcement learning are introduced, in-
cluding the formulation of the RL problem, RL algorithms that leverage system
models (“model-based” methods; value iteration/dynamic programming and
policy iteration), and a few RL algorithms that do not require system models
(“model-free” methods; Q-learning, policy gradient, actor-critic).

21.1 Problem Formulation

The problem setting of reinforcement learning is similar to that of stochastic
sequential decision making from the previous chapter, but here we will adopt
slightly different notation more consistent with how Markov Decision Processes
(MDPs) are typically framed in this community.4 The state and control input for 4 The fields of optimal control and

reinforcement learning have significant
overlap, but each community has
developed its own standard notation.
Most often, the state in the optimal
control community is represented
by x and in the RL community as s.
Similarly, in control theory the control
input is u while in the RL community it
is referred to as an action a.

the system is denoted as x and u, and the set of admissible states and controls
are denoted as X and U . However, the stochastic state transition model will
now be written explicitly as a probability distribution (where before this was
implicit in the influence of the stochastic variables w on the system dynamics f):

p(xt | xt−1, ut−1), (21.1)

which is the conditional probability distribution over xt, given the previous
state and control. The environment also has a reward function which defines the
reward associated with every state and control

rt = R(xt, ut). (21.2)

The goal of the RL problem is to interact with the environment over a (possibly
infinite) time horizon and accumulate the highest possible reward in expectation.
To accommodate infinite horizon problems and to account for the fact that an
agent is typically more confident about the ramifications of its actions in the
short term than the long term, the accumulated reward is typically defined as
the discounted total expected reward over time

E

[
∞

∑
t=0

γtR(xt, ut)

]
, (21.3)

where γ ∈ (0, 1] is referred to as a discount factor. The tuple

M =
(
X ,U , p(xt | xt−1, ut−1), R(xt, ut), γ

)

principles of robot autonomy 217

defines the Markov Decision Process (MDP), the environment in which the
reinforcement learning problem is set.

In this chapter we will consider infinite horizon MDPs for which the notion
of a stationary policy π applied at all time steps, i.e.,

ut = π(xt), (21.4)

is appropriate. The goal of the RL problem is to choose a policy that maximizes
the cumulative discounted reward

π∗ = arg max
π

E
[∞

∑
t=0

γtR(xt, π(xt)))

]
(21.5)

where the expectation is notionally computed with respect to the stochastic
dynamics p, but in practice is estimated empirically by drawing samples from
the environment encodingM (i.e., in constructing π we may not assume exact
knowledge ofM).

21.1.1 Value function

A policy π defines a value function which corresponds to the expected reward
accumulated starting from a state x

Vπ(x) = E
[∞

∑
t=0

γtR(xt, πt(xt)) | x0 = x
]
, (21.6)

which can also be expressed in the tail formulation

Vπ(x) = R(x, π(x)) + γ ∑
x′∈X

p(x′ | x, π(x))Vπ(x′). (21.7)

The optimal policy π∗ satisfies Bellman’s equation

Vπ∗(x) = V∗(x) = max
u∈U

(
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)V∗(x′)

)
π∗(x) = arg max

u∈U

(
R(x, u) + γ ∑

x′∈X
p(x′ | x, u)V∗(x′)

) (21.8)

and also satisfies V∗(x) = Vπ∗(x) ≥ Vπ(x) for all x ∈ X for any alternative
policy π. That is, the optimal policy induces the maximum value function and
solves the RL problem of maximizing the accumulated discounted reward.

21.1.2 Q-function

Motivated by Bellman’s equation above, in addition to the (state) value function
Vπ(x) it makes sense to define the state-action value function Qπ(x, u) which
corresponds to the expected reward accumulated starting from a state x and
taking a first action u before following the policy π for all subsequent time
steps. That is,

Qπ(x, u) = R(x, u) + γ ∑
x′∈X

p(x′ | x, u)Vπ(x′). (21.9)

218 reinforcement learning

Similarly, the optimal Q-function is:

Q∗(x, u) = R(x, u) + γ ∑
x′∈X

p(x′ | x, u)V∗(x′),

where the shorthand notation Q∗(x, u) = Qπ∗(x, u) is used. Note that from
the Bellman equation (21.8) the optimal value function can be written as an
optimization over the optimal Q-function:

V∗(x) = max
u∈U

Q∗(x, u),

so,

Q∗(x, u) = R(x, u) + γ ∑
x′∈X

p(x′ | x, u)max
u′∈U

(
Q∗(x′, u′)

)
.

Therefore, instead of computing the optimal value function using value iteration
it is possible to deal directly with the Q-function!

21.2 Model-based Reinforcement Learning

Model-based reinforcement learning methods rely on the use of an explicit
parameterization of the transition model (21.1), which is either fit to observed
transition data (i.e., learned) or, in special cases, known a priori. For example,
for discrete state/control spaces it is possible to empirically approximate the
transition probabilities p(xt | xt−1, ut−1) for every pair (xt, ut) by counting
the number of times each transition occurs in the dataset! More sophisticated
models include linear models generated through least squares, or Gaussian
process or neural network models trained through an appropriate loss function.
Given a learned model, the problem of optimal policy synthesis reduces to the
sequential decision making problem of the previous chapter.

21.2.1 Value Iteration (Dynamic Programming)

While the dynamic programming algorithm was covered in the previous chap-
ter, it will also be included here in the context of the RL problem formulation.
In this case, the “principle of optimality” again says that the optimal tail policy
is optimal for tail subproblems, which leads to the recursion:

V∗k+1(x) = max
u∈U

(
R(x, u) + γ ∑

x′
p(x′ | x, u)V∗k (x′)

)
, (21.10)

which is commonly referred to as the Bellman recursion. In words, the optimal
reward associated with starting at the state x and having k + 1 steps to go can
be found as an optimization over the immediate control by accounting for the
(expected) optimal tail rewards. The full dynamic programming algorithm for
solving the RL problem (21.5) is given in Algorithm 18.

In the context of RL, this procedure is commonly referred to as value iteration
and in many cases it is assumed that the horizon N is infinite. For infinite-
horizon problems the “value iteration” in Algorithm 18 is performed either over

principles of robot autonomy 219

Algorithm 18: Dynamic Programming/Value Iteration (RL)

V∗0 (x) = 0, for all x ∈ X
for k = 0 to N − 1 do

V∗k+1(x) = max
u∈U

R(x, u) + γ ∑x′ p(x′ | x, u)V∗k (x′), for all x ∈ X
π∗N−1−k(x) = arg max

u∈U
R(x, u) + γ ∑x′ p(x′ | x, u)V∗k (x′), for all x ∈ X

return V∗0 (·), . . . , V∗N(·), π∗0 (·), . . . , π∗N−1(·)

a finite-horizon (which yields an approximate solution), or until convergence to
a stationary (i.e. time-invariant) optimal value function/policy5. 5 In the infinite horizon case, the opti-

mal value function is unique and the
optimal policy is stationary and deter-
ministic, but not necessarily unique.

To solidify the relationship between value iteration in the context of RL and
dynamic programming in the context of stochastic decision making from the
previous chapter, the inventory control example from the previous chapter is
revisited:

Example 21.2.1 (Inventory Control). Consider again the inventory control prob-
lem from the previous chapter, where the available stock of a particular item is
the state xt ∈ N, the control ut ∈ N adds items to the inventory, the demand wt

is uncertain, and the dynamics and constraints are:

xt = max{0, xt−1 + ut−1 − wt−1},
p(w = 0) = 0.1, p(w = 1) = 0.7, p(w = 2) = 0.2.

and
xt + ut ≤ 2.

Based on the dynamics, the probabilistic model (21.1) is given by:

p(xt = {0, 1, 2} | xt−1 = 0, ut−1 = 0) = {1, 0, 0},
p(xt = {0, 1, 2} | xt−1 = 0, ut−1 = 1) = {0.9, 0.1, 0},
p(xt = {0, 1, 2} | xt−1 = 0, ut−1 = 2) = {0.2, 0.7, 0.1},
p(xt = {0, 1, 2} | xt−1 = 1, ut−1 = 0) = {0.9, 0.1, 0},
p(xt = {0, 1, 2} | xt−1 = 1, ut−1 = 1) = {0.2, 0.7, 0.1},
p(xt = {0, 1, 2} | xt−1 = 2, ut−1 = 0) = {0.2, 0.7, 0.1},

where some transition values are not explicitly written due to the control con-
straints. Next, the reward function is defined as:

R(xt, ut) = −E
[
ut + (xt + ut − wt)

2],
= −

(
ut + (xt + ut − E[wt])

2 + Var(wt)
)
,

and a discount factor of γ = 1 is used. As in the previous chapter, this reward
penalizes (a negative reward is a penalty) ordering new stock and having avail-
able stock at the next time step (i.e. having to store stock).

Algorithm 18 can now be applied, starting with the value function with no
steps to go:

V∗0 (x) = 0,

220 reinforcement learning

and then recursively computing:

V∗1 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
= −1.3,

V∗1 (1) = max
u2∈{0,1}

−
(
u + (1 + u− 1.1)2 + 0.29

)
= −0.3,

V∗1 (2) = −
(
(2− 1.1)2 + 0.29

)
= −1.1,

where E[w] = 1.1 and Var(w) = 0.29. The optimal stage policies associated with
this step are:

π∗N−1(0) = 1, π∗N−1(1) = 0, π∗N−1(2) = 0.

In the next step:

V∗2 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 0, u)V∗1 (x′) = −2.5,

V∗2 (1) = max
u∈{0,1,}

−
(
u + (1 + u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 1, u)V∗1 (x′) = −1.5,

V∗2 (2) = −
(
(2− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 2, u = 0)V∗1 (x′) = −1.68,

with optimal stage policies:

π∗N−2(0) = 1, π∗N−2(1) = 0, π∗N−2(2) = 0.

Finally, in the last step:

V∗3 (0) = max
u∈{0,1,2}

−
(
u + (u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 0, u)V∗2 (x′) = −3.7,

V∗3 (1) = max
u∈{0,1,}

−
(
u + (1 + u− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 1, u)V∗2 (x′) = −2.7,

V∗3 (2) = −
(
(2− 1.1)2 + 0.29

)
+ ∑

x′
p(x′ | x = 2, u = 0)V∗2 (x′) = −2.818,

with optimal stage policies:

π∗N−3(0) = 1, π∗N−3(1) = 0, π∗N−3(2) = 0.

These results are, in fact, identical to the results from the example in the pre-
vious chapter! The only difference is the formulation of the problem in the RL
framework instead of the stochastic decision making problem framework.

21.2.2 Policy Iteration

Another common algorithm that can be used to solve the reinforcement learning
problem (21.5) is policy iteration. The main idea of policy iteration is that if the
value function can be computed for any arbitrary finite horizon policy π =

{π0, π1, . . . , πN−1}, then the policy can be incrementally improved to yield a
better policy π′ = {π′0, π′1, . . . , π′N−1}.

principles of robot autonomy 221

Policy Evaluation: The first key element of the policy iteration algorithm is
policy evaluation, which is used to compute the value function Vπ

k (x) for a given
policy π. Policy evaluation is based on the recursion:

Vπ
k+1(x) = R(x, π(x)) + γ ∑

x′
p(x′ | x, π(x))Vπ

k (x′), (21.11)

which is very similar to the Bellman equation (21.8) except that there is no op-
timization over the control (since it is fixed). The policy evaluation algorithm is
given in Algorithm 19.

Algorithm 19: Policy Evaluation
Data: π

Result: Vπ
0 (·), . . . , Vπ

N (·)
Vπ

0 (x) = 0, for all x ∈ X
for k = 0 to N − 1 do

Vπ
k+1(x) = R(x, πN−1−k(x)) + γ ∑x′ p(x′ | x, πN−1−k(x))Vπ

k (x′), for all
x ∈ X

return Vπ
0 (·), . . . , Vπ

N (·)

In the infinite-horizon case where a stationary policy is used, the iteration
in Algorithm 19 stops when the value function has converged to its stationary
value. Indeed, since the infinite horizon value function is the stationary point
of this recursion, it is possible to directly solve for it by setting both Vπ

k+1 =

Vπ
k = Vπ

∞ in (21.11). In the case of a discrete state space with N possible states,
this creates a linear system of N equations which can be used to solve for Vπ

∞
directly.

Policy Iteration Algorithm: The policy iteration algorithm incrementally updates
the policy by performing local optimizations of the Q-function. In particular, a
single iteration of the policy update is shown in Algorithm 20. It can be proven

Algorithm 20: Policy Iteration Step
Data: π

Result: π′

Vπ
0 (·), . . . , Vπ

N (·)←− PolicyEvaluation(π)
for k = 0 to N − 1 do

Qπ
k+1(x, u) = R(x, u) + γ ∑x′ p(x′ | x, u)Vπ

k (x′) for all x ∈ X
π′N−1−k(x) = arg max

u∈U
Qπ

k+1(x, u), for all x ∈ X

return π′ = {π′0, . . . , π′N−1}

theoretically that under the policy iteration algorithm the value function is
monotonically increasing with each new policy, and the procedure is run until
convergence. While policy iteration and value iteration are quite similar, policy
iteration can end up converging faster in some cases.

222 reinforcement learning

21.3 Model-free Reinforcement Learning

The value and policy iteration algorithms are applicable only to problems where
the modelM is known, i.e., they rely on direct access to the probabilistic system
dynamics p(xt | xt−1, ut−1) and reward function R(xt, ut), or at least learned ap-
proximations of these functions fit to observed data. Model-free RL algorithms,
on the other hand, sidestep the explicit consideration of p and R entirely.

21.3.1 Q-Learning

The canonical model-free reinforcement learning algorithm is Q-learning. The
core idea behind Q-learning is that it is possible to collect data samples (xt, ut, rt, xt+1)

from interaction with the environment, and over time learn the long-term value
of taking certain actions in certain states, i.e., directly learning the optimal Q-
function Q∗(x, u). For simplicity an infinite-horizon (N = ∞) problem will be
considered, such that the optimal value and Q-functions will be stationary, and
in particular the optimal Q-function will satisfy:

Q∗(x, u) = R(x, u) + γ ∑
x′

p(x′ | x, u)max
u′∈U

Q∗(x′, u′).

In a model-free context, the dynamics p above are notional (i.e., the problem
is described by some MDPM, we just don’t know exactly what it is).6 We may 6 Or even if we have a environment

simulator, in which case it could be
argued that the dynamics are exactly
described by the simulation code, the
dynamics are too complex/opaque to
be considered in this form.

instead rewrite the above equation in terms of an expectation over trajectory
samples drawn from p (i.e., drawn from the environment as a “black box”)
while implementing the policy ut = π∗(xt):

Q∗(xt, ut) = E
[
rt + γ max

u′∈U
Q∗(xt+1, u′)

]
,

or equivalently,

E
[(

rt + γ max
u′∈U

Q∗(xt+1, u′)
)
−Q∗(x, u)

]
= 0,

where (rt + γ maxu′∈U Q∗(xt+1, u′)) − Q∗(x, u) is known as the temporal differ-
ence error. The idea of Q-learning is that an approximation of the optimal Q-
function can be improved over time by collecting data and trying to ensure that
the above conditions holds. This leads to the Q-learning algorithm described
in Algorithm 21. The iterations of Q-learning, each a local deterministic correc-
tion to the Q-function, in aggregate aim to ensure that the expected temporal
difference error is 0.

Q-learning is referred to as a model-free method because it forgoes explicitly
estimating the true (unknown) system dynamics, and directly estimates the
Q-function. It is also called a value-based model-free method since it does not
directly build the policy, but rather estimates the optimal Q-function to implic-
itly define the policy. Q-learning is also called an off-policy algorithm because
the Q-function can be learned from stored experiences and does not require
interacting with the environment directly.

principles of robot autonomy 223

Algorithm 21: Q-learning

Data: Set S of trajectory samples {xt, ut, rt, xt+1}, learning rate α

Result: Q(x, u)
Initialize Q(x, u) for all x ∈ X and u ∈ U
for {xt, ut, rt, xt+1} ∈ S do

Q(xt, ut)←− Q(xt, ut) + α
(

rt + γ maxu∈U Q(xt+1, u)−Q(xt, ut)
)

return Q(x, u)

Q-learning can be guaranteed to converge to the optimal Q-function under
certain conditions, but has some practical disadvantages. In particular, unless
the number of possible states and controls are finite and relatively small, it
can be intractable to store the Q-value associated with each state-control pair.
Another disadvantage of Q-learning is that sometimes the Q-function can be
complex and therefore potentially hard to learn.

Fitted Q-learning: One variation of the Q-learning algorithm to handle large
or continuous state and control spaces is to parameterize the Q-function as
Qθ(x, u) and to simply update the parameters θ. This approach is also known as
fitted Q-learning. While this method often works well in practice, convergence is
not guaranteed.

A principled way of performing fitted Q-learning involves minimizing the
expected squared temporal difference error for the Q-function

E

[((
rt + γ max

u′∈U
Qθ(xt+1, u′)

)
−Qθ(xt, ut)

)2
]

.

For a given parameterization θ fitted Q-learning minimizes the total temporal
difference error over all collected transition samples

θ∗ = arg min
θ

1∣∣Sexp
∣∣ ∑
(xt ,ut ,xt+1,rt)∈Sexp

(
rt + γ max

u′∈U
Qθ(xt+1, u′)−Qθ(xt, ut)

)2

where Sexp denotes the experience set of all transition tuples with a reward sig-
nal. This minimization is typically performed using stochastic gradient descent,
yielding the parameter update

θ ← θ + α

(
rt + γ max

u′∈U
Qθ(xt+1, u′)−Qθ(xt, ut)

)
∇θQθ(xt, ut)

applied iteratively for each (xt, ut, xt+1, rt) ∈ Sexp.

21.3.2 Policy Gradient

The policy gradient method is another algorithm for model-free reinforcement
learning. This approach, which directly optimizes the policy, can be particu-

224 reinforcement learning

larly useful for scenarios where the optimal policy may be relatively simple
compared to the Q-function, in which case Q-learning may be challenging.

In the policy gradient approach, a class of stochastic7 candidate policies 7 A stochastic policy defines a distri-
bution over actions at a given state, is
useful for exploration, and sometimes is
even required for optimality.

πθ(ut | xt) is defined based on a set of parameters θ, and the goal is to di-
rectly modify the parameters θ to improve performance. This is accomplished
by using trajectory data to estimate a gradient of the performance with respect
to the policy parameters θ, and then using the gradient to update θ. Because
this method works directly on a policy (and does not learn a model or value
function), it is referred to as a model-free policy-based approach.

Considering the original problem (21.5), the objective function can be written
as:

J(θ) = E
[∞

∑
t=0

γtR(xt, πθ(ut | xt))
]
,

where the J(θ) notation is used to explicitly show the dependence on the pa-
rameters. Implementing a policy gradient approach therefore requires the com-
putation of ∇θ J(θ). One of the most common approaches is to estimate this
quantity using data, using what is known as a likelihood ratio method.

Let τ represent a trajectory of the system (consisting of sequential states and
actions) under the current policy πθ(ut | xt). As a shorthand notation, consider
the total discounted reward over a trajectory τ to be defined written as:

r(τ) =
∞

∑
t=0

γtR(xt, πθ(ut | xt), (21.12)

such that J(θ) can be expressed equivalently as J(θ) = E
[
r(τ)

]
. Additionally,

let the probability that the trajectory τ occurs be expressed by the distribution
pθ(τ). Then the expectation from the objective function can be expanded as:

J(θ) =
∫

τ
r(τ)pθ(τ)dτ,

and its gradient given by: From standard calculus ∇θ log pθ(τ) =
1

pθ(τ)
∇θpθ(τ), which replaces the use of

the gradient ∇θpθ(τ) with ∇θ log pθ(τ).
This is a very useful “trick” when it
comes to approximately computing the
integral, as will be seen shortly.

∇θ J(θ) =
∫

τ
r(τ)pθ(τ)∇θ log pθ(τ)dτ.

Rather than explicitly computing this integral it is much easier to approximate
using sampled data (i.e. sampled trajectories). This is possible since the integral
can be written as the expectation ∇θ J(θ) = E

[
r(τ)∇θ log pθ(τ)

]
, which can be

estimated using a Monte Carlo method. While in general a number of sampled
trajectories could be used to estimate the gradient, for data efficiency it is also
possible to just use a single sampled trajectory τ and approximate:

∇θ J(θ) ≈ r(τ)∇θ log pθ(τ). (21.13)

In particular the sampled quantities r(τ) can be directly computed from (21.12),
and it turns out that the term ∇θ log pθ(τ) can be evaluated quite easily as8: 8 Using Bayes’ rule: pθ(τ) =

p(x0)ΠN−1
t=1 p(xt | xt−1, ut−1)πθ(xt−1 |

ut−1). Then the log converts the prod-
uct into a sum.∇θ log pθ(τ) =

N−1

∑
t=0
∇θ log πθ(ut | xt). (21.14)

principles of robot autonomy 225

Importantly, notice that only the gradient of the policy is needed, and knowl-
edge of the transition model p(xt | xt−1, ut−1) is not! This occurs because only
the policy is dependent on the parameters θ.

In summary, the gradient of J(θ) can be approximated given a trajectories τ

under the current policy πθ by:

1. Compute r(τ) for the sampled trajectory using (21.12).

2. Compute ∇θ log pθ(τ) for the sampled trajectory using (21.14), which only
requires computing gradients related to the current policy πθ.

3. Approximate ∇θ J(θ) using (21.13).

The process of sampling trajectories from the current policy, approximating the
gradient, and performing a gradient descent step on the parameters θ is referred
to as the REINFORCE algorithm9. 9 There are some other modified ver-

sions of this algorithm, for example
some contain a baseline term b(x0) in
the gradient by replacing r(τ) with
r(τ)− b(x0) to reduce the variance of
the Monte Carlo estimate.

In general, policy-based RL methods such as policy gradient can converge
more easily than value-based methods, can be effective in high-dimensional or
continuous action spaces, and can learn stochastic policies. However, one chal-
lenge with directly learning policies is that they can get trapped in undesirable
local optima. Policy gradient methods can also be data inefficient since they re-
quire data from the current policy for each gradient step and cannot easily reuse
old data. This is in contrast to Q-learning, which is agnostic to the policy used
and therefore doesn’t waste data collected from past interactions.

21.3.3 Actor-Critic

Another popular reinforcement learning algorithm is the actor-critic algorithm,
which blends the concepts of value-based and policy-based model-free RL. In
particular, a parameterized policy πθ (actor) is learned through a policy gradi-
ent method along side an estimated value function for the policy (critic). The
addition of the critic helps to reduce the variance in the gradient estimates for
the actor policy, which makes the overall learning process more data-efficient10. 10 This is a similar variance reduction

approach to adding a baseline b(xτ) to
the REINFORCE. In fact the baseline is
chosen as the value function!

In particular, the policy πθ is again learned through policy gradient like in
the REINFORCE algorithm, but with the addition of a learned approximation of
the value function Vϕ(x) as a baseline:

∇θ J(θ) ≈
N−1

∑
t=0

(
r(τ)−Vϕ(x0)

)
∇θ log πθ(ut | xt).

Recall that the value function V(x) quantifies the expected total return starting
from state x (i.e. the average performance). Therefore the quantity r(τ)−Vϕ(x0)

now represents a performance increase over average. Of course in this method
the learned value function approximation Vϕ(x) is also updated along with the
policy by performing a similar gradient descent on the parameters ϕ.

226 reinforcement learning

21.4 Deep Reinforcement Learning

Neural networks are a powerful function approximator that can be utilized in
reinforcement learning algorithms.

Q-learning: In Q-learning the Q-function can be approximated by a neural
network to extend the approach to nonlinear, continuous state space domains.

Policy Gradient: In policy gradient methods, the policy πθ can be parameter-
ized as a neural network, enabling the policy to operate on high-dimensional
states including images (i.e. visual feedback)!

Actor-Critic: In actor-critic methods, both the policy πθ and the value func-
tion Vϕ can be parameterized as a neural network which often leads to a space
efficient nonlinear representations of the policy and the value function.

21.5 Exploration vs Exploitation

When learning from experience (e.g. using Q-learning, policy gradient, actor-
critic, deep RL, etc.) it is important to ensure that the experienced trajectories
(i.e. the collected data points) are meaningful! For example, an abundance of
data related to a particular set of actions/states will not necessarily be suffi-
cient to learn good policies for all possible situations. Therefore an important
part of reinforcement learning is exploring different combinations of states and
actions. One simple approach to exploration is referred to as ϵ-greedy explo-
ration, where a random control is applied instead of the current (best) policy
with probability ϵ.

However, exploration can lead to suboptimal performance since any knowl-
edge accumulated about the optimal policy is ignored11. This leads to the ex- 11 In other words, actions with known

rewards may be foregone in the hope
that exploring leads to an even better
reward.

ploration vs exploitation trade-off: a fundamental challenge in reinforcement
learning.

22
Imitation Learning

As discussed in the previous chapter, the goal of reinforcement learning is to
determine closed-loop control policies that result in the maximization of an
accumulated reward, and RL algorithms are generally classified as either model-
based or model-free. In both cases it is generally assumed that the reward func-
tion is known, and both typically rely on collecting system data to either update
a learned model (model-based), or directly update a learned value function or
policy (model-free).

While successful in many settings, these approaches to RL also suffer from
several drawbacks. First, determining an appropriate reward function that can
accurately represent the true performance objectives can be challenging1. Sec- 1 RL agents can sometimes learn how to

exploit a reward function without ac-
tually producing the desired behavior.
This is commonly referred to as reward
hacking. Consider training an RL agent
with a reward for each piece of trash
collected. Rather than searching the
area to find more trash (the desired be-
havior), the agent may decide to throw
the trash back onto the ground and pick
it up again!

ond, rewards may be sparse, which makes the learning process expensive in
terms of both the required amount of data and in the number of failures that
may be experienced when exploring with a suboptimal policy2. This chapter

2 This issue of sparse rewards is less
relevant if data is cheap, for example
when training in simulation.

introduces the imitation learning approach to RL, where a reward function is not
assumed to be known a priori but rather it is assumed the reward function is
described implicitly through expert demonstrations.

Imitation Learning

The formulation of the imitation learning problem is quite similar to the RL
problem formulation from the previous chapter. The main difference is that in-
stead of leveraging an explicit reward function rt = R(xt, ut) it will be assumed
that a set of demonstrations from an expert are provided.

22.1 Problem Formulation

It will be assumed that the system is a Markov Decision Process (MDP) with
a state x and control input u, and the set of admissible states and controls are
denoted as X and U . The system dynamics are expressed by the probabilistic The field of RL often uses s to express

the state and a to represent an action,
but x and u will be used here for
consistency with previous chapters.

transition model:

p(xt | xt−1, ut−1), (22.1)

228 imitation learning

which is the conditional probability distribution over xt, given the previous
state and control. As in the previous chapter, the goal is to define a policy π that
defines the closed-loop control law3: 3 This chapter will consider a stationary

policy for simplicity.

ut = π(xt). (22.2)

The primary difference in formulation from the previous RL problem is that
we do not have access to the reward function, and instead we have access to a
set of expert demonstrations where each demonstration ξ consists of a sequence
of state-control pairs:

ξ = {(x0, u0), (x1, u1), . . . }, (22.3)

which are drawn from the expert policy π∗. The imitation learning problem is
therefore to determine a policy π that imitates the expert policy π∗:

Definition 22.1.1 (Imitation Learning Problem). For a system with transition model
(22.1) with states x ∈ X and controls u ∈ U , the imitation learning problem is to
leverage a set of demonstrations Ξ = {ξ1, . . . , ξD} from an expert policy π∗ to find a
policy π̂∗ that imitates the expert policy.

There are generally two approaches to imitation learning: the first is to di-
rectly learn how to imitate the expert’s policy and the second is to indirectly
imitate the policy by instead learning the expert’s reward function. This chap-
ter will first introduce two classical approaches to imitation learning (behavior
cloning and the DAgger algorithm) that focus on directly imitating the policy.
Then a set of approaches for learning the expert’s reward function will be dis-
cussed, which is commonly referred to as inverse reinforcement learning. The
chapter will then conclude with a couple of short discussions into related topics
on learning from experts (e.g. through comparisons or physical feedback) as
well as on interaction-aware control.

22.2 Behavior Cloning

Behavior cloning approaches use a set of expert demonstrations ξ ∈ Ξ to de-
termine a policy π that imitates the expert. This can be accomplished through
supervised learning techniques, where the difference between the learned policy
and expert demonstrations are minimized with respect to some metric. Con-
cretely, the goal is to solve the optimization problem:

π̂∗ = arg min
π

∑
ξ∈Ξ

∑
x∈ξ

L(π(x), π∗(x)),

where L is the cost function4, π∗(x) is the expert’s action for at the state x, and 4 Different loss functions could include
p-norms (e.g. Euclidean norm) or
f -divergences (e.g. KL divergence)
depending on the form of the policy.

π̂∗ is the approximated policy.
However this approach may not yield very good performance since the learn-

ing process is only based on a set of samples provided by the expert. In many
cases these expert demonstrations will not be uniformly sampled across the

principles of robot autonomy 229

entire state space and therefore it is likely that the learned policy will perform
poorly when not close to states found in ξ. This is particularly true when the
expert demonstrations come from a trajectory of sequential states and actions,
such that the distribution of the sampled states x in the dataset is defined by the
expert policy. Then, when an estimated policy π̂∗ is used in practice it produces
its own distribution of states that will be visited, which will likely not be the
same as in the expert demonstrations! This distributional mismatch leads to
compounding errors, which is a major challenge in imitation learning.

22.3 DAgger: Dataset Aggregation

One straightforward idea for addressing the issue of distributional mismatch in
states seen under the expert policy and the learned policy is to simply collect
new expert data as needed5. In other words, when the learned policy π̂∗ leads 5 Assuming the expert can be queried

on demand.to states that aren’t in the expert dataset just query the expert for more infor-
mation! The behavioral cloning algorithm that leverages this idea is known as
DAgger6 (Dataset Aggregation). 6 S. Ross, G. Gordon, and D. Bagnell.

“A Reduction of Imitation Learning
and Structured Prediction to No-Regret
Online Learning”. In: Proceedings of the
Fourteenth International Conference on
Artificial Intelligence and Statistics. 2011,
pp. 627–635

Algorithm 22: DAgger: Dataset Aggregation
Data: π∗

Result: π̂∗

D ←− 0
Initialize π̂

for i = 1 to N do
πi = βiπ

∗ + (1− βi)π̂

Rollout policy πi to sample trajectory τ = {x0, x1, . . . }
Query expert to generate dataset Di = {(x0, π∗(x0)), (x1, π∗(x1)), . . . }
Aggregate datsets, D ←− D ∪Di

Retrain policy π̂ using aggregated dataset D
return π̂

As can be seen in Algorithm 22, this approach iteratively improves the
learned policy by collecting additional data from the expert. This is accom-
plished by rolling out the current learned policy for some number of time steps
and then asking the expert what actions they would have taken at each step
along that trajectory. Over time this process drives the learned policy to better
approximate the true policy and reduce the incidence of distributional mis-
match. One disadvantage to the approach is that at each step the policy needs to
be retrained, which may be computationally inefficient.

22.4 Inverse Reinforcement Learning

Approaches that learn policies to imitate expert actions can be limited by several
factors:

230 imitation learning

1. Behavior cloning provides no way to understand the underlying reasons for
the expert behavior (no reasoning about outcomes or intentions).

2. The “expert” may actually be suboptimal7. 7 Although the discussion of inverse RL
in this section will also assume the ex-
pert is optimal, there exist approaches
to remove this assumption.

3. A policy that is optimal for the expert may not be optimal for the agent if
they have different dynamics, morphologies, or capabilities.

An alternative approach to behavioral cloning is to reason about and try to learn
a representation of the underlying reward function R that the expert was using
to generate its actions. By learning the expert’s intent, the agent can potentially
outperform the expert or adjust for differences in capabilities8. This approach 8 Learned reward representations can

potentially generalize across different
robot platforms that tackle similar
problems!

(learning reward functions) is known as inverse reinforcement learning.
Inverse RL approaches assume a specific parameterization of the reward

function, and in this section the fundamental concepts will be presented by
parameterizing the reward as a linear combination of (nonlinear) features:

R(x, u) = w⊤ϕ(x, u),

where w ∈ Rn is a weight vector and ϕ(x, u) : X × U −→ Rn is a feature
map. For a given feature map ϕ, the goal of inverse RL can be simplified to
determining the weights w. Recall from the previous chapter on RL that the
total (discounted) reward under a policy π is defined for a time horizon T as:

Vπ
T (x) = E

[T−1

∑
t=0

γtR(xt, π(xt)) | x0 = x
]
.

Using the reward function R(x, u) = w⊤ϕ(x, u) this value function can be
expressed as:

Vπ
T (x) = w⊤µ(π, x), µ(π, x) = Eπ

[T−1

∑
t=0

γtϕ(xt, π(xt)) | x0 = x
]
,

where µ(π, x) is defined by an expectation over the trajectories of the system
under policy π (starting from state x) and is referred to as the feature expecta-
tion9. One insight that can now be leveraged is that by definition the optimal 9 Feature expectations are often com-

puted using a Monte Carlo technique
(e.g. using the set of demonstrations for
the expert policy).

expert policy π∗ will always produce a greater value function:

Vπ∗
T (x) ≥ Vπ

T (x), ∀x ∈ X , ∀π,

which can be expressed in terms of the feature expectation as:

w∗⊤µ(π∗, x) ≥ w∗⊤µ(π, x), ∀x ∈ X , ∀π. (22.4)

Theoretically, identifying the vector w∗ associated with the expert policy can
be accomplished by finding a vector w that satisfies this condition. However
this can potentially lead to ambiguities! For example, the choice w = 0 satisfies
this condition trivially! In fact, reward ambiguity is one of the main challenges
associated with inverse reinforcement learning10. The algorithms discussed in 10 A. Ng and S. Russell. “Algorithms

for Inverse Reinforcement Learning”.
In: Proceedings of the Seventeenth Inter-
national Conference on Machine Learning.
2000, pp. 663–670

the following chapters will propose techniques for alleviating this issue.

principles of robot autonomy 231

22.4.1 Apprenticeship Learning

The apprenticeship learning11 algorithm attempts to avoid some of the prob- 11 P. Abbeel and A. Ng. “Apprenticeship
Learning via Inverse Reinforcement
Learning”. In: Proceedings of the Twenty-
First International Conference on Machine
Learning. 2004

lems with reward ambiguity by leveraging an additional insight from condition
(22.4). Specifically, the insight is that it doesn’t matter how well w∗ is estimated
as long as a policy π can be found that matches the feature expectations. Mathe-
matically, this conclusion is derived by noting that:

∥µ(π, x)− µ(π∗, x)∥2 ≤ ϵ =⇒ |w⊤µ(π, x)−w⊤µ(π∗, x)| ≤ ϵ

for any w as long as ∥w∥2 ≤ 1. In other words, as long as the feature expecta-
tions can be matched then the performance will be as good as the expert even if
the vector w does not match w∗. Another practical aspect to the approach is that it
will be assumed that the initial state x0 is drawn from a distribution D such that
the value function is also considered in expectation as:

Ex0∼D
[
Vπ

T (x0)
]
= w⊤µ(π), µ(π) = Eπ

[T−1

∑
t=0

γtϕ(xt, π(xt))
]
.

This is useful to avoid having to consider all x ∈ X when matching features12. 12 Trying to find a policy that matches
features for every possible starting state
x is likely intractable or even infeasible.

To summarize, the goal of the apprenticeship learning approach is to find a
policy π that matches the feature expectations with respect to the expert pol-
icy (i.e. makes µ(π) as similar as possible to µ(π∗))13. This is accomplished 13 See Example 22.4.1 for an example

of why matching features is intuitively
useful.

through Algorithm 23, which uses an iterative approach to finding better poli-
cies.

Algorithm 23: Apprenticeship Learning

Data: µ(π∗), ϵ

Result: π̂∗

Initialize policy π0

for i = 1 to . . . do
Compute µ(πi−1) (or approximate via Monte Carlo)
Solve problem (22.5) with policies {π0, . . . , πi−1} to compute wi and ti

(wi, ti) = arg max
w,t

t,

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + t, ∀π ∈ {π0, . . . , πi−1},
∥w∥2 ≤ 1.

(22.5)

if ti ≤ ϵ then
π̂∗ ←− best feature matching policy from {π0, . . . , πi−1}
return π̂∗

Use RL to find an optimal policy πi for reward function defined by wi

To better understand this algorithm it is useful to further examine the opti-
mization problem (22.5)14. Suppose that instead of making w a decision variable 14 This problem can be thought of as an

inverse RL problem that is seeking to
find the reward function vector w such
that the expert maximally outperforms the
other policies.

232 imitation learning

it was actually fixed, then the resulting optimization would be:

t∗(w) = max
t

t,

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + t, ∀π ∈ {π0, π1, . . . },

which is essentially computing the smallest performance loss among the candi-
date policies {π0, π1, . . . } with respect to the expert policy, assuming the reward
function weights are w. If w was known, then if t∗(w) ≤ ϵ it would guaran-
tee that one of the candidate policies would effectively perform as well as the
expert.

Since w is not known, the actual optimization problem (22.5) maximizes
the smallest performance loss across all vectors w with ∥w∥2 ≤ 1. Therefore, if
ti ≤ ϵ (i.e. the termination condition in Algorithm 23), then there must be a
candidate policy whose performance loss is small for all possible choices of w! In
other words, there is a candidate policy that matches feature expectations well
enough that good performance can be guaranteed without assuming the reward
function is known, and without attempting to estimate the reward accurately.

Example 22.4.1 (Apprenticeship Learning vs. Behavioral Cloning). Consider a
problem where the goal is to drive a car across a city in as short of time as pos-
sible. In the imitation learning formulation it is assumed that the reward func-
tion is not known, but that there is an expert who shows how to drive across the
city (i.e. what routes to take). A behavioral cloning approach would simply try
to mimic the actions taken by the expert, such as memorizing that whenever the
agent is at a particular intersection it should turn right. Of course this approach
is not robust when at intersections that the expert never visited!

The apprenticeship learning approach tries to avoid the inefficiency of behav-
ioral cloning by instead identifying features of the expert’s trajectories that are
more generalizable, and developing a policy that experiences the same feature
expectations as the expert. For example it could be more efficient to notice that
the expert takes routes without stop signs, or routes with higher speed limits,
and then try to find policies that also seek out those features!

22.4.2 Maximum Margin Planning

The maximum margin planning approach15 uses an optimization-based ap- 15 N. Ratliff, J. A. Bagnell, and M. Zinke-
vich. “Maximum Margin Planning”.
In: Proceedings of the 23rd International
Conference on Machine Learning. 2006,
pp. 729–736

proach to computing the reward function weights w that is very similar to (22.5)
but with some additional flexibility. In its most standard form the MMP opti-
mization is:

ŵ∗ = arg min
w

∥w∥2
2,

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + 1, ∀π ∈ {π0, π1, . . . }.

Again this problem computes the reward function vector w such that the expert
policy maximally outperforms the policies in the set {π0, π1, . . . }.

principles of robot autonomy 233

However the formulation is also improved in two ways: it adds a slack term
to account for potential expert suboptimality and it adds a similarity function
that gives more “margin” to policies that are dissimilar to the expert policy. This
new formulation is:

ŵ∗ = arg min
w,v

∥w∥2
2 + Cv,

s.t. w⊤µ(π∗) ≥ w⊤µ(π) + m(π∗, π)− v, ∀π ∈ {π0, π1, . . . },
(22.6)

where v is a slack variable that can account for expert suboptimality, C > 0 is a
hyperparameter that is used to penalize the amount of assumed suboptimality,
and m(π∗, π) is a function that quantifies how dissimilar two policies are.

One example of where this formulation is advantageous over the apprentice-
ship learning formulation (22.5) is when the expert is suboptimal. In this case it
is possible that there is no w that makes the expert policy outperform all other
policies, such that the optimization (22.5) returns wi = 0 and ti = 0 (which is
obviously not the appropriate solution). Alternatively the slack variables in the
MMP formulation allow for a reasonable w to be computed.

22.4.3 Maximum Entropy Inverse Reinforcement Learning

While the apprenticeship learning approach shows that matching feature counts
is a necessary and sufficient condition to ensure a policy performs as well as
an expert, it also has some ambiguity (similar to the reward weight ambiguity
problem discussed before). This ambiguity is associated with the fact that there
could be different policies that lead to the same feature expectations!

This issue can also be thought of in a slightly more intuitive way in terms of
distributions over trajectories. Specifically, a policy π induces a distribution over
trajectories16 τ = {(x0, π(x0)), (x1, π(x1)), . . . } that is denoted as pπ(τ). The 16 This distribution can be visualized as

a set of paths generated by simulating
the system many times with policy π
(i.e. using a Monte Carlo method).

feature expectations can be rewritten in terms of this distribution as:

µ(π) = Eπ

[
f (τ)

]
=
∫

pπ(τ) f (τ)dτ,

where f (τ) = ∑T−1
t=0 γtϕ(xt, π(xt)). Now suppose a policy π was found that

matched feature expectations17 with an expert policy π∗ such that: 17 For example by using apprenticeship
learning.∫

pπ(τ) f (τ)dτ =
∫

pπ∗(τ) f (τ)dτ.

Crucially this condition is not sufficient to guarantee that pπ(τ) = pπ∗(τ)

(which would be ideal). In fact, the distribution pπ(τ) could also have an arbi-
trary preference for some paths that is unrelated to the feature matching objective.

The main idea in the maximum entropy inverse RL approach18 is to not 18 B. D. Ziebart et al. “Maximum En-
tropy Inverse Reinforcement Learning”.
In: Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence. 2008,
pp. 1433–1438

only match the feature expectations, but also remove ambiguity in the path
distribution pπ(τ) by trying to make pπ(τ) as broadly uncommitted as possible. In
other words, find a policy that matches feature expectations but otherwise has
no additional path preferences. This concept is known as the maximum entropy
principle19. 19 A maximum entropy distribution can

be thought of as the least informative
distribution of a class of distribution.
This is useful in situations where it is
undesirable to encode unintended prior
information.

234 imitation learning

The maximum entropy IRL approach finds a minimally preferential, feature
expectation matching distribution by solving the optimization problem:

p∗(τ) = arg max
p

∫
−p(τ) log p(τ)dτ,

s.t.
∫

p(τ) f (τ)dτ =
∫

pπ∗(τ) f (τ)dτ,∫
p(τ)dτ = 1,

p(τ) ≥ 0, ∀τ,

(22.7)

where the objective is the mathematical definition of a distribution’s entropy,
the first constraint requires feature expectation matching, and the remaining
constraints ensure that p(τ) is a valid probability distribution. It turns out that
the solution to this problem has the exponential form:

p∗(τ, λ) =
1

Z(λ)
eλ⊤ f (τ), Z(λ) =

∫
eλ⊤ f (τ)dτ,

where Z(λ) normalizes the distribution, and where λ must be chosen such that
the feature expectations match:∫

p∗(τ, λ) f (τ) =
∫

pπ∗(τ) f (τ)dτ.

In other words the maximum entropy IRL approach tries to find a distribution
parameterized by λ that match features, but also requires that the distribution
p∗(τ, λ) belong to the exponential family.

To determine the value of λ that matches features, it is assumed that the
expert also selects trajectories with high reward with exponentially higher prob-
ability:

pπ∗(τ) ∝ ew∗⊤ f (τ),

and therefore ideally λ = w∗. Of course w∗ (and more generally pπ∗(τ)) are
not known, and therefore a maximum likelihood estimation approach is used
to compute λ to best approximate w∗ based on the sampled expert demonstra-
tions20. 20 By assuming the expert policy is also

exponential, the maximum likelihood
estimate is theoretically consistent (i.e.
λ −→ w∗ as the number of demonstra-
tions approaches infinity).

In particular, an estimate ŵ∗ of the reward weights is computed from the
expert demonstrations Ξ = {ξ0, ξ1, . . . } (which each demonstration ξi is a
trajectory) by solving the maximum likelihood problem:

ŵ∗ = arg max
λ

∏
ξi∈Ξ

p∗(ξi, λ),

= arg max
λ

∑
ξi∈Ξ

λ⊤ f (ξi)− log Z(λ),

which can be solved using a gradient descent algorithm where the gradient is
computed by:

∇λ J(λ) = ∑
ξi∈Ξ

f (ξi)− Eτ∼p∗(τ,λ)[f (τ)].

principles of robot autonomy 235

The first term of this gradient is easily computable since the expert demonstra-
tions are known, and the second term can be approximated through Monte
Carlo sampling. However, this Monte Carlo sampling estimate is based on
sampling trajectories from the distribution p∗(τ, λ). This leads to a iterative
algorithm:

1. Initialize λ and collect the set of expert demonstrations Ξ = {ξ0, ξ1, . . . }.

2. Compute the optimal policy21 πλ with respect to the reward function with 21 For example through traditional RL
methods.w = λ.

3. Using the policy πλ, sample trajectories of the system and compute an ap-
proximation of Eτ∼p∗(τ,λ)[f (τ)].

4. Perform a gradient step on λ to improve the maximum likelihood cost.

5. Repeat until convergence.

To summarize, the maximum entropy inverse reinforcement learning ap-
proach identifies a distribution over trajectories that matches feature expecta-
tions with the expert, but by restricting the distribution to belong to the expo-
nential family ensures that spurious preferences (path preferences not motivated
by feature matching) are not introduced. Additionally, this distribution over tra-
jectories is parameterized by a value that is an estimate of the reward function
weights.

22.5 Learning From Comparisons and Physical Feedback

Both behavioral cloning and inverse reinforcement learning approaches rely on
expert demonstrations of behavior. However in some practical scenarios it may
actually be difficult for the expert to provide complete/quality demonstrations.
For example it has been shown22 that when humans are asked to demonstrate 22 C. Basu et al. “Do You Want Your

Autonomous Car to Drive Like You?”
In: 12th ACM/IEEE International Confer-
ence on Human-Robot Interaction. 2017,
pp. 417–425

good driving behavior in simulation they retroactively think their behavior was
too aggressive! As another example, if a robot has a high-dimensional con-
trol or state space it could be difficult for the expert to specify the full high-
dimensional behavior. Therefore another interesting question in imitation learn-
ing is to find a way to learn from alternative data sources besides complete
demonstrations.

22.5.1 Learning from Comparisons

One alternative approach is to use pairwise comparisons23, where an expert is 23 D. Sadigh et al. “Active Preference-
Based Learning of Reward Functions”.
In: Robotics: Science and System. 2017

shown two different behaviors and then asked to rank which behavior is better.
Through repeated queries it is possible to converge to an understanding of the
underlying reward function. For example, suppose two trajectories τA and τB

are shown to an expert and that trajectory τA is preferred. Then assuming that
the reward function is:

R(τ) = w⊤ f (τ),

236 imitation learning

where f (τ) are the collective feature counts (same as in Section 22.4), this com-
parison can be used to conclude that:

w⊤ f (τA) > w⊤ f (τB).

In other words, this comparison has split the space of possible reward weights
w in half through the hyperplane:

(f (τA)− f (τB))
⊤w = 0.

By continuously querying the expert with new comparisons24, the space of 24 The types of comparisons shown can
be selectively chosen to maximally split
the remaining space of potential w in
order to minimize the total number of
expert queries that are required.

possible reward weights w will continue to shrink until a good estimate of w∗

can be made. In practice the expert decision may be a little noisy and therefore
the hyperplanes don’t define hard cutoffs, but rather can be used to “weight”
the possible reward vectors w.

22.5.2 Learning from Physical Feedback

Another alternative to learning from complete expert demonstrations is to sim-
ply allow the expert to physically interact with the robot to correct for unde-
sirable behavior25. In this approach, a physical interaction (i.e. a correction) is 25 A. Bajcsy et al. “Learning Robot

Objectives from Physical Human
Interaction”. In: Proceedings of the 1st
Annual Conference on Robot Learning.
2017, pp. 217–226

assumed to occur when the robot takes actions that result in a lower reward
than the expert’s action.

For a reward function of the form R(x, u) = w⊤ϕ(x, u) the robot maintains
an estimate of the reward weights ŵ∗ and the expert is assumed to have act
according to a true set of optimal weights w∗. Suppose the robot’s policy, which
is based on the estimated reward function with weights ŵ∗, yields a trajectory
τR. Then, if the expert physically interacts with the robot to make a correction
the resulting actual trajectory τH is assumed to satisfy:

w∗⊤ f (τH) ≥ w∗⊤ f (τR),

which simply states that the reward of the new trajectory is higher. This insight
is then leveraged in a maximum a posteriori approach for updating the estimate
ŵ∗ after each interaction. Specifically, this update takes the form:

ŵ∗ ←− ŵ∗ + β(f (τH)− f (τR)),

where β > 0 is a scalar step size. The robot then uses the new estimate to
change its policy, and the process iterates. Note that this idea yields an ap-
proach that is similar to the concept of matching feature expectations from
inverse reinforcement learning, except that the approach is iterative rather than
requiring a batch of complete expert demonstrations.

22.6 Interaction-aware Control and Intent Inference

Yet another interesting problem in robot autonomy arises when robots and hu-
mans are interacting to accomplish shared or individual goals. Many classical

principles of robot autonomy 237

examples of this problem arise in autonomous driving settings, when human-
driven vehicles interact with autonomous vehicles in settings such as highway
merging or at intersections. While the imitation learning problems from the
previous sections are focused on understanding the expert’s behavior for the
purpose of imitating the behavior, in this setting the human’s behavior needs to
be understood in order to ensure safe interactions. However there is an addi-
tional component to understanding interactions: the robot’s behavior can influence
the human’s behavior26. 26 It is particularly important in

interaction-aware robot control to
understand the effects of the robot’s
actions on the human’s behavior. Oth-
erwise the human’s could simply be
modeled as dynamic obstacles!

22.6.1 Interaction-aware Control with Known Human Model

One common approach is to model the interaction between humans and robots
as a dynamical system that has a combined state x, where the robot controls
are denoted uR and the human decisions or inputs are denoted as uH . The
transition model is therefore defined as:

p(xt | xt−1, uR,t−1, uH,t−1).

In other words the interaction dynamics evolve according to the actions taken
by both the robot and the human. In this interaction the robot’s reward function
is denoted as RR(x, uR, uH) and the human’s reward function is denoted as
RH(x, uR, uH), which are both functions of the combined state and both agent’s
actions27. 27 While RR and RH do not have to be

the same, choosing RR = RH may
be desirable for the robot to achieve
human-like behavior.

Under the assumption that both the robot and the human act optimally28

28 While not necessarily true, this
assumption is important to make the
resulting problem formulation tractable
to solve in practice.

with respect to their cost functions:

u∗R(x) = arg max
uR

RR(x, uR, u∗H(x)),

u∗H(x) = arg max
uH

RH(x, u∗R(x), uH).

Additionally, assuming both reward functions RR and RH are known29, comput- 29 The reward function RH could be ap-
proximated using inverse reinforcement
learning techniques.

ing u∗R is still extremely challenging due to the two-player game dynamics of the
decision making process. However this problem can be made more tractable by
modeling it as a Stackelberg game, which restricts the two-player game dynam-
ics to a leader-follower structure. Under this assumption it is assumed that the
robot is the “leader” and that as the follower the human acts according to:

u∗H(x, uR) = arg max
uH

RH(x, uR, uH). (22.8)

In other words the human is assumed to see the action taken by the robot before
deciding on their own action. The robot policy can therefore be computed by
solving:

u∗R(x) = arg max
uR

RR(x, uR, u∗H(x, uR)), (22.9)

which can be solved using a gradient descent approach. For the gradient de-
scent approach the gradient of:

J(x, uR) = RR(x, uR, u∗H(x, uR)),

238 imitation learning

can be computed using the chain rule as:

∂J
∂uR

=
∂RR
∂uR

+
∂RR
∂u∗H

∂u∗H
∂uR

.

Since the reward function RR is known the terms ∂RR/∂uR and ∂RR/∂u∗H can
be easily determined. In order to compute the term ∂u∗H/∂uR, which represents
how much the robot’s actions impact the human’s actions, an additional step
is required. First, assuming the human acts optimally according to (22.8) the
necessary optimality condition is:

g(x, uR, u∗H) = 0, g =
∂RH
∂uH

,

which for the fixed values of x and uR specifies u∗H . Then, by implicitly differen-
tiating this condition with respect to the robot action uR:

∂g
∂uR

+
∂g

∂u∗H

∂u∗H
∂uR

= 0,

which can be used to solve for:

∂u∗H
∂uR

(x, uR, u∗H) = −
(∂g

∂u∗H

)−1 ∂g
∂uR

.

Notice that every term in this expression can be computed30 and therefore it can 30 Assuming the human’s reward
function is known.be substituted into the gradient calculation:

∂J
∂uR

=
∂RR
∂uR
− ∂RR

∂u∗H

(∂g
∂u∗H

)−1 ∂g
∂uR

,

which can then be computed as long as it is possible to compute u∗H(x, uR).
To summarize, one approach to interaction-aware control is to model the in-

teraction as a Stackelberg game, where it is assumed that both the human and
the robot act optimally with respect to some reward functions. This formula-
tion of the problem enables the robot to choose actions based on an implicit
understanding of how the human will react.

22.6.2 Intent Inference

One disadvantage to the approach for interaction-aware control from the previ-
ous section is that it assumes the human acts optimally with respect to a known
reward function. While a reward function could be learned through inverse re-
inforcement learning, this is not practical for real-world settings where different
humans behave differently. Returning to the example of interaction between
human drivers and autonomous vehicles, the human could exhibit drastically
different behavior depending on whether they have an aggressive or passive
driving style. In these settings the problem of intent inference focuses on iden-
tifying underlying behavioral characteristics that can lead to more accurate
behavioral models31. 31 This problem can be formulated as a

partially observable Markov decision
process (POMDP) since the underlying
behavioral characteristic is not directly
observable, yet influences the system’s
behavior.

principles of robot autonomy 239

One approach to intent inference32 is to model the underlying behavioral dif-

32 D. Sadigh et al. “Planning for cars
that coordinate with people: leveraging
effects on human actions for planning
and active information gathering over
human internal state”. In: Autonomous
Robots 42.7 (2018), pp. 1405–1426

ferences through a set of unknown parameters θ which need to be inferred by
observing the human’s behavior. Mathematically this is expressed by defining
the human’s reward function RH(x, uR, uH , θ) to be a function of θ, and assum-
ing the human chooses actions according to:

p(uH | x, uR, θ) ∝ eRH(x,uR ,uH ,θ).

In other words this model assumes the human is exponentially more likely to
pick optimal actions33, but that they may pick suboptimal actions as well. 33 This assumption was also used in the

Maximum Entropy IRL approach.The objective of intent inference is therefore to estimate the parameters
θ, which can be accomplished through Bayesian inference methods. In the
Bayesian approach a probability distribution over parameters θ is updated based
on observations. Specifically the belief distribution is denoted as b(θ), and given
an observation of the human’s actions uH the belief distribution is updated as:

bt+1(θ) =
1
η

p(uH,t | xt, uR,t, θ)bt(θ),

where η is a normalizing constant. This Bayesian update is simply taking the
prior belief over θ and updating the distribution based on the likelihood of
observing human action uH under that prior. Note that this concept is quite
similar to the concepts of inverse reinforcement learning: a set of parameters
that describe the human’s (experts) behavior are continually updated when new
observations of their actions are gathered.

While the robot could sit around and passively observe the human act to col-
lect samples for the Bayesian updates, it is often more efficient for the robot to
probe the human to take interesting actions that are more useful for revealing the
intent parameters θ. This can be accomplished by choosing the robot’s reward
function to be:

RR(x, uR, uH , θ) = I(b(θ), uR) + λRgoal(x, uR, uH , θ)

where λ > 0 is a tuning parameter and I(b(θ), uR) denotes a function that quan-
tifies the amount of information gained with respect to the belief distribution
from taking action uR. In other words the robot’s reward is a tradeoff between
exploiting the current knowledge of θ to accomplish the objective and taking
exploratory actions to improve the intent inference. With this robot reward func-
tion the robot’s actions are chosen to maximize the expected reward:

u∗R(x) = arg max
uR

Eθ[RR(x, uR, uH , θ)].

To summarize, this robot policy will try to simultaneously accomplish the
robot’s objective and gather more information to improve the inference of the
human’s intent (modeled through the parameters θ). In a highway lane chang-
ing scenario this type of policy might lead the robot to nudge into the other
lane to see if the other car will slow down (passive driving behavior) or try to

240 imitation learning

block the lane change (aggressive driving behavior). Once the robot has a strong
enough belief about the human’s behavior it may choose to either complete the
lane change or slow down to merge behind the human driver.

Part V

Robot Software

23
Robot System Architectures

A robotic system is fundamentally just a collection of sensors and actuators that
can interact with the environment to accomplish a set of tasks. While this defi-
nition may seem simple, the systems required to implement this definition tend
to be extremely complex due to the infinite variability and uncertainty of real-
world environments and the diversity among sensors and actuators. Therefore,
careful and practical design of robotic systems is crucial for managing complex-
ity, and as a byproduct enabling robust and successful robotic operations. This
chapter will introduce some of the fundamental concepts, paradigms, and tools
in the design of robot system architectures to enable full robot autonomy while
also managing system complexity1. 1 D. Kortenkamp, R. Simmons, and D.

Brugali. “Robotic Systems Architec-
tures and Programming”. In: Springer
Handbook of Robotics. Springer, 2008,
pp. 283–302

Robot System Architectures

The primary objective of a robotic system is to accomplish a specific set of tasks,
but there are often many peripheral tasks that must also be handled to ensure
the robot operates in a safe and robust way. For example a robot’s goal may be
to pick up objects and place them in certain locations, but in order to accom-
plish this task the robot should also be aware of obstacles (static or dynamic) in
its environment, should be robust to sensor failures or sensor noise, and more.

Definition 23.0.1 (Robot Goal). Complete desired tasks while monitoring and reacting
to unexpected situations. Handle inputs and outputs (control/perception) from actuators
and sensors in real-time2 and under uncertainty. 2 Real-time requirements are crucial,

some situations require near instan-
taneous reactions (e.g. less than 1 ms
reaction time).

The design of the robot’s system architecture is important for enabling the
robot to achieve its goal without requiring extremely complex software systems
for implementation. In general, the system architecture is defined by two major
parts: the structure and the style. The structure defines the way in which the
system is broken down into components, as well as how the components in-
teract with each other3. Alternatively the style of the architecture refers to the 3 The structure could be represented

visually as a diagram of boxes (com-
ponents) that are connected by arrows
(interactions).

computational concepts that define the implementation of the design.
Generally speaking there is no specific architecture that is optimal for every

robotic system, but there are some paradigms that have been proven to be use-

244 robot system architectures

ful, which will be introduced in more detail in the following sections. In fact,
any given system architecture may consist of multiple types of structures or
styles! For a given robot, the specific choice of architecture should aim to reduce
complexity4 while not being overly restrictive and thus limit performance. 4 For example subsystem segmentation

can be useful for reusability as well as
validation and unit-testing.

23.1 Architecture Structures

The architecture’s structure defines how the system is subdivided into subsys-
tems and how the subsystems interact. Some form of hierarchical structure is
commonly used for this decomposition, which reduces complexity through ab-
straction (e.g. tasks at one level are of the hierarchy are composed of a group of
tasks from lower-levels of the hierarchy).

23.1.1 Sense-Plan-Act Architecture

This architecture is one of the first developed, and consists of three main sub-
systems: sensing, planning, and execution. These components were organized
in a sequential fashion, with sensor data being passed to the planner, who then
passes information to the controller, who sends actuator commands. However
this approach has significant drawbacks. First, the planning component was a
computational bottleneck that held up the controller subsystem. Second, since
the controller did not have direct access to sensor data the overall system was
not very reactive.

23.1.2 Subsumption Architecture

An alternative to the sense-plan-act architecture that emerged not long after is
the subsumption architecture5. This architecture decomposes the overall desired 5 R. Brooks. “A robust layered control

system for a mobile robot”. In: IEEE
Journal on Robotics and Automation 2.1
(1986), pp. 14–23

robot behavior into sub-behaviors in a bottom-up fashion. In this hierarchical
structure the higher-level behaviors subsume the lower-level behaviors. In other
words, the high-level behaviors can outsource smaller scale tasks to be handled
by the low-level behaviors. From an implementation standpoint this architecture
can be thought of as layers of finite state machines6 that all connect sensors to 6 Each finite state machine was often

referred to as a behavior.actuators, and where multiple behaviors are evaluated in parallel. An arbitra-
tion mechanism is also included to choose which of the behaviors is currently
activated. For example an explore behavior may sit on top of (subsume) a colli-
sion avoidance behavior, and the arbitration mechanism would decide when the
exploration behavior should be overridden by the collision avoidance behavior.

While this architecture is much more reactive than the sense-plan-act ar-
chitecture, there are also disadvantages. The primary disadvantage of this
approach is that there is no good way to do long-term planning or behavior
optimization. This can make it challenging to design the system to accomplish
long-term objectives.

principles of robot autonomy 245

23.1.3 Three-tiered Architecture

The three-tiered architecture is one of the most commonly used architectural de-
signs. This architecture contains a planning, an executive, and a behavioral
control level that are hierarchically linked.

1. Planning: this layer is at the highest-level, and focuses on task-planning for
long-term goals.

2. Executive: the executive layer is the middle layer connecting the planner and
the behavioral control layers. The executive specifies priorities for the behav-
ioral layer to accomplish a specific task. While the task may come directly
from the planning layer, the executive can also split higher-level tasks into
sub-tasks.

3. Behavioral control: at the lowest-level. the behavioral control layer handles
the implementation of low-level behaviors and is the interface to the robot’s
actuators and sensors.

The primary advantage of this architecture is that it combines benefits of the
behavioral-based subsumption architecture (i.e. reactive planning) with better
long-term planning capabilities (i.e. resulting from the planning level). Each of
these levels will now be discussed in slightly further detail, however in practice
the division among these levels is often quite blurred!

Behavioral Control Level: The components at the behavioral control level typi-
cally focus on small, localized behaviors or skills and directly interface with the
robot’s sensors and actuators7. These behaviors are typically situated, meaning 7 This layer includes algorithms from

classical control theory: PID control,
Kalman filtering, etc.

that they only make sense with respect to a specific situation that the robot may
be in. Importantly, the behavioral control components should have an aware-
ness of the current situation (i.e. they should be able to identify if the current
situation is appropriate for a specific behavior), but they are not responsible for
knowing how to change the situation (this is left to the executive level).

The tight interaction between the sensors and actuators in the behavioral
control level enables a high level of reactivity in this architecture. However,
high reactivity also requires that the behavioral control level not incorporate
algorithms with high computational complexity. In general, the algorithms at
this level should be able to operate at least several times per second.

Executive Level: The components of the executive level are responsible for
translating high-level plans into low-level behaviors, orchestrating when low-
level behaviors are executed, as well as monitoring for and handling exceptions.
This component is typically implemented as a hierarchical finite state machine,
but might also incorporate motion planning and decision making algorithms
to break a high-level task into a sequence of smaller tasks. To orchestrate the
sequence and timing for behaviors to be implemented, the executive considers

246 robot system architectures

temporal constraints on behaviors (e.g. whether two actions can be executed
concurrently).

Planning Level: Finally, the planning level focuses on high-level decision mak-
ing and planning for long-term behavior. This forward-thinking component is
crucial to optimize the long-term behavior of the robot. However, the implemen-
tation of the decisions from the planner are deferred to the executive layer. In
practice it might also be useful to have multiple planning levels, for example to
split up mission level planning (very abstract planning) with shorter horizon
planning8. 8 This split might be useful for compu-

tational performance reasons.
Example 23.1.1 (Office Mail Delivery Robot). To further explore the components
of the three-tiered robot system architecture, consider a robot whose primary
task is to deliver mail within an office setting. In general, tasks that might be
required of this robot include: the ability to move through hallways and rooms,
avoid humans and other obstacles, open and close doors, announce a delivery,
find a particular room, recharge its batteries, etc.

If a three-tiered architecture is used, the planner level would be in charge of
high-level decision making tasks. For example the planner might specify the
delivery order for each piece of mail to optimize the overall efficiency (i.e. by
considering the relative locations of each delivery). The planner would also
choose when to schedule time for recharging.

Given a task from the planner such as “Deliver package to Rm 009”, the
executive level would then coordinate how to accomplish the task. This might
include sub-tasks such as move to the end of the hallway, open the door, enter
Rm 009, announce delivery, and then wait and monitor to see if the package is
retrieved. If the package is never retrieved within a specified amount of time the
executive level could also choose to then carry on with the next set of tasks and
send a message to the planner that the task was not completed.

Finally, the behavioral control layer would execute the tasks as specified by
the executive level. This might include controlling the robot’s wheels to move
across the hallway, avoiding obstacles along the way. Or it could involve using
a manipulator to open a door. If the current task specified by the executive was
to open a door and the door was locked, the behavioral control level should
eventually recognize failure and report back to the executive level.

23.2 Architecture Styles

In addition to choosing the robot system architecture, another very important
task is to choose the architecture’s style. An architecture’s style refers to the
computational structure that defines communication between components
within the architecture. For example in the three-tiered architecture the style
would define the method for communicating among the planning, executive,
and behavioral control levels, or even between components of each individ-
ual level. The implementation of the connection style is typically referred to as

principles of robot autonomy 247

middleware, and two of the most common architecture styles are referred to as
client-server and publish-subscribe.

23.2.1 Client-Server

Middleware based on the client-server style consists of message requests from
clients that the server responds to (i.e. there is a request-response message pair-
ing). This type of connection style can also be thought of as being on-demand
messaging. One of the disadvantages of such a messaging style is that the client
typically waits for the response from the server before continuing, leading to
potential deadlocks (e.g. if the server crashes).

23.2.2 Publish-Subscribe

Middleware based on the publish-subscribe style uses asynchronous message
broadcasting from publishers, which can then be subscribed to by other com-
ponents of the system as needed. One disadvantage of this approach is that the
interfaces are less well-defined (interactions are only one-way), but the main
advantage is in reliability since deadlocks cannot occur (e.g. the system is robust
to missing messages or messages arriving out of order). The middleware ROS
(Robot Operating System) is a very popular publish-subscribe middleware used
within the robotics community today.

24
The Robot Operating System

Introduction to the Robot Operating System (ROS)

This chapter introduces the fundamentals of the Robot Operating System
(ROS)1,2, a popular framework for creating robot software. Unlike what its 1 L. Joseph. Robot Operating System

(ROS) for Absolute Beginners: Robotics
Programming Made Easy. Apress, 2018

2 M. Quigley, B. Gerkey, and W. D.
Smart. Programming Robots with ROS:
A Practical Introduction to the Robot
Operating System. O’Reilly Media, 2015

name appears to suggest, ROS is not an operating system (OS). Rather, ROS is
a “middleware" that encompasses tools, libraries and conventions to operate
robots in a simplified and consistent manner across a wide variety of robotic
platforms. ROS is a critical tool in the field of robotics today, and is widely used
in both academia and industry.

This chapter begins by introducing specific challenges in robot program-
ming that motivates the need for a middleware such as ROS. Afterwards, a
brief history of ROS will be presented to shed some light on its development
and motivations for its important features. Next, the fundamental operating
structure of ROS will be discussed in further detail to provide insights into how
ROS is operated on real robotic platforms. Lastly, specific features and tools of
the ROS environment that greatly simplify robot software development will be
presented.

24.1 Challenges in Robot Programming

Robot programming is a subset of computer programming, but it differs greatly
from more classical software programming applications. One of the defining
characteristics of robot programming is the need to manage many different
individual hardware components that must operate in harmony (e.g. sensors
and actuators on board the robot). In other words, robot software needs to not
only run the “brain" of the robot to make decisions, but also to handle multiple
input and output devices at the same time. Therefore, the following features are
needed for robot programming:

• Multitasking: Given a number of sensors and actuators on a robot, robot soft-
ware needs to multitask and work with different input/output devices in
different threads at the same time. Each thread needs to be able to communi-

250 the robot operating system

cate with other threads to exchange data.

• Low level device control: Robot software needs to be compatible with a wide
variety of input and output devices: GPIO (general purpose input/output)
pins, USB, SPI among others. C, C++ and Python all work well with low-level
devices, so robot software needs to support either of these languages, if not
all.

• High level Object Oriented Programming (OOP): In OOP, codes are encapsu-
lated, inherited, and reused as multiple instances. Ability to reuse codes and
develop programs in independent modules makes it easy to maintain code
for complex robots.

• Availability of 3rd party libraries and community support: Ample third-party
libraries and community support not only expedite software development,
but also facilitate efficient software implementation.

24.2 Brief History of ROS

Until the advent of ROS, it was impossible for various robotics developers to
collaborate or share work among different teams, projects or platforms. In
2007, early versions of ROS started to be conceived with the Stanford AI Robot
(STAIR) project, which had the following vision:

• The new robot development environment should be free and open-source for
everyone, and need to remain so to encourage collaboration of community
members.

• The new platform should make core components of robotics – from its hard-
ware to library packages – readily available for anyone who intends to launch
a robotics project.

• The new software development platform should integrate seamlessly with
existing frameworks (OpenCV for computer vision, SLAM for localization
and mapping, Gazebo for simulation, etc).

Development of ROS started to gain traction when Scott Hassan, a software
architect and entrepreneur, and his startup Willow Garage took over the project
later that year to develop standardized robotics development platform. While
mostly self-funded by Scott Hassan himself, ROS really satiated the dire needs
for a standardized robot software development environment at the time. In
2009, ROS 0.4 was released, and a working ROS robot with a mobile manipula-
tion platform called PR2 was developed. Eleven PR2 platforms were awarded
to eleven universities across the country for further collaboration on ROS devel-
opment, and in 2010 ROS 1.0 was released. Many of the original features from
ROS 1.0 are still in use. In 2012, the Open Source Robotics Foundation (OSRF)
started to supervise the future of ROS by supporting development, distribution,

principles of robot autonomy 251

Figure 24.1: Modular software
architecture designed to handle
complexity of robot program-
ming

and adoption of open software and hardware for use in robotics research, ed-
ucation, and product development. In 2014 the first long-term support (LTS)
release, ROS Indigo Igloo, became available. Today, ROS has been around for 12

years, and the platform has become what is closest to the “industry standard" in
robotics.

24.2.1 Characteristics of ROS

Building off of the initial needs first conceived by the STAIR project and the
unique challenges persistent in robot programming, the ROS framework pro-
vides the following important capabilities:

• Modularity: ROS handles complexity of a robot through modularity: Each
robot component that performs separate functions can be developed indepen-
dently in units called nodes (Figure 24.1). Each node can share data with other
nodes, and acts as the basic building blocks of ROS. Different functional ca-
pabilities on a robot can be developed in units called packages. Each package
may contain a number of nodes that are defined from source code, configura-
tion files, and data files. These packages can be distributed and installed on
other computers.

• Message passing: ROS provides a message passing interface that allows nodes
(i.e. programs) to communicate with each other. For example, one node
might detect edges in a camera image, then send this information to an ob-
ject recognition node, which in turn can send information about detected
obstacles to a navigation module.

• Built-in algorithms: A lot of popular robotics algorithms are already built-in
and available as off-the-shelf packages: PID3, SLAM4, and path planners such 3 http://wiki.ros.org/pid

4 http://wiki.ros.org/gmapping

252 the robot operating system

Figure 24.2: The ROS publish/-
subscribe (pub/sub) model.as A* and Dijkstra5 are just a few examples. These built-in algorithms can

5 http://wiki.ros.org/global_planner

significantly reduce time needed to prototype a robot.

• Third-party libraries and community support: The ROS framework is developed
with pre-existing third-party libraries in mind, and most popular libraries
such as OpenCV for computer vision6 and PCL7 integrate simply with a 6 https://opencv.org

7 http://pointclouds.orgcouple lines of code. In addition, ROS is supported by active developers all
over the world to answer questions (ROS Answers8 or to discuss various 8 https://answers.ros.org/questions/

topics and public ROS-related news9. 9 https://discourse.ros.org

24.3 Robot Programming with ROS

Before jumping into using the functions and tools that ROS provides it is crit-
ical to understand a little more about how ROS operates. In particular, it is
important to know that ROS uses a publish/subscribe (pub/sub) structure for
communicating between different components or modules. This pub/sub struc-
ture (graphically shown in Figure 24.2) allows messages to be passed in between
components or modules through a shared virtual “chat room”. To support this
structure there are four primary components of ROS:

1. Nodes: the universal name for the individual components or modules that
need to send or receive information,

2. Messages: the object for holding information that needs communicated be-
tween nodes,

3. Topics: the virtual “chat rooms” where messages are shared,

4. Master: the “conductor” that organizes the nodes and topics.

24.3.1 Nodes

Definition 24.3.1 (Node). A node10 is a process that performs computation. Nodes 10 http://wiki.ros.org/Nodes

principles of robot autonomy 253

are combined together to communicate with one another using streaming topics, RPC
services, and the Parameter Server.

Nodes are the basic building block of ROS that enables object-oriented robot
software development. Each robot component is developed as an individual
encapsulated unit of nodes, which are later reused and inherited, and a typical
robot control system will be comprised of many nodes. The use of indepen-
dent nodes, and their ability to be reused and inherited, greatly simplifies the
complexity of the overall software stack.

For example, suppose a robot is equipped with a camera and you want to
find an object in the environment and drive to it. Examples of nodes that might
be developed for this task are: a camera node that takes the image and pre-
processes it, an edge_detection node that takes the pre-processed image data
and runs an edge detection algorithm, a path_planning node that plans a path
between two points, and so on.

At the individual level, nodes are responsible for publishing or subscribing
to certain pieces of information that are shared among all other nodes. In ROS,
the pieces of information are called “messages" and they are shared in virtual
chat rooms called “topics".

24.3.2 Messages

Definition 24.3.2 (Messages). Nodes communicate with each other by publishing
simple data structures to topics. These data structures are called messages11. 11 http://wiki.ros.org/Messages

A message is defined by field types and field names. The field type defines
the type of information the message stores and the name is how the nodes ac-
cess the information. For example, suppose a node wants to publish two inte-
gers x and y, a message definition might look like:

int32 x

int32 y

where int32 is the field type and x/y is the field name. While int32 is a prim-
itive field type, more complex field types can also be defined for specific appli-
cations. For example, suppose a sensor packet node publishes sensor data as an
array of a user-defined SensorData object. This message, called SensorPacket,
could have the following fields:

time stamp

SensorData[] sensors

uint32 length

In this case SensorData is a user-defined field type and the empty bracket [] is
appended to indicate that field is an array of SensorType objects.

More generally, field types can be either the standard primitive types (integer,
floating point, boolean, etc.), arrays of primitive types, or other user-defined
types. Messages can also include arbitrarily nested structures and arrays as well.

254 the robot operating system

Primitive message types available in ROS are listed below in Table 24.1. The first
column contains the message type, the second column contains the serialization
type of the data in the message and the third column contains the numeric type
of the message in Python.

Primitive Type Serialization Python
bool (1) unsigned 8-bit int bool
int8 signed 8-bit int int
uint8 unsigned 8-bit int int (3)
int16 signed 16-bit int int
uint16 unsigned 16-bit int int
int32 signed 32-bit int int
uint32 unsigned 32-bit int int
int64 signed 64-bit int long
uint64 unsigned 64-bit int long
float32 32-bit IEEE float float
float64 64-bit IEEE float float
string ascii string (4) str
time secs/nsecs unsigned 32-bit ints rospy.Time

Table 24.1: Built-in ROS Mes-
sages

24.3.3 Topics

Definition 24.3.3 (Topics). Topics12 are named units over which nodes exchange 12 http://wiki.ros.org/Topics

messages.

A given topic will have a specific message type associated with it, and any
node that either publishes or subscribes to the topic must be equipped to handle
that type of message. The command rostopic type <topic> can be used to
see what kind of message is associated with a particular topic. Any number of
nodes can publish or subscribe to a given topic.

Fundamentally, topics are for unidirectional, streaming communication. This
is perhaps not well suited for all types of communication, such as communica-
tion that demands a response (i.e. a service routine).

The rostopic command line tool can be used in several ways to monitor
active topics/messages. Three of the most common rostopic commands are:

• rostopic list: lists all active topics

• rostopic echo < topic >: prints messages received on topic

• rostopic hz < topic >: measures topic publishing rate

The last command is particularly useful in debugging responsiveness of an
application.

principles of robot autonomy 255

24.3.4 Master

Definition 24.3.4 (Master). The master is a process that can run on any piece of
hardware to track publishers and subscribers to topics as well as services in the ROS
system.

Master is responsible for assigning network addresses and enabling indi-
vidual ROS nodes to locate one another, even if they are running on different
computers. Once these nodes have located each other, the communication will
be peer-to-peer, i.e., the master will not send nor receive the messages.

In any given ROS system, there is exactly one master running at any time.
A unique feature of the master is that master does not need to exist within the
robot’s hardware as long as a network connection exists. The master can be
facilitated remotely, on a much larger and more powerful computer.

24.4 Writing a Simple Publisher Node and Subscriber Node

24.4.1 Publisher Node

A simple publisher node that publishes String messages ten times per second
can be implemented in Python via the following code13: 13 http://wiki.ros.org/

rospy_tutorials/Tutorials/

WritingPublisherSubscriber# ! / usr / bin / env python
import rospy

from std_msgs.msg import String

def talker():

rospy.init_node(’talker’, anonymous=True)

pub = rospy.Publisher(’chatter’, String, queue_size=10)

rate = rospy.get_param(’~rate’,1)

ros_rate = rospy.Rate(rate)

rospy.loginfo("Starting ROS node talker...")

while not rospy.is_shutdown():

msg= "Greetings humans!"

pub.publish(msg)

ros_rate.sleep()

if __name__ == ’__main__’:

try:

talker()

except rospy.ROSInterruptException:

pass

256 the robot operating system

The first line:

! / usr / bin / env python

will be included in every Python ROS Node at the top of the file. This line
makes sure your script is executed as a Python script.

Next are the statements for importing specific Python libraries:

import rospy

from std_msgs.msg import String

Note that the library rospy must be imported when writing a ROS Node. The
std_msgs.msg import enables the use of the std_msgs/String message type (a
simple string container) for publishing string messages.

Next is the definition of the ROS publisher node:

rospy.init_node(’talker’, anonymous=True)

pub = rospy.Publisher(’chatter’, String, queue_size=10)

which creates a node called “talker” and defines the talker’s interface to the rest
of ROS. In particular:

• pub = rospy.Publisher("chatter", String, queue_size=10) declares that
the node is publishing to the “chatter” topic using the String message type.
String here is actually the ROS datatype (std_msgs.msg.String), and not
Python’s String datatype. The queue_size argument limits the amount of
queued messages that are allowed, for situations where a subscriber is not
receiving the published messages fast enough.

• rospy.init_node(NAME, ...) tells rospy the name of the node. Until rospy
has this information, it cannot start communicating with the ROS Master. In
this case, your node will take on the name talker. NOTE: the name must be a
base name (i.e. it cannot contain any slashes “/”).

• anonymous=True is a flag that tells rospy to generate a unique name for the
node, since ROS requires that each node have a unique name. If a node with
the same name comes up, it bumps the previous one so that malfunctioning
nodes can easily be kicked off the network. This makes it easy to run multi-
ple talker.py nodes.

• anonymous = True is another flag that ensures that the node has a unique
name by adding random numbers to the end of NAME.

The next lines of code:

rate = rospy.get_param(’~rate’,1)

ros_rate = rospy.Rate(rate)

principles of robot autonomy 257

defines a ROS rate that can be used to time how often the node publishes. In
particular, rospy.get_param(param_name, default_value) reads a private ROS
parameter (indicated by ‘∼’) called rate. This rate value is then used to create
a Rate object ros_rate in the second line. The Rate object’s sleep() method
offers a convenient way for looping at the desired frequency. For example, if
rate is 10, ROS should go through the loop 10 times per second (as long as the
processing time does not exceed 1/10th of a second!).

The line:

rospy.loginfo("Starting ROS node talker...")

performs three functions: it causes messages to get printed to screen, to be writ-
ten to the Node’s log file, and to be written to rosout. rosout is a handy tool
for debugging that makes it possible to pull up messages using rqt_console

instead of having to find the console window with your Node’s output.

The loop:

while not rospy.is_shutdown():

msg = "Greetings humans!"

pub.publish(msg)

ros_rate.sleep()

is a fairly standard rospy construct for first checking the rospy.is_shutdown()

flag and then doing work. The is_shutdown() check is used to see if the pro-
gram should exit (e.g. if there is a Ctrl-C interrupt). In this particular example,
the “work” that is then performed inside of the loop is a call to pub.publish(msg),
which publishes a string to the “chatter” topic. The loop also calls ros_rate.sleep()

so that it sleeps just long enough to maintain the desired rate through the loop.

24.4.2 Subscriber Node

A subscriber node called listener can now be created to subscribe to the pub-
lished “chatter” topic:

!/usr/bin/env python

import rospy

from std_msgs.msg import String

def callback(msg):

rospy.loginfo("Received: %s", msg.data)

def listener():

rospy.init_node(’listener’, anonymous=True)

rospy.Subscriber("chatter", String, callback)

258 the robot operating system

rospy.spin()

if __name__ == ’__main__’:

listener()

The code for listener.py is similar to talker.py, except that a new callback-
based mechanism for subscribing to messages is introduced.

First, the lines:

rospy.init_node(’listener’, anonymous=True)

rospy.Subscriber("chatter", String, callback)

declare that the node subscribes to the “chatter” topic, which is of type std_msgs.msgs.String.
When new messages are received, the function callback is invoked with the
message as the first argument.

The line:

rospy.spin()

then simply keeps the node from exiting until the node has been shutdown.

24.4.3 Compiling and Running

Once both the talker.py and listener.py nodes are ready, the catkin build
system can be used to compile the code, and then both nodes can be run.
Specifically, this is accomplished by running the following commands:

$ cd ~/catkin_ws

$ catkin_make

$ python talker.py

$ python listener.py

24.5 Other Features in ROS Development Environment

24.5.1 Launch files

As a robot project grows in scale, the number of nodes and configuration files
grow very quickly. In practice, it could be very cumbersome to manually start
up each individual node. A launch file provides a convenient way to start up
multiple nodes and a master, as well as set up other configurations, all at the
same time.

Definition 24.5.1. Launch files are .launch files with a specific XML format that can
be placed anywhere within a package directory to initialize multiple nodes, configuration
files, and a master.

principles of robot autonomy 259

While .launch files can be placed anywhere within a package directory, it
is standard practice to create a launch folder inside the workspace directory to
organize launch files. Launch files must start and end with a pair of launch tags:
<launch> ... </launch>. To start a node using a launch file the following
syntax should be used within the launch file:

<node name="..." pkg="..." type="..."/>

In this line, pkg points to the package associated with the node that is to be
launched, type refers to the name of the node executable file, and the name of
the node can be overwritten with the name argument (this will take priority
over the name that is given to the node in the code). For example,

<node name="bar1" pkg="foo_pkg" type="bar" />

launches the bar node from the foo_pkg package with a new name, bar1. Alter-
natively,

<node name="listener1" pkg="rospy_tutorials" type="listener.py"

args="−−test" respawn="true" />

launches the listener1 node using the listener.py executable from the rospy_tutorials

package with the command-line argument -test. Additionally, if the node dies
it will automatically be respawned.

There are other attributes that can be set when starting a node. While only
args and respawn were introduced in this section, http://wiki.ros.org/
roslaunch/XML/node is a great resource for additional parameters that can be
used in the <node> tag.

24.5.2 Catkin Workspace

catkin14 is a build system that compiles ROS packages. While catkin’s work- 14 catkin refers to the tail-shaped flower
cluster on willow trees – a reference
to Willow Garage where, catkin was
created.

flow15 is very similar to CMake’s, catkin adds support for automatic ‘find

15 http://wiki.ros.org/catkin/

conceptual_overview

package’ infrastructure, for building multiple, dependent projects at the same
time, and also supports both C and Python.

When developing with ROS, catkin should be run whenever a new project
is started, or if there are any additions to packages. This is accomplished by
creating a directory called catkin_ws and then running the compile command
catkin_make in that directory:

mkdir −p ~/catkin_ws/src # builds the catkin_ws in the home dir

cd ~/catkin_ws # change current directory to catkin_ws

catkin_make # run catkin

Once the catkin workspace is compiled, it will automatically contain the files
CMakeLists.txt and package.xml. There are other sub-folders in catkin_ws as
well, as shown in Figure 24.3, which can be changed as needed.

260 the robot operating system

Figure 24.3: Components of
an example ROS package
named mypackage in a catkin

workspace.

24.5.3 Debugging

Robot programming requires a lot of debugging. There are a few ways to debug
your robot software, including (but not limited to):

• rostopic: a tool that monitors ROS topics in the command line,

• rospy.loginfo(): starts a background process that writes ROS messages to a
ROS logger, viewable through a program such as rqt_console,

• rosbag: provides a convenient way to record a number of ROS topics for
playback,

• pdb: provides a useful tool for debugging python scripts.

24.5.4 Gazebo

Gazebo16 is a popular 3D dynamic simulator with the ability to accurately and 16 http://gazebosim.org

efficiently simulate robots in complex environments (see Figure 24.4). While
similar to game engines, Gazebo offers a higher fidelity physics simulation, a
suite of sensors models, and interfaces for both users and programs. Gazebo
can be used in any stage of robot development, from testing algorithms to run-
ning regression testing in realistic scenarios. Integration of Gazebo with ROS is
possible via gazebo_ros_pkgs package.

principles of robot autonomy 261

Figure 24.4: Screenshot of a
scene in Gazebo.

Part VI

Advanced Topics in Robotics

25
Formal Methods

The safety and explainability of robotic systems has become increasingly im-
portant as applications for robotic systems transition to more unstructured and
interactive environments. While one component to developing safe robots is
to design robust and high-performing autonomy algorithms, another critical
component is the analysis of the system’s design. System analysis could come
in several forms, including unit, component, or system-level testing, but one
challenging aspect of testing is the determination of appropriate success cri-
teria. It is also highly desirable to develop systems that are provably correct or
correct-by-construction with respect to the stated success criteria.

This chapter introduces a set of rigorous mathematical tools and concepts for
specifying desired behavior (i.e. requirements or specifications), proving that
the system achieves the desired behavior, and synthesizing robot systems to be
correct-by-construction. These mathematical tools are known as formal methods1. 1 E. M. Clarke et al. Model Checking.

2nd ed. MIT Press, 2018

Formal Methods

Formal methods provide a mathematical framework for reasoning about a sys-
tem’s specifications as well as analyzing whether the system’s behavior guaran-
tees their satisfaction. Approaches for synthesizing provably correct behavior
can also be built on top of these tools and are commonly incorporated within
the umbrella of formal methods. Historically these techniques have been de-
veloped within the computer science community, and have been used to study
problems related to logic, automatically proving properties of algorithms, check-
ing the correctness of properties of circuits, and more. However in this chapter
formal methods will be explored within the context of autonomous systems.

Definition 25.0.1 (Formal Methods). Formal methods are mathematically based
techniques for the specification, development, and verification of software and hardware
systems.

It is important to note that formal methods are not just particular solutions
or algorithms but rather are a class of tools and formalisms. Accordingly, this
chapter will not focus on a particular algorithm (solution) for applying formal

266 formal methods

methods to problems in robotics, but will rather introduce several broadly used
tools and techniques. Specifically, Section 25.1 will introduce linear temporal logic,
which is a specialized language for writing specifications. Then the concept of
the robotic system as a reactive model that can be verified to satisfy the stated
specifications will be introduced in Section 25.2. Finally, the ability to synthesize
robot systems to provably be able to satisfy a specification will be explored in
Section 25.3.

25.1 Linear Temporal Logic

Linear temporal logic (LTL) is a mathematical language for formally express-
ing specifications or requirements on the system’s behavior2. LTL is useful in 2 Similar to how ordinary differential

equations provide a mathematical ”lan-
guage” that is useful for modeling the
kinematics and dynamics of physical
systems.

robotics applications because it extends propositional logic3 to handle temporal

3 A formalism for expressing logical
operations including conjunction (and),
disjunction (or), and negation (not).

components (assuming discrete time steps), which are common in sequential
decision making problems and other robotics tasks. For example propositional
logic can be used to write a specification that “proposition a and proposition
b must both be true”, while LTL extends the possible specifications to include
temporal constraints such as “proposition a must be true until proposition b is
true”.

The language of LTL can be expressed in terms of several atomic operators,
the first few of which are inherited from propositional logic:

1. true or false (Boolean values)4 represent Boolean constants. 4 Technically false can also be written as
¬true, where ¬ is the “not” operator.

2. a, b, . . . (propositional symbols) denote single variables that can either be
true or false at the current time step.

3. ¬ψ (negation operator5) denotes the negation of ψ. 5 Technically false can be written as
¬true.

4. ψ1 ∧ ψ2 (conjunction “and” operator) which can be read as “ψ1 and ψ2”.

5. ψ1 ∨ ψ2 (disjunction “or” operator) which can be read as “ψ1 or ψ2”. This
operator can be expressed in terms of “and” and “not” as ψ1 ∨ ψ2 = ¬(¬ψ1 ∧
¬ψ2).

6. ψ1 → ψ2 (implication operator) denotes that ψ1 implies ψ2. This operator can
be expressed in terms of “not‘ and “or” as ψ1 → ψ2 = ¬ψ1 ∨ ψ2.

Additional operators that are fundamental to LTL provide the capability for
expressing temporal constraints:

7. Xψ (“next” operator) denotes that ψ happens next (at the next time step).

8. ψ1Uψ2 (“until” operator) denotes that ψ1 should happen until ψ2 happens.

principles of robot autonomy 267

9. Fψ (“eventually” operator) denotes that ψ happens at some point in the
future. This operator can be expressed in terms of the eventually operation as
Fψ = true U ψ.

10. Gψ (“always” operator) denotes that ψ happens globally (at all times). This
operator can be expressed in terms of the negation and future operations as
Gψ = ¬F¬ψ.

From these atomic operators it is possible to define many new specifications
through composition, and they can become arbitrarily complex as needed. A
couple of common and useful compositions include:

11. GFψ (“infinitely often” composition) denotes that ψ will eventually happen
an infinite number of times (i.e. globally, ψ will happen eventually). In other
words there is always a ψ in the future.

12. FGψ (“stability”6 composition) denotes that at some point in time ψ will be 6 This notion of stability is similar but
not directly the same as the notions of
stability from control theory.

true for all time thereafter (i.e. eventually ψ will happen globally).

13. G(ψ1 → Fψ2) (“response” composition) denotes that for all time, whenever
ψ1 occurs then ψ2 will occur sometime in the future. There are other useful
variations on this composition, such as by replacing the F operator with X
operator.

Linear temporal logic provides a very powerful tool7 for abstractly talking 7 There are also alternatives to LTL that
provide even more powerful features,
for example by not requiring a “linear”
temporal structure but rather allowing
for temporal “branching”.

about time, and in general the specifications written using LTL can in a way be
more “vague”. For example the eventually operator F does not explicitly state
when something must occur, just that at some point it will. It is also important to
keep in mind that LTL is not an algorithm or technique for solving problems,
but rather a language for formulating problems (i.e. for expressing properties of
interest such as system specifications).

Example 25.1.1 (Coffee Machine Specification). Consider a simple robot that
makes coffee. This robot has a button that a user can press, and has two func-
tions: grinding coffee beans and brewing coffee. The desired behavior of this
robot could be expressed by the designer as: if the start button is pressed, the robot
will immediately start grinding beans for the next two cycles, and then brew the cof-
fee for the next two cycles after that. This specification, denoted as ϕ, could be

268 formal methods

expressed via linear temporal logic as:

ϕ : G
(
button→ grind∧ Xgrind∧ XX(¬grind∧ brew) ∧ XXX(¬grind∧ brew)

)
.

Note that the entire statement needs to be wrapped in the “always” operator
to ensure this behavior can occur at any arbitrary time that a user presses the
button.

25.2 Verification

System verification is the process of proving that the system’s behavior will sat-
isfy the stated requirements and specifications (often expressed using linear
temporal logic). In the terminology of formal methods, this system is typically
referred to as the model8 and the output of the verification9 procedure is a sim- 8 The model could refer to a piece of

software, a hardware component, an
individual algorithm, or even an entire
robot.
9 Also commonly referred to as model
checking.

ple yes/no stating whether the model satisfies the specification. In this chapter
the model will be denoted by P and the specification by ϕ, and the notation for
stating that model P satisfies specification ϕ is P |= ϕ (which can be read as “P
models ϕ”).

Figure 25.1: Given a system
(model) and a specification, the
process of verification proves
whether the system satisfies the
specification.

In this chapter it is assumed that the model P is a reactive system, meaning
that its behavior is defined based on inputs i which effect the system’s outputs
o10. In contrast to robotic control problems where the “inputs” are generally 10 The inputs and outputs occur at each

time step, and the behavior is assumed
to be non-terminating.

the control inputs determined by the control algorithm, the inputs i within
this context refer to signals coming from the environment. The outputs o of
the model can then be thought of as the result of the system’s decision making
or underlying algorithm/process. As was mentioned previously, the model
P can take on many forms depending on whether the system is a hardware
component, software component, algorithm, finite state machine, or even simply
a mathematical function such as a machine learning model or control law.

Figure 25.2: The model P is
a system with inputs i and
outputs o. These inputs and
outputs are used to express the
model’s specification ϕ.

For a given model P the specification ϕ is assumed to be written in terms
of the input and output sequences (i.e. the behavior is defined by the inputs
and outputs of the system). Specifically, these sequences will be denoted as
î = (i0, i1, . . .) and ô = (o0, o1, . . .). With these definitions, the expression that P
satisfies ϕ can equivalently be written as P |= ϕ or î ∪ ô |= ϕ.

To summarize, the problem of model verification is to simply determine
whether the input-output behavior of the model P guarantees that ϕ is satisfied

principles of robot autonomy 269

for all possible input sequences. There are several existing techniques that can
perform system verification, and they may be tailored to the specific model
form11,12. 11 M. Kwiatkowska, G. Normal, and

D. Parker. “PRISM 4.0: Verification
of Probabilistic Real-time Systems”.
In: Proceedings of the 23rd International
Conference on Computer Aided Verification.
2011, pp. 585–591

12 G. Katz et al. “The Marabou Frame-
work for Verification and Analysis of
Deep Neural Networks”. In: Computer
Aided Verification. 2019, pp. 443–452

25.3 Reactive Synthesis

Given a reactive model P and a LTL specification ϕ, the problem of verifica-
tion is to determine whether the behavior of P satisfies ϕ for all possible input
sequences î. But several important questions remain: how should the system
be designed, and what should be changed if the verification step shows that
P ̸|= ϕ? Reactive synthesis addresses these problems by synthesizing the system
model P to be correct-by-construction. In other words, in reactive synthesis the
specification ϕ is first defined and then a model is constructed from scratch to
satisfy the specification.

Figure 25.3: Given a specifica-
tion ϕ, the process of reactive
synthesis generates a model P
that realizes the specification
under all possible environmen-
tal inputs.25.3.1 Specification Satisfiability and Realizability

The first step in reactive synthesis is to determine whether a model13 even exists 13 Technically speaking, a finite state
model.which can satisfy the LTL specification ϕ for all possible input sequences. If no

such model exists, then the system designer should reevaluate the specification
itself.

In the nomenclature of formal methods, the specification ϕ is said to be real-
izable if it can be satisfied for all possible input sequences, and it is satisfiable if
there exists at least one input sequence leading to satisfaction. These properties
can be more rigorously defined in terms of the input and output sequences that
describe the system’s behavior:

Definition 25.3.1 (Satisfiability). A specification ϕ is satisfiable if for some input
sequence there exists an output sequence that satisfies the specification. Mathematically:

∃ î = (i0, i1, . . .), ∃ ô = (o0, o1, . . .), s.t. î ∪ ô |= ϕ.

Definition 25.3.2 (Realizability). A specification ϕ is realizable if for all possible input
sequences there exists an output sequence that satisfies the specification. Mathemati-
cally:

∀ î = (i0, i1, . . .), ∃ ô = (o0, o1, . . .), s.t. î ∪ ô |= ϕ.

Obviously the property of satisfiability is weaker than realizability, and real-
izability is much more important in practice. For example in order to guarantee
safety in a rigorous way it is not sufficient to show that the system will be safe

270 formal methods

under a single scenario, but rather it should be shown for all scenarios. How-
ever, designing specifications that are realizable can be quite challenging, even
in seemingly simple problems. As an example consider again the coffee ma-
chine robot from Example 25.1.1.

Example 25.3.1 (Coffee Machine Realizability). The coffee machine robot from
Example 25.1.1 had inputs I = {button} and outputs O = {grind, brew}. For
simplicity let ibutton = 1 and ibutton = 0 denote the button is pressed and not
pressed, respectively. Additionally let ogrind = 1 and obrew = 1 denote that the
actions are occurring and let them be zero otherwise.

Recall that the linear temporal logic specification for the robot’s behavior was
defined as:

ϕ : G
(
button→ grind∧ Xgrind∧ XX(¬grind∧ brew) ∧ XXX(¬grind∧ brew)

)
.

This specification can now be analyzed to determine whether it is realizable.
First, notice that one possible sequence of inputs and outputs that satisfies this
specification is:

(ibutton, ogrind, obrew)k = (0, 0, 0)0,

(1, 1, 0)1,

(0, 1, 0)2,

(0, 0, 1)3,

(0, 0, 1)4,

(0, 0, 0)5,

...

Because there exists a sequence that satisfies the specification ϕ it is by defini-
tion satisfiable. However, consider a second input sequence î = (0, 1, 1, 0, 0, . . .)
where the coffee machine’s button is pressed twice in a row:

(ibutton, ogrind, obrew)k = (0, 0, 0)0,

(1, 1, 0)1,

(1, 1, 0)2,

(0, ?, 1)3,

At time step k = 3 there is no combination of outputs that will satisfy the
specification, since the first button press requires that ogrind,3 = 0 but the second
button press requires that ogrind,3 = 1! Therefore by definition this specification
is not realizable14. 14 Does this mean it is impossible to

automate a coffee maker? No! It just
demonstrates that writing specifications
can be challenging.25.3.2 Synthesis for Realizable LTL Specifications

If a LTL specification ϕ is realizable, then the synthesis problem seeks to find a
finite state system that satisfies ϕ under all possible inputs. This can be accom-
plished by formulating the problem as a two-player game where the objective

principles of robot autonomy 271

is for the system to generate “winning” outputs while the environment gen-
erates adversarial inputs. The two-player game formulation can be expressed
mathematically by defining the following components:

1. With the inputs I and outputs O, at each time step the environment gets to
choose from a set of 2|I| actions and the system gets to choose from a set of
2|O| actions.

2. The strategy of the system is expressed as a function f : (2|I|)∗ → 2|O|, where
f is a function from a finite sequence of environmental inputs to a specific
output.

3. The linear temporal logic specification ϕ is defined by the input and output
sequences.

4. The game is played for an infinitely long horizon, generating sequences
î = (i0, i1, . . .) and ô = (o0, o1, . . .).

5. The game is won if î ∪ ô |= ϕ.

The process of converting a problem specification into this two-player game
follows two main steps. First, the specification is converted into a non-deterministic
Büchi automaton and then the automaton is determinized to yield the game.
Once the game is appropriately formulated, it can be solved using existing
algorithms to generate the policy f that defines the system’s behavior. Unfor-
tunately, converting the specification into the automaton is computationally
very challenging! In fact the computational complexity is doubly-exponential in
the size of the specification15, which significantly limits the complexity of the 15 A doubly exponential function has

the form f (x) = ab x
.problems that can be considered16.

16 This is one of the most significant
limitations of formal methods in prac-
tical robotic settings, and approaches
to overcome this complexity are still a
topic of research.

While the precise details for converting a specification into a two-player game
and solving the game are beyond the scope of this chapter, the process can be
explored visually through the following example.

Example 25.3.2 (Simple Reactive Synthesis Problem). Consider the LTL speci-
fication ϕ : G(r → Xg) which states that whenever a request r is received the
system should provide a grant g in the next time step. In this problem I = {r}
where r denotes a request or no request and O = {g} where g specifies if a
grant was made or not. The first step in transforming this specification into
the two-player synthesis game is to generate the following Büchi automaton
representation, as shown in Figure 25.4. In Figure 25.4 the variables q0 and q1

represent states of the automaton, and the transitions between the states are
dependent on the environmental inputs and the system’s behavior.

The two-player game is generated from this Büchi automaton17 by introduc- 17 This automaton is already deter-
ministic, so no determinizing step is
needed.

ing intermediate states as well as the unsafe “contradiction” state (denoted in
Figure 25.5 as ⊥). This game is represented graphically in Figure 25.5 where the
∗ denotes that any action could be taken by the model and the small grey circles
represent the intermediate states. The system can “win” this two-player game

272 formal methods

Figure 25.4: The Büchi automa-
ton representation of the LTL
specification ϕ : G(r → Xg).

Figure 25.5: The two-player
game representation derived
from the Büchi automaton in
Figure 25.4.

by ensuring that the contradiction state is never reached, which then defines the
system’s behavior! By analyzing Figure 25.5, it turns out that one “winning”
strategy strategy (behavior) is for the system to always provide a grant! This
strategy is shown graphically in Figure 25.6.

Figure 25.6: A strategy for the
system in Example 25.3.2 to
ensure the specification is met
is to always provide grants,
which is guaranteed to avoid
the contradiction state in the
two-player game shown in
Figure 25.5.

26
Robotic Manipulation

Robotic manipulation, where a robot physically interacts and changes the en-
vironment, is one of the most challenging tasks in robot autonomy from the
perspectives of perception, planning, and control. Consider a simple pick-and-
place problem: the robot needs to identify the object, find a good place to grasp,
stably pick up the object, and move it to a new location, all while ensuring no
part of the robot collides with the environment. In practice even this simple task
can become much harder, for example if other objects are in the way and must
be moved first, if the object does not have particularly good grasping features,
if the weight, size, and surface texture of the object is unknown, or if the light-
ing is poor1. Manipulation tasks are also commonly composed of sequences of 1 Generally speaking the infinite vari-

ability of the real world makes robust
manipulation extremely difficult.

interactions, such as making a sandwich or opening a locked door. This chapter
focuses on grasping2, which is a fundamental component to all manipulation

2 D. Prattichizzo and J. C. Trinkle.
“Grasping”. In: Springer Handbook of
Robotics. Springer, 2016, pp. 955–988

tasks.

Grasping

Grasping is a fundamental component of robotic manipulation that focuses on
obtaining complete control of an object’s motion (in contrast to other interac-
tions such as pushing).

Definition 26.0.1 (Grasp). A grasp is an act of restraining an object’s motion through
application of forces and torques at a set of contact points.

Figure 26.1: The Allegro
Hand. Image retrieved from
wiki.wonikrobotics.com.

Grasping is challenging for several reasons:

1. The configuration of the gripper may be high-dimensional. For example the
Allegro Hand (Figure 26.1) has 4 fingers with 3 joints each for a total of 12

dimensions. Plus there are an additional 6 degrees of freedom in the wrist
posture (position and orientation), and all of these degrees of freedom vary
continuously.

2. Choosing contact points can be difficult. An ideal choice of contact points
would lead to a robust grasp, but the space of feasible contacts is restricted

274 robotic manipulation

by the gripper’s geometry. A rigid body object also has 6 degrees freedom,
which affects where the contact points are located in the robot’s workspace.

3. While the robot is attempting the grasp it must be sure that its entire body
does not come into collision with the environment.

4. Once a grasp has been performed it is important to evaluate how robust
the grasp is. While the grasp quality would ideally be optimized during
the planning step, it may be important to also check retroactively in case
uncertainty led to a different grasp than planned.

To address each of these challenges, the grasp can be subdivided into parts:
planning, acquisition/maintenance, and evaluation. This chapter will focus on
the fundamentals of how a grasp can be modeled and evaluated from a mathe-
matical perspective, as well as how grasps can be planned3 using grasp force 3 Part of grasp planning also includes

the motion planning of the entire robot,
but the focus of this chapter is on the
grasp itself.

optimization. Learning-based approaches to grasping and manipulations will
also be discussed at a high level in Section 26.4 and 26.5.

26.1 Grasp Modeling

A grasp plan may be parameterized in several ways, including by the approach
vector or wrist orientation of the gripper, by the initial finger configuration, or
directly by points of contact with the object. However, regardless of the plan-
ning parameterization the resulting contacts between the gripper and the object
will define the quality of the grasp. Therefore it is useful and convenient for
grasp modeling to consider the contact points as the interaction interface be-
tween the gripper and object.

26.1.1 Contact Types

There are generally three types of contact that can occur in grasping scenarios:

1. Point: a point contact occurs when a single point comes in contact with either
another point, a line, or a plane. A point contact is only stable if it is a point-
on-plane contact4, point-on-point or point-on-line contacts are unstable. 4 Point-on-plane contacts are by far the

most commonly modeled contact types
and will almost always be used in grasp
analysis.

2. Line: line contacts occur when a line comes in contact with another line or a
plane. Line-on-plane and line-on-nonparallel line contacts are stable, but line-
on-parallel line contacts are unstable. Line contacts can also be represented as
two point contacts.

3. Plane: plane-on-plane contacts are always stable. Plane contacts can also be
represented as point contacts by converting a distribution of normal forces
across a region into a weighted sum of point forces at the vertices of the
region’s convex hull.

principles of robot autonomy 275

Figure 26.2: Grasping contacts
are generally either point-
on-point (left), point-on-line
(middle), point-on-plane (right).

26.1.2 Point-on-Plane Contact Models

Point-on-plane contact models are by far the most commonly used for grasping
since the possible contact points for most objects are almost always surface
points (and not sharp edges or points). The purpose of the contact model is
to specify the admissible forces and torques that can be transmitted through a
particular contact. Considering a local reference frame defined at the contact
point with the z direction pointing along the object’s surface normal (with the
positive direction defined as into the object), the force f can be written as:

f = fnormal + ftangent,

where fnormal = [0, 0, fz]⊤ is the vector component along the normal direction
(with magnitude fz) and ftangent = [fx, fy, 0]⊤ is the vector component tangent
to the surface. For all types of contact only an inward force can be applied,
therefore fz ≥ 0. Three types of contact models are commonly used, and each
defines a set F of admissible forces that can be applied through the contact:

1. Frictionless Point Contact: forces can only be applied along the surface nor-
mal, no torques or forces tangential with the surface are possible (ftangent =

0):
F = { fnormal | fz ≥ 0}.

These types of contact models are more common in form closure grasps.

2. Point Contact with Friction5: it is possible to apply forces in directions other

5 Also referred to as the hard finger
model.

than just the surface normal. The admissible forces (i.e. forces that don’t lead
to slipping) are typically defined by a friction cone:

F = { f | ∥ ftangent∥ ≤ µs∥ fnormal∥, fz ≥ 0}.

where µs is the static friction coefficient associated with the surface (see Fig-
ure 26.3). Figure 26.3: Friction cone de-

fined by a static coefficient of
friction µs.

Figure 26.4: Linearized friction
cone to inner approximate the
true cone.

A pyramidal inner-approximation of the friction cone is often more useful
from a computational standpoint, since its definition only requires a finite
set of vectors (see Figure 26.4). The point contact with friction model is more
common in force closure grasps.

3. Soft-finger Contact Model: allows for a torque τnormal around the surface
normal axis and also includes a friction cone for the forces as in the point

276 robotic manipulation

contact with friction model. The admissible torques are also constrained by
friction:

F = {(f , τnormal) | ∥ ftangent∥ ≤ µs∥ fnormal∥, fz ≥ 0, |τnormal| ≤ γ fz}.

where γ > 0 is the torsional friction coefficient.

26.1.3 Wrenches and Grasp Wrench Space

Under the assumption of a specific contact model, a grasp (defined by a set of
contact points) can be quantified and evaluated by determining the grasp wrench
space6, which defines how the grasp can influence the object through an applied 6 The grasp wrench space is a subset of

the wrench space Rn, where n = 6 in 3D
settings and n = 3 in 2D settings.

wrench.

Definition 26.1.1 (Wrench). A wrench is a vector valued quantity that describes the
forces and torques being applied to an object. For a force f ∈ R3 and torque τ ∈ R3

applied at the object’s center of mass, the wrench is the stacked vector:

w =

[
f
τ

]
∈ R6,

and is typically written with respect to a frame fixed in the body.

Each contact point i in a grasp applies a wrench to the object. Additionally
the torque τi can be computed by τi = di × fi where di is the vector defining the
position of the i-th contact point with respect to the object’s center of mass. The
wrench can then be written as:

wi =

[
fi

λ(di × fi)

]
, (26.1)

where the constant λ ∈ R is arbitrary but can be used to scale the torque magni-
tude if desired7.

7 If the forces fi,j are dimensional a
value of λ = 1 is common. When the
forces are unit-dimension (i.e. scaled by
their maximum magnitude), λ could be
chosen to non-dimensionalize the entire
wrench wi by non-dimensionalizing the
distance vector di (i.e. scale by an object
size metric).Using this definition of a wrench8, a grasp can be defined as the set of all

8 For a soft-finger contact model the
additional torque term must also be
included.

possible wrenches that can be achieved by the grasp’s contact points. Mathe-
matically, an admissible force fi applied at the i-th contact point can be linearly
mapped into the corresponding wrench on the object as Gi fi, where Gi is a
wrench basis matrix that also includes a transformation from the local contact
reference frame to an object-defined global reference frame. Therefore the total
wrench on the object from all contacts is:

w =
k

∑
i=1

Gi fi = G

f1
...
fk

 , G =
[

G1 . . . Gk

]
, (26.2)

where the combined matrix G is referred to as the grasp map (which varies de-
pending on the type of contact model used).

The grasp wrench space can then be defined as:

principles of robot autonomy 277

Definition 26.1.2 (Grasp Wrench Space). The grasp wrench spaceW for a grasp
with k contact points is the set of all possible wrenches w that can be applied to the
object through admissible forces:

W := {w | w =
k

∑
i=1

Gi fi, fi ∈ Fi, i = 1, . . . , k}. (26.3)

In other words, the grasp wrench space is defined by the output of (26.2) over
all possible applied force combinations { fi}k

i=1. If the grasp wrench space is
large the grasp can compensate for a bigger set of external wrenches that might
be applied to the object, leading to a more robust grasp.

Example 26.1.1 (Computing a Grasp Wrench Space from Friction Cones). Con-
sider a grasping problem with k contact points with friction, and let contact
point i be associated with a linearized friction cone Fi whose edges are defined
by the set of m forces:

{ fi,1, fi,2, . . . fi,m},

such that any force fi ∈ Fi can be written as a positive combination of these
vectors:

fi =
m

∑
j=1

αi,j fi,j, αi,j ≥ 0.

The condition ∑m
j=1 αi,j ≤ 1 will also be imposed to constrain the overall mag-

nitude9. Geometrically, this means that the friction cone Fi is the convex hull 9 In practice the physical hardware has
limitations on the magnitude of the
normal forces that can be applied.

of the points fi,j and the origin of the local contact reference frame (see Figure
26.5).

Figure 26.5: Any force fi ∈ Fi

can be written as a convex com-
bination of the forces along the
edge vectors fi,j.

This friction cone can then be mapped into the wrench space using (26.1). As-
suming the forces fi,j and position vector di are already expressed in a reference
frame fixed in the object that is common to all i contact points, the grasp wrench
spaceW can be written as:

W = {w | w =
k

∑
i=1

wi, wi =
m

∑
j=1

αi,jwi,j, wi,j =

[
fi,j

λ(di × fi,j)

]
,

m

∑
j=1

αi,j ≤ 1, αi,j ≥ 0}.

In other words, the grasp wrench space is defined by taking the Minkowski sum
over the sets of wrenches that can be generated from each individual contact!

For example, consider the 2D problem shown in Figure 26.6 where there
are k = 2 contact points with friction. The friction cones are defined by the
convex hull of the vectors { f1,1, f1,2} and { f2,1, f2,2} (and their origins) and the
distance vectors from the center of mass to the contact points are d1 and d2. The
force vectors fi,j are then mapped into the wrenches wi,j (shown on a 2D plot
of vertical force fy and torque τ in Figure 26.6, ignoring the horizontal force
components fx). The grasp wrench spaceW is then shown in the grey region of
the wrench space, where the solid grey line is the boundary ofW .

278 robotic manipulation

Figure 26.6: An example 2D
grasp consisting of two point
contacts with friction. The
friction cones shown in the fig-
ure on the left yield the grasp
wrench space in the figure
on the right (showing only
the vertical force and torque
dimensions). Note that the
grasp wrench space is bounded
because it is assumed the mag-
nitude of the contact forces are
bounded. The solid grey line
represents the boundary ofW .26.2 Grasp Evaluation

Now that the basics of grasp modeling have been introduced10 it is possible to 10 contact types, contact models, grasp
wrench spacesexplore techniques for evaluating whether a grasp is “good”. In particular, an

ideal grasp is one that has closure.

Definition 26.2.1 (Grasp Closure). Grasp closure occurs when the grasp can be
maintained for every possible disturbance load.

For example having grasp closure on a book would enable the gripper to
maintain its grasp even if the book was hit by another object or if another book
was suddenly stacked on top of it. In practice it may not be reasonable to as-
sume that every magnitude disturbance load could be accounted for, but the
concept of closure is useful nonetheless.

It can also be helpful to distinguish between two types of grasp closure. A
form closure11 grasp typically has the gripper joint angles locked and there is

11 Also called power grasps or envelop-
ing grasps. A grasp must have at least
seven contacts to provide form closure
for a 3D object.

no “wiggle” room for the object (i.e. the object is kinematically constrained).
Alternatively, a force closure12 grasp uses forces applied at contact points to 12 Also called a precision grasp. Under

a point contact with friction model, a
grasp must have at least three contacts
to provide force closure for a 3D object.

be able to resist any external wrench. Force closure grasps typically rely on
friction and generally require fewer contact points than are required for form
closure, but may not be able to actually cancel all disturbance wrenches if the
friction forces are too weak. This chapter will primarily focus on evaluating
force closure grasps since these are most common in robotics.

26.2.1 Force Closure Grasps

The concept of force closure can be related to the grasp modeling concepts from
Section 26.1:

Definition 26.2.2 (Force Closure Grasp). A grasp is a force closure grasp if for any

principles of robot autonomy 279

Figure 26.7: Examples of grasps
with form closure (left) and
force closure under the soft-
finger contact model (right).

external wrench w there exist contact forces { fi}k
i=1 such that:

−w =
k

∑
i=1

Gi fi. fi ∈ Fi, i = 1, . . . , k,

or equivalently such that:
−w ∈ W .

This definition implies that the grasp wrench space must satisfyW = Rn for
a force closure grasp, which implicitly assumes that the contact forces can be
infinite in magnitude.13 Since real hardware has limitations on the magnitude 13 For 2D objects n = 3 and for 3D

objects n = 6.of the applied contact forces, a more practical definition of force closure is to
be able to resist any external wrenches. The conditions for force closure can be
summarized by the following theorem:

Theorem 26.2.3. In an n-dimensional vector space with:

W := {w | w =
N

∑
k=1

βkwk, βk ≥ 0},

W = Rn if and only if the set {wk}N
k=1 contains at least n + 1 vectors, n of the vectors

are linearly independent, and there exists scalars βk > 0 such that:

N

∑
k=1

βkwk = 0.

From a practical perspective this theorem specifies a minimum number of
different wrenches that must be used as a basis for the grasp wrench space, and
also states that it must be possible for the grasp to apply zero wrench even when
some of the contact forces are non-zero. These conditions are equivalent to saying
that grasp wrench spaceW must contain the origin in its interior14. 14 The grasp is not in force closure if the

origin is on the boundary ofW .Note that in the practical case where the applied contact forces are assumed
to be bounded, the conditions of Theorem 26.2.3 must still hold to guarantee the
origin is in the interior ofW , which is required to resist any external wrench.
The implications of this theorem are explored further in the following examples.

280 robotic manipulation

Example 26.2.1 (2D Object (Forces Only)). Consider a simplified 2D problem
where instead of complete force closure (i.e. ability to withstand any wrench) it
is sufficient to only require the cancellation of external forces. In this case n = 2
and Theorem 26.2.3 states that it must be possible for the grasp to generate 3
force vectors where 2 are linearly independent and where:

β1 f1 + β2 f2 + β3 f3 = 0, β1, β2, β3 > 0.

Two examples grasps are shown in Figures 26.8 and 26.9. In Figure 26.8 the
three contacts are frictionless, but even though there are 3 possible force vectors
with 2 linearly independent, there is no way to generate zero force with non-
zero forces at each contact! Therefore this grasp does not have force closure.

Figure 26.8: A 2D grasp with
frictionless contacts that cannot
compensate for all possible ex-
ternal forces on the object. The
middle and right-side figures
show the space of all possible
applied forces for the cases
of unbounded and bounded
contact force magnitude, re-
spectively.

Alternatively, Figure 26.9 shows a case where it is possible to have force
closure using a point contact without friction and a point contact with friction
(a hypothetical example). In this case all of the conditions in Theorem 26.2.3
are satisfied, and it can be seen that the origin is contained in the interior of the
space of possible applied forces.

Figure 26.9: A 2D grasp con-
sisting of a contact with friction
and a contact without friction.
The middle and right-side
figures show the space of pos-
sible forces for the cases of
unbounded and bounded mag-
nitude, respectively. In the
unbounded case it is possible
to compensate for any exter-
nal force, and in the bounded
case it is possible to resist an
arbitrary force.

Example 26.2.2 (2D Object). In the more general case with 2D objects where
the torque is also considered, the grasp wrench space is in 3D (i.e. W ⊆ R3).
Therefore, Theorem 26.2.3 states the grasp wrench space satisfiesW = R3 if and
only if it is possible for the grasp to generate at least 4 different wrenches, with
3 being linearly independent, and where:

β1w1 + β2w2 + β3w3 + β4w4 = 0, β1, β2, β3, β4 > 0.

If frictionless contacts are assumed these conditions require at least 4 contact
points and in the friction case at least 2 contacts are required.

principles of robot autonomy 281

Consider again the grasp shown in Example 26.1.1 (Figure 26.6). The 4 edges
of the friction cones create a set of 3 linearly independent wrenches, but there
is no way to generate zero wrench with non-zero contact forces. This is evident
in the fact that it is not possible to generate a negative torque, which means the
grasp is not in force closure15. An alternative grasp that is in force closure is 15 Notice again that the origin is not

contained in the interior of the grasp
wrench space!

shown in Figure 26.10, which leverages a third contact point to ensure the grasp
achieves stability.

Figure 26.10: A 2D grasp con-
sisting of three point contacts
with friction. The friction cones
shown in the figure on the
left yield the grasp wrench
space in the figure on the right
(showing only the vertical force
and torque dimensions and
assuming bounded contact
force magnitudes). This grasp
is in force closure because it
can resist any external wrench
(the origin is contained in the
interior ofW).Example 26.2.3 (3D Object). For 3D objects the grasp wrench space is in 6D (i.e.

W ⊆ R6). Theorem 26.2.3’s conditions therefore require that the grasp to be able
to generate at least 7 different wrenches, with 6 being linearly independent, and
where:

7

∑
k=1

βkwk = 0, βk > 0.

If frictionless contacts are assumed these conditions require at least 7 contact
points and in the friction case at least 3 contacts are required.

26.2.2 Grasp Wrench Hull

The grasp wrench spaceW defines the set of all possible wrenches that can
be applied to an object by a grasp, but unfortunately computing this set can
be quite cumbersome in practice. One alternative approach for characterizing
a grasp is through the definition of the grasp wrench hull, which can be effi-
ciently computed. Given a set of linearized friction cones Fi defined by the set
of bounded forces { fi,1, fi,2, . . . , fi,m} for each contact in the grasp, the wrench
hull W̃ is mathematically defined as:

W̃ = {w | w =
k

∑
i=1

m

∑
j=1

αi,jwi,j, wi,j =

[
fi,j

λ(di × fi,j)

]
,

k

∑
i=1

m

∑
j=1

αi,j = 1, αi,j ≥ 0},

where di is again the vector from the object center of mass to contact point
i. Note that this is almost identical to the grasp wrench space definition ex-

282 robotic manipulation

cept that the constraint ∑m
j=1 αi,j ≤ 1 for all i has been replaced by the con-

straint ∑k
i=1 ∑m

j=1 αi,j = 1. Put simply, the wrench hull is the convex hull of the
wrenches wi,j! The difference between the grasp wrench space and the wrench
hull is shown in Figure 26.11 for the grasp from Example 26.2.2.

Figure 26.11: Difference be-
tween grasp wrench spaceW
(grey area) and wrench hull W̃
(area enclosed by black dashed
line) for the grasp in Example
26.2.2.

Importantly the property W̃ ⊆ W holds by definition. Therefore grasp force
closure is also guaranteed when the origin is in the interior of the wrench hull
space. This fact, coupled with the fact that W̃ is easier to compute thanW ,
makes it a useful characterization of grasps for evaluating grasp quality.

26.2.3 Grasp Quality

If the gripper could apply contact forces with infinite magnitude then a “good”
grasp could simply be defined as one that is in force closure. However a more
practical definition of grasp quality should be based on the assumption that the
magnitude of the contact forces is bounded. In other words, a metric for grasp
quality should quantify how well the grasp can resist external wrenches for a given
bound on the contact force.

To accomplish this, grasp quality metrics can be defined based on the defini-
tion of the grasp wrench hull W̃ . In particular, a useful metric is the radius of
the largest ball centered at the origin that is completely contained in the grasp
wrench hull (Figure 26.12). This metric is useful for the following reasons:

1. If the radius is zero, the origin is not contained in the interior of the wrench
hull and therefore the grasp is not in force closure.

2. For a radius greater than zero, the metric represents the magnitude of the
smallest external wrench that pushes the grasp to the limits. The direction
from the origin to where the ball touches the boundary ofW identifies
the (opposite) direction in which the grasp is least able to resist external
wrenches.

Figure 26.12: Grasp quality can
be measured as the radius ϵ of
the largest ball contained in the
grasp wrench hull centered at
the origin.

Another method for quantifying the grasp quality is to compute the volume
of the grasp wrench hull W̃ . This approach provides more of an average-case
metric rather than a worst-case metric, and can help differentiate between differ-
ent grasp spaces that have the same worst-case metric. For example Figure 26.13

shows a grasp with the same worst-case metric as the grasp in Figure 26.12, but
which would be considered worse with respect to the volumetric (average-case)
metric.

Figure 26.13: Using the vol-
ume of W̃ as a metric for grasp
quality can help differentiate
between two grasps with the
same worst-case performance.
For example this grasp would
be considered less robust than
the grasp in Figure 26.12 since
it has smaller volume.

26.3 Grasp Force Optimization

Recall from Section 26.1 that for a particular contact model a grasp map matrix
G can be defined such that:

w = G

f1
...
fk

 , (26.4)

principles of robot autonomy 283

where fi is the force vector associated with contact point i and w is the total
wrench applied to the object. Additionally, recall that the matrix G also includes
a rotational transformation such that the force vectors fi are in local contact
reference frames but w is represented in a common frame fixed in the object
body (at the center of mass).

The next logical question to ask is how to compute force vectors { fi}k
i=1

to achieve a desired wrench w16. While one naive approach would be to just 16 The desired wrench may be used
to counter an external disturbance (to
maintain equilibrium) or to manipulate
the object.

solve (26.4) using a least-squares method, this would fail to account for any
constraints on the force vectors. In particular, this section will focus on the point
contact with friction model where each force vector fi = [f (i)x , f (i)y , f (i)z]⊤ must
satisfy the friction cone constraint:√

f (i)x
2
+ f (i)y

2
≤ µs,i f (i)z , f (i)z ≥ 0,

where µs,i is the static friction coefficient for contact i. In this section the com-
pact notation:

fi ∈ Fi, Fi := { f ∈ R3 |
√

f 2
x + f 2

y ≤ µs,i fz, fz ≥ 0},

for the friction cone constraint will again be used. It might also be desirable
to include additional constraints on the force vectors, for example to account
for hardware limitations (e.g. torque limits) or kinematic constraints. These
additional constraints will be generally referred to by a convex constraint set C,
such that fi ∈ C is required for all i = 1, . . . , k.

To summarize, the problem is to find a set of force vectors { fi}k
i=1 such that

(26.4) is satisfied17 and such that fi ∈ Fi and fi ∈ C for i = 1, . . . , k. This prob-

17 In the case that the desired wrench is
used to counter an external disturbance,
the condition (26.4) is referred to as the
equilibrium constraint.

lem can then be solved by formulating it as a convex optimization problem18,19: 18 S. Boyd and B. Wegbreit. “Fast Com-
putation of Optimal Contact Forces”.
In: IEEE Transactions on Robotics 23.6
(2007), pp. 1117–1132

19 The problem is technically a second-
order cone program because of the
friction cone constraints.

minimize
fi , i∈{1,...,k}

J(f1, . . . , fk),

s.t. fi ∈ Fi, i = 1, . . . , k,

fi ∈ C, i = 1, . . . , k,

w− G
[

f1 . . . fk

]⊤
= 0,

(26.5)

where J(·) is the objective function that is convex in each fi. Simply choosing
J = 0 would result in a convex feasibility problem, but a more common choice
is:

J(f1, . . . , fk) = max{∥ f1∥, . . . , ∥ fk∥},

which is the maximum applied force magnitude among all contact points.
Note that the fundamental disadvantage of this optimization-based approach

is that the positions of all contacts with respect to the object’s center of mass
and the object’s friction coefficients are assumed to be known. It is also assumed
that the desired wrench w is known!

284 robotic manipulation

26.4 Learning-Based Approaches to Grasping

Model-based methods for grasp evaluation and optimization require several
assumptions that may be either difficult to validate in practice, or may not even
be valid in all scenarios. These assumptions include:

1. A coulomb (static) friction model defines the friction cone, and the coefficient
µs is known.

2. The object’s geometry and mass distribution is known20, such that given a 20 One option would be to build a
database of known objects, but this may
not be scalable to real world problems.

contact point the vector di from the object’s center of mass to the contact is
known.

3. The object is a rigid body.

4. The desired forces fi can be applied perfectly.

Learning-based methods for grasp analysis21 can leverage data to decrease re- 21 J. Bohg et al. “Data-Driven Grasp Syn-
thesis—A Survey”. In: IEEE Transactions
on Robotics 30.2 (2014), pp. 289–309

liance on these assumptions, for example by not requiring explicit knowledge of
the object’s physical parameters. Learning-based methods can also combine the
task of grasping with other parts of the manipulation pipeline, such as percep-
tion and motion planning.

This section will introduce some recent learning-based approaches to robotic
grasping, which is still a very active area of research. Specifically, these exam-
ples will demonstrate several learning-based strategies including approaches
that create synthetic training data from model-based simulators and approaches
that use real hardware to generate data.

26.4.1 Choosing a Grasp Point from an RGB Image22 22 A. Saxena, J. Driemeyer, and A. Ng.
“Robotic Grasping of Novel Objects
using Vision”. In: The International
Journal of Robotics Research 27.2 (2008),
pp. 157–173

The objective of this supervised learning approach was to learn how to find a
good grasp point in an RGB image of an object, and then generate a prediction
of the point’s 3D position. Since supervised learning techniques can require a
lot of training data, this approach auto-generated training images synthetically
using realistic rendering techniques (see Figure 26.14). The use of synthetic
data also made it easier to collect a diverse training set including images with
different lighting, object color, and object orientation and size.

Figure 26.14: Synthetic image
of a cup and its labeled grasp
point from Saxena et al. (2008).

Once a model was trained to produce good grasp point classifications, 3D
predictions of the target grasp position were generated by structure-from-motion,
where two images were used to triangulate the point in space. While there are
certainly limitations to this approach, this work produced promising results,
including good grasp success rates on novel objects (that weren’t included in the
training dataset). This work also had substantial influence on future learning-
based grasping and manipulation approaches.

principles of robot autonomy 285

26.4.2 Exploiting Simulation and a Database of Objects to Predict Grasp Success23
23 J. Mahler et al. “Dex-Net 1.0: A cloud-
based network of 3D objects for robust
grasp planning using a Multi-Armed
Bandit model with correlated rewards”.
In: IEEE International Conference on
Robotics and Automation (ICRA). 2016,
pp. 1957–1964

The Dex-Net approach for learning to grasp is another supervised learning ap-
proach that relies on simulations to generate training data. Specifically this ap-
proach assumes a parallel jaw gripper and contains a large (> 10, 000) database
of 3D object models. For each model in the Dex-Net database, the simulator
uses analytical (model-based) techniques to evaluate a large number of potential
grasps for probability of success24. This is accomplished by empirically sam- 24 The Dex-Net database consists of 2.5

million tested grasps.pling a grasp some number of times and determining (through simulation) the
percentage that result in force closure25. The database of objects and poten- 25 There is simulated uncertainty in

object and gripper pose, as well as the
surface friction.

tial grasps can then be used to train a model to predict the probability of force
closure for a new grasp/object.

In practice a number of candidate grasps are generated for a given (poten-
tially novel) object, are evaluated by the learned model to predict probability of
success, and then a multi-armed bandit26 approach is used to select which grasp

26 A fundamental reinforcement learn-
ing problem focused on uncertain
decision making.

to take. The learned models are then updated based on the outcome of the ac-
tion for continuous improvement. This work showed that leveraging the prior
information from the object database can significantly improve grasping for
new objects (even if they are not in the database), and later improvements have
enhanced the approach even further.

Figure 26.15: Dex-Net grasps
are parameterized by the cen-
troidal position of the gripper
x and the approach direction v,
Mahler et al. (2016).

26.4.3 Learning to Grasp Through Real-World Trial-and-Error27

27 S. Levine et al. “Learning hand-
eye coordination for robotic grasping
with deep learning and large-scale
data collection”. In: The International
Journal of Robotics Research 37.4-5 (2018),
pp. 421–436

Instead of leveraging simulators to generate synthetic data this work uses hard-
ware experiments to generate real-world data. The resulting experiences are
then used in a self-supervised approach to learn an end-to-end framework to
grasp objects in cluttered environments. One of the reasons this work is signifi-
cant is the lack of assumptions that are made: 3D object models are not needed,
only RGB images are required, it does not use contact models or simulated data,
no physical object information is used, and no hand-engineered path/grasp
planning algorithms are used. Instead the system just learns through trial-and-
error, exploring approaches to actuate the robot arm and gripper that eventually
lead to robust grasps.

This approach showed impressive results over hand-designed or open-loop
approaches, but at the cost that it took six months and a large number of robots
to generate enough training data.

26.5 Learning-Based Approaches to Manipulation

The previous sections of this chapter have focused on the problem of grasp-
ing, but many robotic manipulation tasks involve more than simply grasping
an object. For example it is possible to manipulate objects without force clo-
sure grasps, such as by pushing the object28. Many manipulation tasks that do 28 Not only is it possible, but may be

necessary if the object is too large or
heavy to grasp.

involve grasping also involve other complex steps, such as using the grasped
object to manipulate other objects (e.g. hitting a hammer with a nail) or placing

286 robotic manipulation

the object in a certain position (e.g. inserting a key into a lock). This section will
introduce at a high-level some interesting and foundational problems in ma-
nipulation, and present the high-level ideas found in some recent research on
learning-based approaches to solving them.

26.5.1 Planar Pushing

Planar pushing is a fundamental manipulation task where the goal is to control
the pose of an object in a 2D setting by only using “pushing” contacts. While
the contact point models used for grasping can also be applied in this problem,
the interaction of the object and the surface must also be accounted for.

Similar to the physics-based contact models for grasping, physics-based mod-
els can also be developed to predict the sliding interactions between the ob-
ject and the surface. In particular, the concept of a friction limit surface29 can be 29 I. Kao, K. Lynch, and J. Burdick.

“Contact Modeling and Manipula-
tion”. In: Springer Handbook of Robotics.
Springer, 2016, pp. 931–951

used to model the interaction between the object and the surface. The friction
limit surface is a boundary in wrench space that separates wrenches that the
surface can apply to the object through friction and those it can’t. The part of
the wrench space enclosed by this surface will contain the origin (i.e. the zero
wrench), and most importantly whenever the object is slipping the wrench ap-
plied on the object lies on the friction limit surface. This surface can be determined
numerically if the coefficient of friction, the contact area, and the pressure dis-
tribution are known. For simplicity, it is common to approximate this surface as
an ellipsoid. To summarize:

1. If an external wrench applied to the object is within the region of the wrench
space enclosed by the friction limit surface, friction between the object and
the surface will cause the object to remain motionless.

2. If the part slides quasistatically30, the pushing wrench must lie on the fric- 30 Assumption that the part moves
slowly enough that inertial effects are
negligible.

tion limit surface and the motion (velocity) of the object can be determined.

The friction limit surface provides the foundation for a physics-based model
that predicts how an object will slide across a surface under external contact
forces. Such a model could be used to design a controller (e.g. with model pre-
dictive control) for planar pushing tasks. However, these physics-based models
are based on approximations and assumptions that may impact their accuracy Assumptions in physics-based pushing

model: ellipsoidal friction limit surface,
coulomb friction, perfectly planar
object/surface, rigid body object,
physical properties of object are known.

or applicability to real problems. In fact some studies have been performed to
evaluate the accuracy of physics-based pushing models31.

31 K. Yu et al. “More than a million ways
to be pushed. A high-fidelity exper-
imental dataset of planar pushing”.
In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).
2016, pp. 30–37

While physics-based controllers such as model predictive control can handle
some uncertainty via feedback control mechanisms, it is still desirable to im-
prove the modeling accuracy and eliminate assumptions requiring knowledge
of the parameters that define the models32. Learning-based approaches are one

32 For example the physical properties
of the object and surface.

possible solution to some of these challenges, where real-world data can be used
to either completely replace or augment the physics-based models.

In fact, recent work33 has compared the use of physics-based, hybrid (physics
33 A. Kloss, S. Schaal, and J. Bohg.
“Combining learned and analytical
models for predicting action effects
from sensory data”. In: The International
Journal of Robotics Research (2020)

+ learning), and learning-based models for planar pushing tasks. In this work

principles of robot autonomy 287

the hybrid model learned a mapping from sensor measurements (RGB images)
into a set of parameters that were required for the physics-based motion model
and the learning-based model just directly learned a single neural network for
mapping sensor measurements to motion predictions directly. As might be
expected the hybrid approach achieved better generalization by leveraging the
physics-based model’s structure, while the learning-based approach overfit to
the training data34. 34 This is a classic example of bias-

variance tradeoff in modeling.

26.5.2 Contact-Rich Manipulation Tasks

Many 6D manipulation problems involve grasping an object and then using it
to physically interact with the environment. Classic everyday examples include
hitting a nail with a hammer, inserting a key into a lock, and plugging a cord
into an electrical outlet. These types of contact-rich tasks tasks typically rely on
multiple different sensing modalities including haptic and visual feedback. Con-
sider the task of inserting a key into a lock: without sight it would be challeng-
ing to correctly position the key and without tactile sensing (e.g. force/torque
sensing) it would be challenging to know when the key is perfectly aligned and
can be inserted.

However, it can be quite challenging to integrate multiple sensing modalities
toward a common task, especially when the sensing modalities are so different
and since manipulation tasks can be quite complex. One approach may be to
individually develop systems for different subtasks and manually find a com-
mon interface to stitch them together, however this could be challenging from
a system engineering perspective. An alternative is to use machine learning
techniques to automatically integrate the sensing modalities.

One learning-based approach to this problem is to design an end-to-end
system that takes as input all sensor data streams and outputs actions for the
robot to execute the task. However, when implemented in a naive way (e.g.
a single massive neural network architecture) end-to-end approaches can be
data inefficient. An alternative is to add additional structure to the learning-
based approach by leveraging some insights into the problem, similar to how
the physics-based motion model was used in the learning-based planar pushing
example discussed in the previous section.

A structured approach for manipulation tasks relying on multiple sensing
modalities is introduced by Lee et al.35. In this work an end-to-end system 35 M. Lee et al. “Making Sense of Vision

and Touch: Self-Supervised Learning
of Multimodal Representations for
Contact-Rich Tasks”. In: International
Conference on Robotics and Automation
(ICRA). 2019, pp. 8943–8950

that takes sensor data streams as input and outputs robot actions is split into
two parts: first transforming the multi-modal sensor data streams into a low-
dimensional feature representation that contains task relevant information36,

36 This is accomplished by training an
autoencoder network.

and then using these features as the input to a learned policy that generates
robot actions. In other words, the insight is that the learning process can be
made more efficient by first learning a way to compress and summarize all of
the sensor data, and then learning how to use the summarized information
to generate a good policy. Another benefit to this approach is that the sensor

288 robotic manipulation

data encoder can generalize more effectively to new tasks, meaning that only the
policy portion needs to be retrained!

Part VII

Appendices

A
Machine Learning

Many algorithms and tools in robotic autonomy leverage models of the world
that are often based on first-principles: physics-based kinematic models are
used to design controllers, sensor models are used in localization algorithms,
and geometric principles are used in understanding stereo vision. However,
there are also many scenarios in robotics where these techniques may fail to
capture the complexity of unstructured real-world environments. For exam-
ple, how can a stop-sign be reliably detected in camera images when it could
be rainy, foggy, or dark out, or when the stop-sign is partially occluded? Are
there first-principles models that can accurately predict the behavior of a hu-
man driver, and distinguish between aggressive and defensive driving behavior?
How can a robot be programmed to pick up objects with an infinite number of
variations in size, shape, color, and texture? In the last few decades, advance-
ments in machine learning1 have led to start-of-the-art approaches for many 1 T. Hastie, R. Tibshirani, and J. Fried-

man. The elements of statistical learning:
data mining, inference, and prediction.
Springer, 2017

of these challenging problems2. This chapter presents an introduction to ma-

2 Of course in many settings it is benefi-
cial to use first-principles and machine
learning techniques in concert.

chine learning to provide a knowledge of the fundamental tools that are used
in learning-based algorithms for robotics, including computer vision, reinforce-
ment learning, and more.

Machine Learning

At their most fundamental level, machine learning techniques seek to extract
useful patterns from data3, and are typically classified as either supervised or 3 In many cases the data will come from

real world experiments, but in other
cases may come from simulation.

unsupervised.

Definition A.0.1 (Supervised Learning). Given a collection of n data points:

{(x1, y1), . . . , (xn, yn)},

where xi is an input variable and yi is an output, the supervised learning problem is to
find a function y = f (x) that fits the data and can be used to predict outputs y for new
inputs x.

Definition A.0.2 (Unsupervised Learning). Given a collection of n data points
{x1, . . . , xn}, the unsupervised learning problem is to find patterns in the data.

292 machine learning

Supervised learning problems, such as regression and classification4, are 4 In regression problems the output
y is continuous and in classification
problems the output y is discrete
(categorical).

generally more common in robotics applications and will be the focus of this
chapter. For example, robotic imitation learning-based controllers5 can be ex-

5 Imitation learning refers to the process
of learning to mimic a policy (e.g. from
an expert) through example decisions.

pressed as a regression problem where the input x is the state of the robot and y
is the action the robot should take. Classification problems also arise frequently
in robotic computer vision, for example to identify whether the image x belongs
to a particular class y (e.g. a dog or cat).

In both regression and classification problems, the learned function f is cate-
gorized as either parametric or non-parametric. Parametric functions are generally
more structured and can be written down in an analytical form6, while non- 6 The most basic parametric function

would be a linear function f (x) = Wx,
parameterized by the “weight” matrix
W.

parametric functions are generally defined by the data points themselves7. The

7 In the non-parametric k-nearest
neighbors method, the value f (x) is
defined by the value of the data points
yi corresponding to the k closest points,
xi , to x.

best choice between parametric or non-parametric functions is generally depen-
dent on the particular problem and the type of data available. However, some
of the most popular choices are parametric, such as polynomials and neural
networks.

A.1 Loss Functions

In supervised learning problems, a metric known as a loss function is used to
evaluate and compare candidate models f (x) that could be used to fit the data.
Many loss functions for supervised learning problems exist, but some of the
most common examples include the l2 and l1 loss (for regression) and the 0− 1
and cross entropy loss (for classification).

1. The l2 loss function is defined by:

L =
1
n

n

∑
i=1

(f (xi)− yi)
2, (A.1)

where the summation is over some set of data points (xi, yi). From this loss
function it can be seen that a penalty arises from the function f not perfectly
matching the data at the sampled data points, but most importantly that
the penalty is quadratic with respect to this residual. This loss function will
therefore favor more small residuals over a few large residuals, which tends
to make the model perform better “on average”. However this also makes the
l2 loss sensitive to outliers in the data, making the training less robust.

2. The l1 loss function is defined by:

L =
1
n

n

∑
i=1
| f (xi)− yi|. (A.2)

Unlike the l2 loss, this loss function only penalizes the absolute value of the
residual. Therefore this loss function will favor all residuals on a more equal
footing and generally leads to a more robust training procedure that is less
sensitive to outliers in the data.

principles of robot autonomy 293

3. The 0− 1 loss function is defined by:

L =
1
n

n

∑
i=1

1{ f (xi) ̸= yi}, (A.3)

where 1{·} is the indicator function. This loss function can be used in clas-
sification problems and provides a loss of 1 whenever the classification is
incorrect, and 0 otherwise. However, the use of this loss function introduces
practical issues when training with gradient-based optimization, since this
function is either flat or not differentiable at all points in the domain.

4. The cross entropy loss function8 is defined by: 8 Cross entropy loss is more practical
than 0− 1 loss since it is a differentiable
function.

L = − 1
n

n

∑
i=1

y⊤i log f (xi), (A.4)

and is a common loss function in classification problems. To get an intuitive
feeling for how the cross entropy loss works, consider a classification problem
where the classes are c ∈ {1, 2, . . . , C} and where the function f (xi) outputs
a vector of the probabilities of each class (which is normalized to sum to
1)9. Additionally, for each data point the vector yi is a “one-hot” vector10 9 This can be accomplished by using the

softmax function.
10 A one-hot vector is a vector with all
zeros and a single 1.

specified by the class associated with xi. Therefore the loss for a particular
data point can be written as:

−y⊤i log f (xi) = −
[
0, . . . , 1, . . . , 0

]
log f1(xi)

...
log fC(xi)

 = − log fc(xi),

where C is the number of classes, the 1 element in yi is in the position corre-
sponding to the correct class, and fc(xi) is the probability of the correct class
output by the model. Thus, to minimize the loss for this particular data point
it is good to make fc(xi) = 1 (in fact as fc(xi) −→ 0 the loss approaches in-
finity!). Cross entropy loss can also be derived from a statistical perspective,
where it can be shown to be the same as maximizing the log-likelihood over
all data points.

A.2 Model Training

In supervised learning problems with a predetermined parametric model (e.g.
linear model or neural network), the values of the parameters can be optimized
to best fit the data (i.e. minimize the specified loss function). This process of
parameter optimization is referred to as model training. While in some special
cases the optimal set of parameters can be computed analytically, it is more
common to search for a good set of parameters in an iterative fashion using
numerical optimization techniques.

294 machine learning

Example A.2.1 (Linear Least Squares). One of the most fundamental regression
problems, linear least squares, can be solved analytically. In this problem, the
parametric model is a linear model11: 11 This approach can also be extended

to nonlinear settings through the use of
basis functions. In particular the model
becomes f (x) = θ⊤ϕ(x), where ϕ(x) are
nonlinear basis functions (sometimes
referred to as features.

f (x) = θ⊤x,

where x ∈ Rp is the input and θ ∈ Rp is the set of model parameters, and the
loss function is the l2 loss (A.1). Given n data points (xi, yi), the loss function
can be expressed in matrix form as:

L(θ) =
1
n
∥Y− Xθ∥2

2,

where the matrix Y ∈ Rn and X ∈ Rn×p are defined by the data as:

Y =

y1
...

yn

 , X =

x⊤1
...

x⊤n

 .

The parameters θ are then chosen to minimize the loss function by taking the
derivative:

dL
dθ

=
2
n

X⊤Xθ − 2
n

X⊤Y,

and setting it equal to zero, which gives θ∗ = (X⊤X)−1X⊤Y.12 12 Note that directly computing the
inverse of X⊤X may be challenging, but
alternative numerical methods exist to
compute the value of θ∗ that satisfies
the necessary condition of optimality.

A.2.1 Numerical Optimization

In many cases parameter optimization cannot be performed analytically and
therefore numerical optimization algorithms are used. Two of the most fun-
damental algorithms for numerical optimization-based training of parametric
models are gradient descent and stochastic gradient descent13. 13 Gradient descent is referred to as a

first-order method.In gradient descent, the parameters θ ∈ Rp of a model fθ(x) are iteratively
updated by:

θ ←− θ − η∇θ L(θ),

where ∇θ L(θ) is the gradient of the loss function with respect to the parameters
and the hyperparameter η is referred to as the learning rate or step-size. By lever-
aging the gradient, this update rule seeks to iteratively improve the parameters
to incrementally decrease the loss.

Notice that the gradient of the loss can be written as:

∇θ L(θ) =
1
n

n

∑
i=1
∇θ Li(θ),

where Li is the term of the loss function associated with the i-th data point.
Therefore computing the gradient of the loss function could be computation-
ally intensive if the number of data points is very large. To address this issue,
stochastic gradient descent uses an approximation of the gradient computed by
randomly sampling the gradients over a smaller batch of data points S14: 14 The batch S is resampled at every

iteration of the algorithm.

principles of robot autonomy 295

∇θ L(θ) ≈ 1
|S| ∑

i∈S⊂{1,...,n}
∇θ Li(θ),

where |S| is the number of data points in the batch.
Beyond gradient descent approaches lie a broad set of additional numeri-

cal optimization algorithms that are commonly used in practice15. Often times 15 M. J. Kochenderfer and T. A. Wheeler.
Algorithms for Optimization. MIT Press,
2019

these advanced methods may lead to faster learning rates or more robust learn-
ing, and some algorithms may also be more applicable to problems with larger
amounts of data or larger numbers of model parameters.

A.2.2 Training and Test Sets + Regularization

In supervised learning with parametric models, the goal is to train a model f (x)
that accurately predicts the output y for inputs x that are not seen in the data
set. In other words, the goal is to find a model that generalizes to unseen data.
It is important to note however that simply optimizing the loss function over a
dataset does not guarantee that the model generalizes well, since it is possible to
overfit the model to the data.

A model is overfit to a set of data if it predicts the set of data well (i.e. has a
low loss) but fails to accurately predict new data. To counter this issue, one very
common practice in machine learning is to split the full dataset into two parts:
a training set and a test set16. As the names suggest, the model can be trained 16 There isn’t an optimal way to split

the data, but common splits range
from 80/20 training/test to 50/50
training/test.

with the training data and then the test set can be used to verify whether over-
fitting has occured. To test for overfitting, the loss function can be evaluated
over both sets of data. Overfitting has occured if the training loss is significantly
lower than the test loss.

While splitting the data into training and test sets provides a good way to
verify whether the learned model generalizes well, there are also techniques
that can be employed in during the training process to avoid overfitting. In
particular, the most common technique is known as regularization. One form of
regularization is implemented by adding terms to the loss function to penalize
“model complexity”. For example, with a model fθ(x) parameterized by the
vector θ, two common forms of regularization include:

1. l2 regularization, which consists of the addition of the term ∥θ∥2 to the loss
function,

2. l1 regularization, which which consists of the addition of the term ∥θ∥1 to the
loss function.

A.3 Neural Networks

One very common parametric model used in machine learning is the neural
network17. Neural networks are models with very specific structures, consisting 17 Also known as the multi-layer percep-

tron.of a hierarchical sequence of linear and nonlinear functions, which makes them

296 machine learning

very powerful function approximators. Mathematically, neural networks are
typically described as a sequence of functions:

h1 = f1(W1x + b1),

h2 = f2(W2h1 + b2),

...

ŷ = fK(WKhK−1 + bK),

(A.5)

which is an easier notation than writing the equivalent composite function:

ŷ = fK(WK fK−1(. . .) + bK).

In this model, the parameters are the weights W1, . . . , WK and biases b1, . . . , bK,
and the structure of the model is predefined by the choice of the activation
functions f1, . . . , fK and the number of layers K. The intermediate variables
h1, . . . , hK−1 are the outputs of the hidden layers, aptly named since they are
not the input or the output of the model.

To fully specify the structure of the model, a practitioner needs to specify the
number of hidden layers18, the dimensionality of each of the intermediate vari- 18 Neural networks with many layers

are referred to as deep neural networks.ables hi (usually chosen to be the same for all hidden layers), and the activation
functions fi.

A.3.1 Activation Functions

Commonly used activation functions f1, . . . , fK in neural networks include sig-
moid functions, hyperbolic tangent functions, rectified linear units (ReLU), and
leaky ReLU functions19.

19 It is typical for the same activation
function to be used for all layers of the
network.

1. Sigmoid function (also denoted as σ(x)):

f (x) =
1

(1 + e−x)
,

2. Hyperbolic tangent function:

f (x) = tanh(x),

3. ReLU function:
f (x) = max{0, x},

4. Leaky ReLU function:
f (x) = max{0.1x, x},

It is important to note that each of these activation functions share two im-
portant characteristics: they are nonlinear and they are easy to differentiate. It
is critical that the activation function be nonlinear since a composition of lin-
ear functions will remain linear, and therefore no additional benefit is gained
in modeling capability by adding more than a single layer to the network. Dif-
ferentiability is also critical because the gradients must be easily computable
during training20. 20 While ReLU and leaky ReLU are not

strictly differentiable, this issue is easily
mitigated in practice.

principles of robot autonomy 297

Figure A.1: Common activa-
tion functions used in neural
networks.

A.3.2 Training Neural Networks

Neural networks are trained with gradient-based numerical optimization tech-
niques, such as those mentioned in Section A.2.1 (e.g. stochastic gradient de-
scent). Therefore once a particular loss function L has been chosen, the gra-
dients ∂L

∂θ must be computed for each parameter. Since neural networks can
contain a large number of parameters, this gradient computation must be ac-
complished in a computationally efficient way. In particular, the gradients are
computed using an algorithm referred to as backpropagation, which leverages the
chain rule of differentiation and the layered structure of the network.

As with other parametric models, it is very important to avoid overfitting
when training neural networks21. This can partially be accomplished using the 21 It is quite easy to overfit when train-

ing neural networks since they have
such a large number of parameters.

division of the dataset into training and test sets, as well as by using regulariza-
tion techniques as mentioned in Section A.2.2. Another technique for avoiding
overfitting in neural networks is referred to as dropout, where some “connec-
tions” in the network are occasionally removed during the training process. This
essentially forces the network to learn more redundant representations, which
has been shown to improve generalization. Of course another useful technique
to avoid overfitting is just to have an extremely large dataset, but in many cases
this may not be very practical.

A.4 Backpropagation and Computational Graphs

From a theoretical standpoint, computing the gradients dL
dθ of the loss function

with respect to the parameters is relatively straightforward. However, from a
practical standpoint computing these gradients can be computationally expen-
sive, especially for complex models such as neural networks. Backpropagation22 22 Sometimes also referred to as auto-

differentiation.is an algorithm that addresses this issue by computing all required gradients in
an efficient way. Many software tools, such as PyTorch

(https://pytorch.org/) and Tensor-
Flow (https://www.tensorflow.org/)
will automatically be able to perform
backpropagation for a large class of
functions.

Backpropagation computes gradients by cleverly choosing the order in which
operations required to compute the gradient are performed. By doing so it seeks
to avoid redundant computations, and can in fact be viewed as an example
of dynamic programming. While in some simple cases the backpropagation

298 machine learning

algorithm may provide only a small advantage, in many cases (and in particular
for neural network training) backprop can be orders of magnitude faster than
naive approaches.

A computational graph is another practical tool that is useful when using the
backpropagation algorithm to compute gradients. A computational graph pro-
vides a way to express a mathematical function using representations from
graph theory. In particular the function is expressed as a directed graph where
the nodes represent mathematical operations or function inputs and the edges
represent intermediate quantities. Using a computational graph, a forward pass
through the graph (starting at the root nodes, which are function inputs) is
equivalent to evaluating the function.

This representation makes it very easy to see the structure of the mathemat-
ical operation that can be exploited by the backpropagation algorithm. As an
example, consider the function L(x, y) = g(f (x, y)) and its associated compu-
tational graph shown in Figure A.2 (which includes the intermediate variable
z). Using the chain rule, the gradient of L with respect to x is ∂L

∂x = dL
dz

∂z
∂x . The

backpropagation algorithm uses this structure to convert the computation of
the gradient ∂L

∂x into a sequence of local gradient computations dL
dz and ∂z

∂x , corre-
sponding to each computation node in the graph. With this structure redundant
computation can be be avoided. For example, when computing ∂L

∂y the partial

gradient dL
dz can be reused.

Figure A.2: Example compu-
tational graph for a function
L(x, y) = g(f (x, y)).

To summarize, the backpropagation algorithm follows the following basic
steps:

1. Perform a forward pass through the computational graph to compute any
intermediate variables that may be needed for computing local gradients23. 23 For example if g(z) = z2 the gradient

dg
dz = 2z depends on the current value
of z2. Starting from the graph output, perform a backwards pass over the graph

where at each computation node the local gradient of the node with respect
to its inputs and outputs is computed. Then, compute the gradient of the
graph’s output with respect to the inputs of the local computation node,
leveraging the chain rule and previously calculated gradients. In Figure A.2,
the first step of backprop would be to compute ∂L

∂z = dg
dz , and the second step

would use ∂L
∂z to compute the remaining gradients ∂L

∂x and ∂L
∂y .

Example A.4.1 (Training a Simple Model). Consider a supervised learning
problem with a parametric model defined as:

f (x) = (x + a)(x + b),

principles of robot autonomy 299

where a and b are parameters of the model, and a l2 loss function (A.1) is used
for training. A computational graph for computing the loss from a single data
point with this model is shown in Figure A.3.

Figure A.3: Computational
graph for computing the loss
for a single data point for the
model f (x) = (x + a)(x + b)
with l2 loss (see Example A.4.1).
The values (xi, yi) are the data
point, the model output is ŷ,
and z1, z2, z3 are intermediate
variables. The quantities a and
b are parameters of the model.

For this model and loss function the gradients required for training can be
computed analytically as:

∂Li
∂a

= −2(y− (x + a)(x + b))(x + b),

∂Li
∂b

= −2(y− (x + a)(x + b))(x + a).

Computing the gradients in this way (the naive approach) would require 7
operations each (4 sums and 3 multiplications), for a total of 14 operations.

Alternatively the gradients can be computed in a more efficient way using
backpropagation, which avoids redundant computations. This approach can be
viewed as taking a backward pass over the computation graph. Starting at the
output of the graph:

∂Li
∂z1

= 2z1.

Then moving on through the next operations and using the chain rule (and
reusing the previous computations):

∂Li
∂ŷ

=
∂Li
∂z1

∂z1

∂ŷ
= − ∂Li

∂z1
,

and:

∂Li
∂z2

=
∂Li
∂ŷ

∂ŷ
∂z2

=
∂Li
∂ŷ

z3,

∂Li
∂z3

=
∂Li
∂ŷ

∂ŷ
∂z3

=
∂Li
∂ŷ

z2.

Finally, the next step backward reaches the parameters a and b:

∂Li
∂a

=
∂Li
∂z2

∂z2

∂a
=

∂Li
∂z2

,

∂Li
∂b

=
∂Li
∂z3

∂z3

∂b
=

∂Li
∂z3

.

To actually compute the numerical values of these gradients:

1. First perform a forward pass through the network to compute the values z1,
z2, and z3 (5 operations).

2. Then perform the backward pass computations to compute ∂Li
∂z1

, ∂Li
∂ŷ , ∂Li

∂z2
, ∂Li

∂z3
,

∂Li
∂a , and ∂Li

∂b (4 operations).

Using backpropagation, only 9 operations are required to compute the gradients
∂Li
∂a , and ∂Li

∂b , which is a non-negligible reduction over the naive approach!

Bibliography

[1] P. Abbeel and A. Ng. “Apprenticeship Learning via Inverse Reinforce-
ment Learning”. In: Proceedings of the Twenty-First International Conference
on Machine Learning. 2004.

[2] M. Aicardi et al. “Closed loop steering of unicycle like vehicles via Lya-
punov techniques”. In: IEEE Robotics & Automation Magazine 2.1 (1995),
pp. 27–35.

[3] U. Ascher and R. D. Russell. “Reformulation of boundary value problems
into “standard” form”. In: SIAM Review 23.2 (1981), pp. 238–254.

[4] A. Bajcsy et al. “Learning Robot Objectives from Physical Human Inter-
action”. In: Proceedings of the 1st Annual Conference on Robot Learning. 2017,
pp. 217–226.

[5] C. Basu et al. “Do You Want Your Autonomous Car to Drive Like You?”
In: 12th ACM/IEEE International Conference on Human-Robot Interaction.
2017, pp. 417–425.

[6] D. Bertsekas. Reinforcement learning and optimal control. Athena Scientific,
2019.

[7] J. Bohg et al. “Data-Driven Grasp Synthesis—A Survey”. In: IEEE Transac-
tions on Robotics 30.2 (2014), pp. 289–309.

[8] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

[9] S. Boyd and B. Wegbreit. “Fast Computation of Optimal Contact Forces”.
In: IEEE Transactions on Robotics 23.6 (2007), pp. 1117–1132.

[10] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

[11] R. Brooks. “A robust layered control system for a mobile robot”. In: IEEE
Journal on Robotics and Automation 2.1 (1986), pp. 14–23.

[12] E. M. Clarke et al. Model Checking. 2nd ed. MIT Press, 2018.

[13] G. Dudek and M. Jenkin. “Inertial Sensors, GPS, and Odometry”. In:
Springer Handbook of Robotics. Springer, 2008, pp. 477–490.

[14] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2011.

302 BIBLIOGRAPHY

[15] A. Fusiello, E. Trucco, and A. Verri. “A compact algorithm for rectification
of stereo pairs”. In: Machine Vision and Applications 12.1 (2000), pp. 16–22.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[17] F. Gustafsson. Statistical Sensor Fusion. Studentlitteratur, 2013, p. 554.

[18] C. Harris and M. Stephens. “A combined corner and edge detector”. In:
4th Alvey Vision Conference. 1988.

[19] R. Hartley and A. Zisserman. “Camera Models”. In: Multiple View Geome-
try in Computer Vision. Academic Press, 2002.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer, 2017.

[21] L. Janson et al. “Fast Marching Tree: A Fast Marching Sampling-Based
Method for Optimal Motion Planning in Many Dimensions”. In: Int.
Journal of Robotics Research 34.7 (2015), pp. 883–921.

[22] L. Joseph. Robot Operating System (ROS) for Absolute Beginners: Robotics
Programming Made Easy. Apress, 2018.

[23] L. Kaelbling et al. 6.01SC: Introduction to Electrical Engineering and Com-
puter Science I. MIT OpenCourseWare. 2011.

[24] I. Kao, K. Lynch, and J. Burdick. “Contact Modeling and Manipulation”.
In: Springer Handbook of Robotics. Springer, 2016, pp. 931–951.

[25] S. Karaman and E. Frazzoli. “Sampling-based Algorithms for Optimal
Motion Planning”. In: Int. Journal of Robotics Research 30.7 (2011), pp. 846–
894.

[26] G. Katz et al. “The Marabou Framework for Verification and Analysis of
Deep Neural Networks”. In: Computer Aided Verification. 2019, pp. 443–452.

[27] L. E. Kavraki et al. “Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”. In: IEEE Transactions on Robotics and
Automation 12.4 (1996), pp. 566–580.

[28] D. E. Kirk. Optimal Control Theory: An Introduction. Dover Publications,
2004.

[29] A. Kloss, S. Schaal, and J. Bohg. “Combining learned and analytical mod-
els for predicting action effects from sensory data”. In: The International
Journal of Robotics Research (2020).

[30] M. J. Kochenderfer and T. A. Wheeler. Algorithms for Optimization. MIT
Press, 2019.

[31] D. Kortenkamp, R. Simmons, and D. Brugali. “Robotic Systems Architec-
tures and Programming”. In: Springer Handbook of Robotics. Springer, 2008,
pp. 283–302.

principles of robot autonomy 303

[32] M. Kwiatkowska, G. Normal, and D. Parker. “PRISM 4.0: Verification of
Probabilistic Real-time Systems”. In: Proceedings of the 23rd International
Conference on Computer Aided Verification. 2011, pp. 585–591.

[33] S. M. LaValle. Planning Algorithms. Cambridge, U.K.: Cambridge Univer-
sity Press, 2006.

[34] S. M. LaValle. Rapidly-Exploring Random Trees: A New Tool for Path Plan-
ning. 1998.

[35] Y. LeCun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[36] M. Lee et al. “Making Sense of Vision and Touch: Self-Supervised Learn-
ing of Multimodal Representations for Contact-Rich Tasks”. In: Interna-
tional Conference on Robotics and Automation (ICRA). 2019, pp. 8943–8950.

[37] J. Levine. Analysis and Control of Nonlinear Systems: A Flatness-based Ap-
proach. Springer, 2009.

[38] S. Levine et al. “Learning hand-eye coordination for robotic grasping with
deep learning and large-scale data collection”. In: The International Journal
of Robotics Research 37.4-5 (2018), pp. 421–436.

[39] C. Loop and Z. Zhang. “Computing rectifying homographies for stereo
vision”. In: IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition. Vol. 1. 1999, pp. 125–131.

[40] J. Mahler et al. “Dex-Net 1.0: A cloud-based network of 3D objects for
robust grasp planning using a Multi-Armed Bandit model with correlated
rewards”. In: IEEE International Conference on Robotics and Automation
(ICRA). 2016, pp. 1957–1964.

[41] H. P. Moravec. “Towards automatic visual obstacle avoidance”. In: 5th
International Joint Conference on Artificial Intelligence. 1977.

[42] R. M. Murray. Optimization-Based Control. California Institute of Technol-
ogy, 2009.

[43] A. Ng and S. Russell. “Algorithms for Inverse Reinforcement Learning”.
In: Proceedings of the Seventeenth International Conference on Machine Learn-
ing. 2000, pp. 663–670.

[44] N. Perveen, D. Kumar, and I. Bhardwaj. “An overview on template
matching methodologies and its applications”. In: International Journal
of Research in Computer and Communication Technology 2.10 (2013), pp. 988–
995.

[45] D. Prattichizzo and J. C. Trinkle. “Grasping”. In: Springer Handbook of
Robotics. Springer, 2016, pp. 955–988.

[46] M. Quigley, B. Gerkey, and W. D. Smart. Programming Robots with ROS: A
Practical Introduction to the Robot Operating System. O’Reilly Media, 2015.

304 BIBLIOGRAPHY

[47] N. Ratliff, J. A. Bagnell, and M. Zinkevich. “Maximum Margin Planning”.
In: Proceedings of the 23rd International Conference on Machine Learning. 2006,
pp. 729–736.

[48] S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 39.6 (2017), pp. 1137–1149.

[49] S. Ross, G. Gordon, and D. Bagnell. “A Reduction of Imitation Learning
and Structured Prediction to No-Regret Online Learning”. In: Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and
Statistics. 2011, pp. 627–635.

[50] D. Sadigh et al. “Active Preference-Based Learning of Reward Functions”.
In: Robotics: Science and System. 2017.

[51] D. Sadigh et al. “Planning for cars that coordinate with people: leveraging
effects on human actions for planning and active information gathering
over human internal state”. In: Autonomous Robots 42.7 (2018), pp. 1405–
1426.

[52] A. Saxena, J. Driemeyer, and A. Ng. “Robotic Grasping of Novel Objects
using Vision”. In: The International Journal of Robotics Research 27.2 (2008),
pp. 157–173.

[53] D. Scharstein and R. Szeliski. “High-accuracy stereo depth maps using
structured light”. In: IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. Vol. 1. 2003.

[54] E. Schmerling, L. Janson, and M. Pavone. “Optimal sampling-based mo-
tion planning under differential constraints: the driftless case”. In: IEEE
International Conference on Robotics and Automation. 2015, pp. 2368–2375.

[55] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2011.

[56] D. Simon. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches.
John Wiley & Sons, 2006.

[57] J.-J. E. Slotine and W. Li. Applied Nonlinear Control. Pearson, 1991.

[58] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT Press,
2018.

[59] R. Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[60] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[61] R. Tsai. “A Versatile Camera Calibration Technique for High-accuracy 3D
Machine Vision Metrology Using Off-the-shelf TV Cameras and Lenses”.
In: IEEE Journal on Robotics and Automation 3.4 (1987), pp. 323–344.

[62] K. Yu et al. “More than a million ways to be pushed. A high-fidelity ex-
perimental dataset of planar pushing”. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). 2016, pp. 30–37.

principles of robot autonomy 305

[63] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolu-
tional Networks”. In: European Conference on Computer Vision (ECCV).
Springer, 2014, pp. 818–833.

[64] Z. Zhang. “A Flexible New Technique for Camera Calibration”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22 (2000).

[65] B. D. Ziebart et al. “Maximum Entropy Inverse Reinforcement Learning”.
In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence.
2008, pp. 1433–1438.

